Valid decomposition tree

Applications

Decomposition techniques applied to the Clique-Stable set Separation problem

Aurélie Lagoutte

LIMOS, University Clermont Auvergne, France

A tribute to Frédéric Maffray Grenoble, September 2019

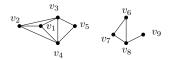
Joint work with N. Bousquet, F. Maffray and L. Pastor

Introduction	
0000	

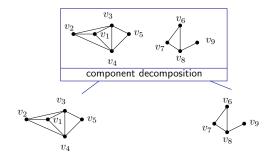
Valid decomposition tree 000000

Applications Limit

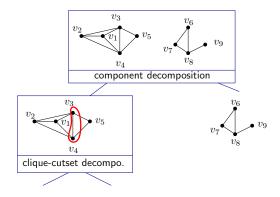
Introduction	Valid decomposition tree	Applications	Limits
0000			



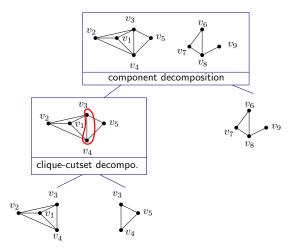
Introduction	Valid decomposition tree	Applications	Limits
●000		00	00



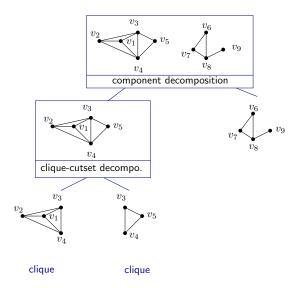
Introduction	Valid decomposition tree	Applications	Limits
••••	000000		



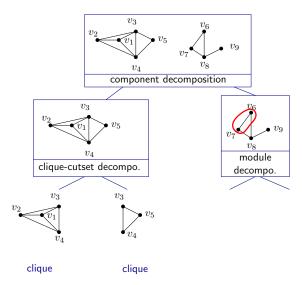
Introduction	Valid decomposition tree	Applications	Limits
0000	000000		



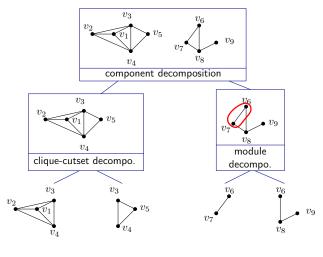
Introduction	Valid decomposition tree	Applications	Limits
● 0 00	000000		



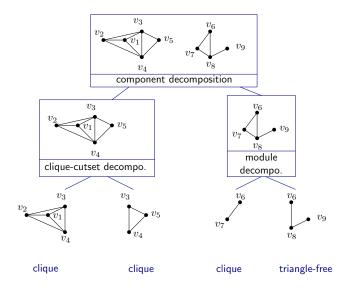
Introduction	Valid decomposition tree	Applications	Limits
•000	000000		

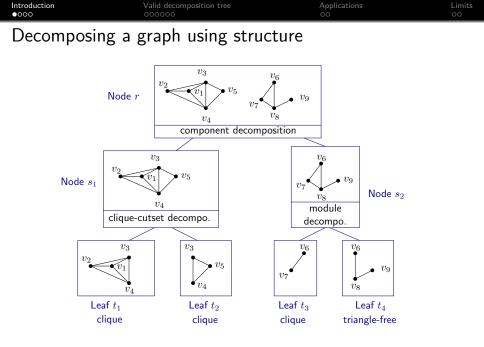


Introduction	Valid decomposition tree	Applications	Limits
0000	000000		

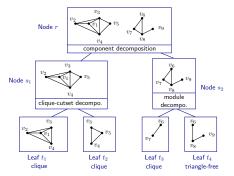


Introduction	Valid decomposition tree	Applications	Limits
•000	000000		





Introduction	Valid decomposition tree	Applications	Limits
●000		00	00



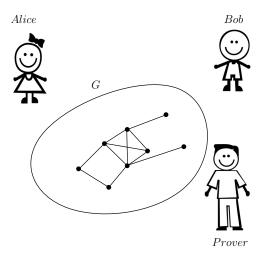
- G is decomposed along:
 - connected components
 - clique-cutset
 - modules

- into leaves which are:
 - cliques, or
 - triangle-free graphs.

Valid decomposition tree

Applications 00

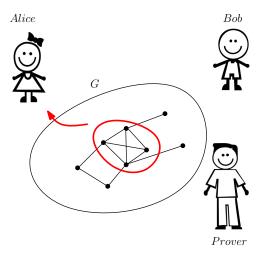
Clique vs Independent Set Problem



Valid decomposition tree

Applications 00

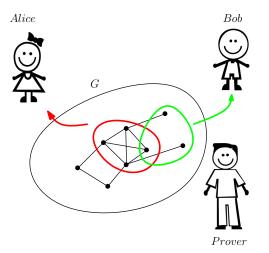
Clique vs Independent Set Problem



Valid decomposition tree

Applications 00

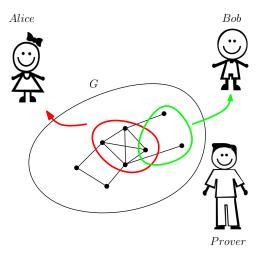
Clique vs Independent Set Problem



Valid decomposition tree

Applications 00

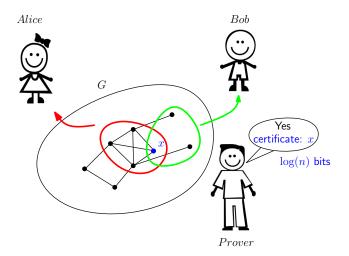
Clique vs Independent Set Problem



Valid decomposition tree

Applications I

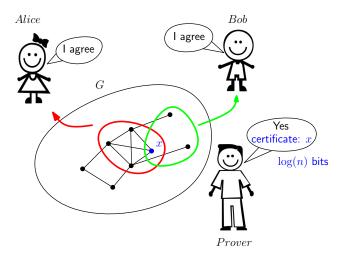
Clique vs Independent Set Problem



Introduction ○●○○ Valid decomposition tree

Applications L 00 C

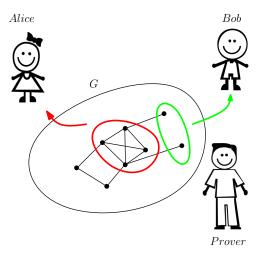
Clique vs Independent Set Problem



Valid decomposition tree

Applications 00

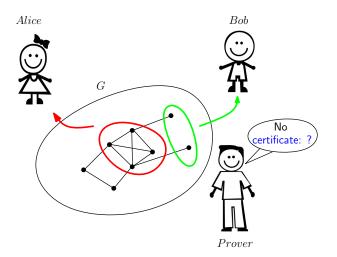
Clique vs Independent Set Problem



Valid decomposition tree

Applications 00

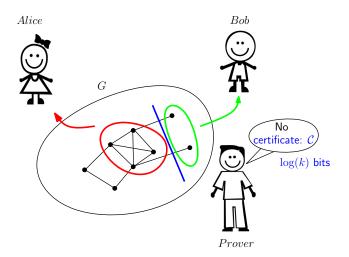
Clique vs Independent Set Problem



Valid decomposition tree

Applications I

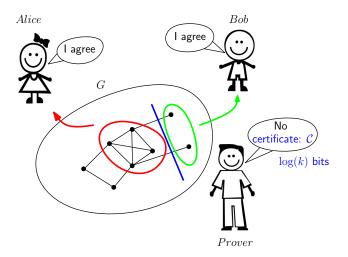
Clique vs Independent Set Problem



Introduction ○●○○ Valid decomposition tree

Applications L 00 C

Clique vs Independent Set Problem



Goal (Yannakakis 1991)

Find a CS-separator : a family of cuts that can separate all the pairs Clique-Stable set.

Non-det communication complexity \leftrightarrow min. size of a CS-Separator.

Goal (Yannakakis 1991)

Find a CS-separator : a family of cuts that can separate all the pairs Clique-Stable set.

Non-det communication complexity \leftrightarrow min. size of a CS-Separator.

Main question (Yannakakis 1991)

Do perfect graphs admit polynomial-size CS-Separator?

Goal (Yannakakis 1991)

Find a CS-separator : a family of cuts that can separate all the pairs Clique-Stable set.

Non-det communication complexity \leftrightarrow min. size of a CS-Separator.

Main question (Yannakakis 1991)

Do perfect graphs admit polynomial-size CS-Separator?

Upper Bound: there exists a CS-separator of size $\mathcal{O}(n^{\log n})$.

Goal (Yannakakis 1991)

Find a CS-separator : a family of cuts that can separate all the pairs Clique-Stable set.

Non-det communication complexity \leftrightarrow min. size of a CS-Separator.

Main question (Yannakakis 1991)

Do perfect graphs admit polynomial-size CS-Separator?

Upper Bound: there exists a CS-separator of size $\mathcal{O}(n^{\log n})$. Lower bound in perfect graphs?

Goal (Yannakakis 1991)

Find a *CS-separator* : a family of cuts that can separate all the pairs Clique-Stable set.

Non-det communication complexity \leftrightarrow min. size of a CS-Separator.

Main question (Yannakakis 1991)

Do perfect graphs admit polynomial-size CS-Separator?

Upper Bound: there exists a CS-separator of size $O(n^{\log n})$. Lower bound in perfect graphs? Lower bound in general?

Goal (Yannakakis 1991)

Find a *CS-separator* : a family of cuts that can separate all the pairs Clique-Stable set.

Non-det communication complexity \leftrightarrow min. size of a CS-Separator.

Main question (Yannakakis 1991)

Do perfect graphs admit polynomial-size CS-Separator?

Upper Bound: there exists a CS-separator of size $\mathcal{O}(n^{\log n})$. Lower bound in perfect graphs? Lower bound in general? Does there exist for all graph G on n vertices a CS-separator of size poly(n)? Or for which classes of graphs does it exist?

Introduction	Valid decomposition tree	Applications	Limits
0000			

Introduction	Valid decomposition tree	Applications	Limits
0000			

What about random graphs?

What about random graphs?

Theorem [Bousquet, L., Thomassé, 2014]

Random graphs admit a CS-Separator of size $\mathcal{O}(n^7)$ asymptotically almost surely.

What about random graphs?

Theorem [Bousquet, L., Thomassé, 2014]

Random graphs admit a CS-Separator of size $\mathcal{O}(n^7)$ asymptotically almost surely.

Lower Bound:

• (Huang, Sudakov 2012): we need $\Omega(n^{\frac{6}{5}})$ cuts for some graphs.

What about random graphs?

Theorem [Bousquet, L., Thomassé, 2014]

Random graphs admit a CS-Separator of size $\mathcal{O}(n^7)$ asymptotically almost surely.

Lower Bound:

- (Huang, Sudakov 2012): we need $\Omega(n^{\frac{6}{5}})$ cuts for some graphs.
- (Amano, Shigeta 2013): we need $\Omega(n^{2-\varepsilon})$ for some graphs.

What about random graphs?

Theorem [Bousquet, L., Thomassé, 2014]

Random graphs admit a CS-Separator of size $\mathcal{O}(n^7)$ asymptotically almost surely.

Lower Bound:

- (Huang, Sudakov 2012): we need $\Omega(n^{\frac{6}{5}})$ cuts for some graphs.
- (Amano, Shigeta 2013): we need $\Omega(n^{2-\varepsilon})$ for some graphs.
- (Göös 2015): we need $n^{\Omega(\log^{0.128} n)}$ cuts for some graphs.

What about random graphs?

Theorem [Bousquet, L., Thomassé, 2014]

Random graphs admit a CS-Separator of size $\mathcal{O}(n^7)$ asymptotically almost surely.

Lower Bound:

- (Huang, Sudakov 2012): we need $\Omega(n^{\frac{6}{5}})$ cuts for some graphs.
- (Amano, Shigeta 2013): we need $\Omega(n^{2-\varepsilon})$ for some graphs.
- (Göös 2015): we need $n^{\Omega(\log^{0.128} n)}$ cuts for some graphs.

What about random graphs?

Theorem [Bousquet, L., Thomassé, 2014]

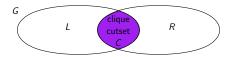
Random graphs admit a CS-Separator of size $\mathcal{O}(n^7)$ asymptotically almost surely.

Lower Bound:

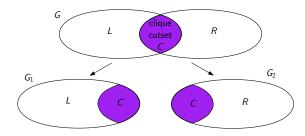
- (Huang, Sudakov 2012): we need $\Omega(n^{\frac{6}{5}})$ cuts for some graphs.
- (Amano, Shigeta 2013): we need $\Omega(n^{2-\varepsilon})$ for some graphs.
- (Göös 2015): we need $n^{\Omega(\log^{0.128} n)}$ cuts for some graphs.

For which classes of graphs does there exist a polynomial CS-Separator?

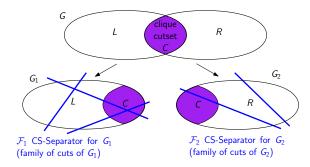
Introduction	Valid decomposition tree	Applications	Limits
0000	000000		



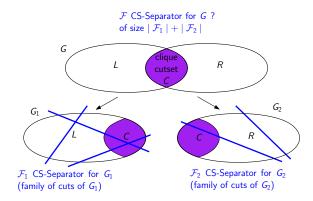
Introduction	Valid decomposition tree	Applications	Limits
0000	●00000		



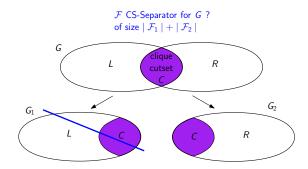
Introduction	Valid decomposition tree	Applications	Limits
0000	00000		



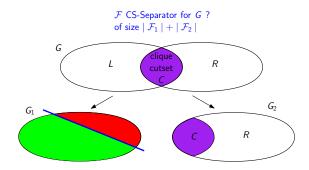
Introduction	Valid decomposition tree	Applications	Limits
	000000		



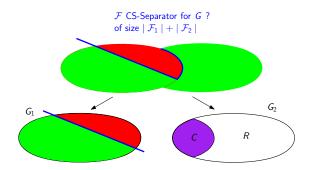
0000 00000 00 00	Introduction	Valid decomposition tree	Applications	Limits
	0000	000000		



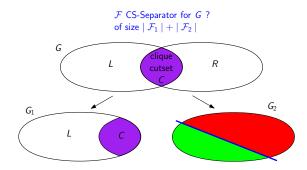
0000 00000 00 00	Introduction	Valid decomposition tree	Applications	Limits
	0000	000000		



Introduction	Valid decomposition tree	Applications	Limits
	00000		



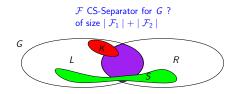
0000 00000 00 00	Introduction	Valid decomposition tree	Applications	Limits
	0000	000000		



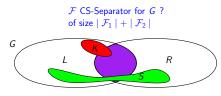
Introduction	Valid decomposition tree	Applications	Limits
	000000		



Introduction	Valid decomposition tree	Applications	Limits
	000000		

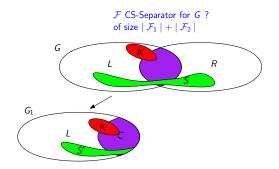


Introduction	Valid decomposition tree	Applications	Limits
	000000		

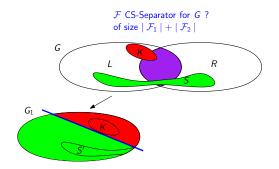


Clique K cannot intersect both L and R!

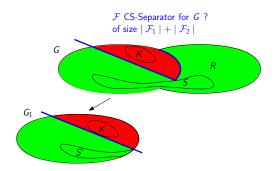
Introduction	Valid decomposition tree	Applications	Limits
	000000		



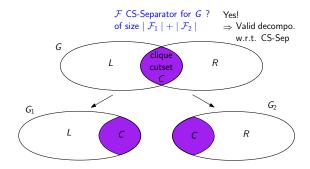
Introduction	Valid decomposition tree	Applications	Limits
	000000		



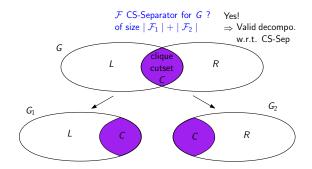
Introduction	Valid decomposition tree	Applications	Limits
	000000		



Introduction	Valid decomposition tree	Applications	Limits
	000000		

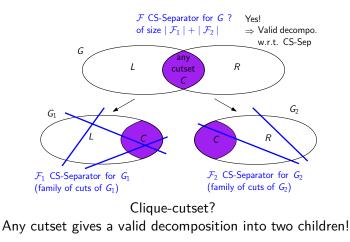


Introduction	Valid decomposition tree	Applications	Limits
0000	000000		



Clique-cutset?

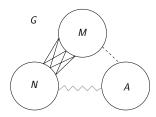
Introduction	Valid decomposition tree	Applications	Limits
	000000		



Introdu	iction

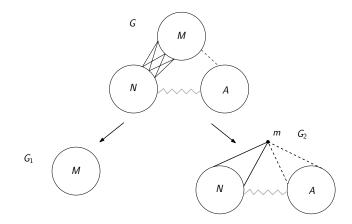
Valid decomposition tree

Modules gives valid decomposition w.r.t CS-Sep



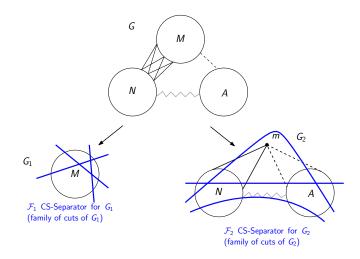
Introduction	Valid decomposition tree	Applicatio
0000	00000	

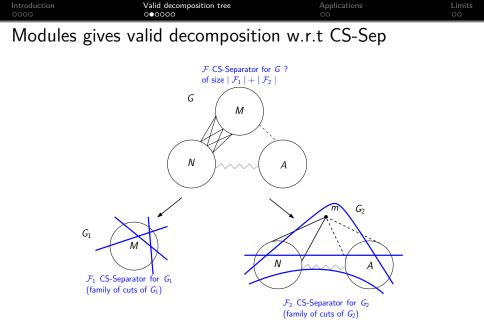
Modules gives valid decomposition w.r.t CS-Sep

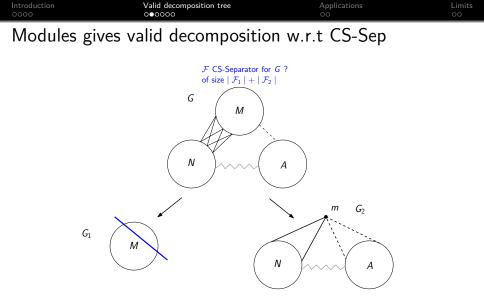


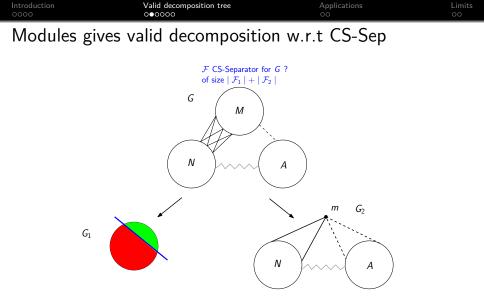
ntroduction	
0000	

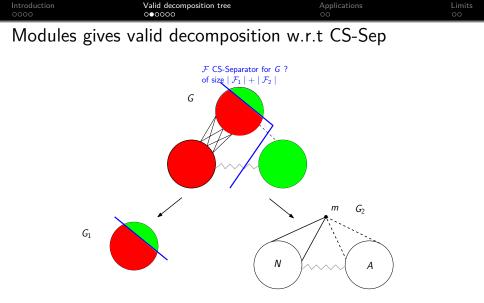
Modules gives valid decomposition w.r.t CS-Sep

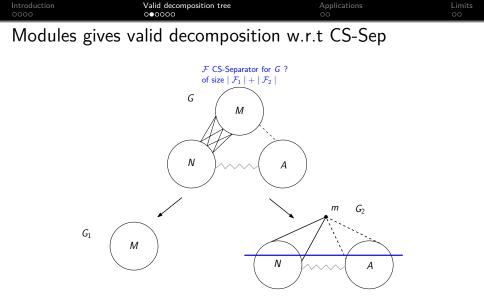


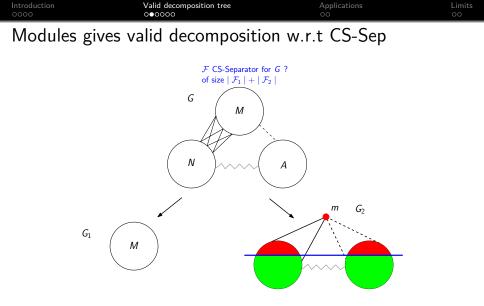


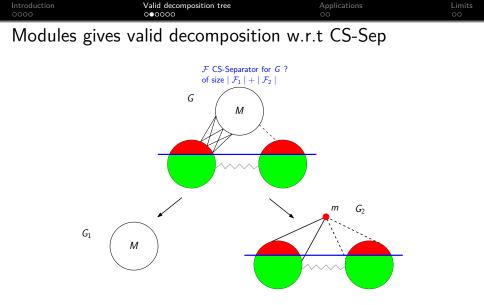


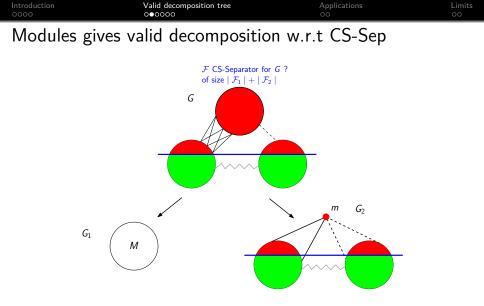


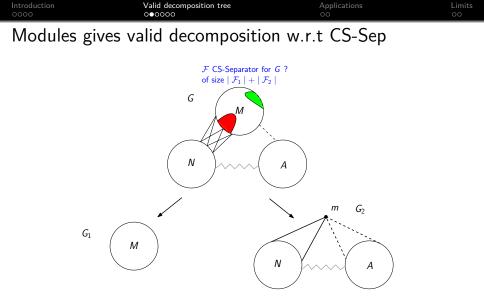


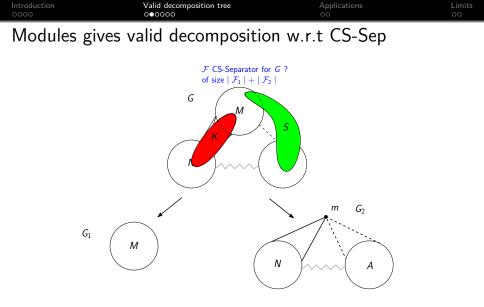


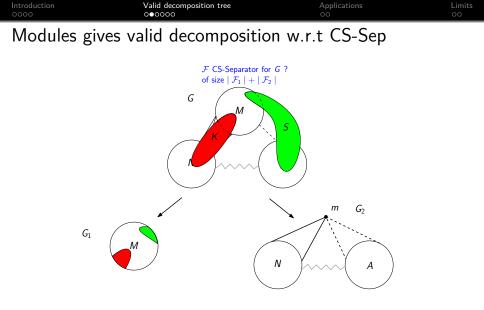


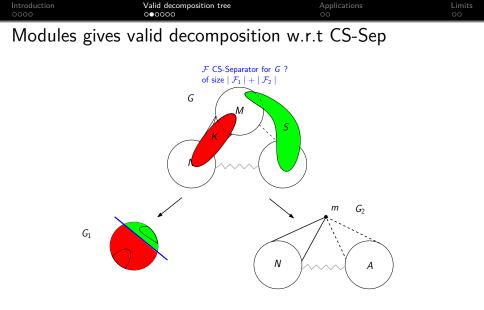




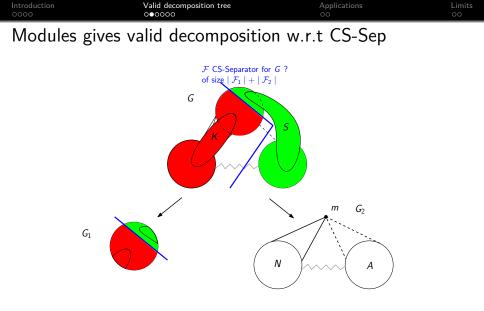


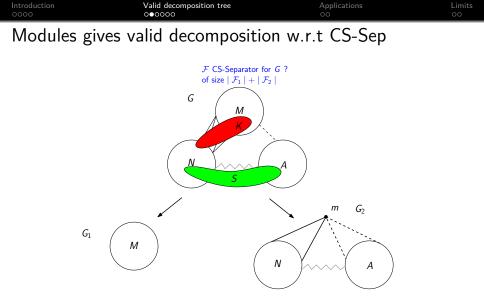




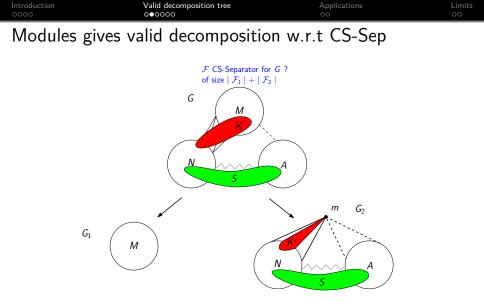


Case 1: Both K and S intersect M

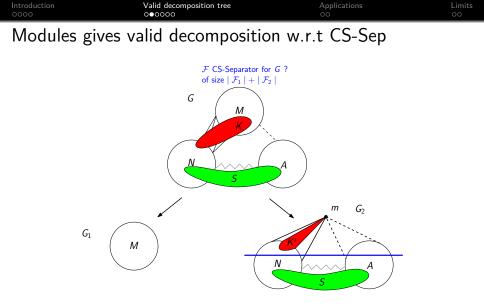




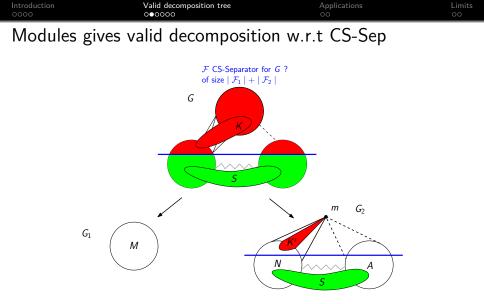
Case 2: At least one of K or S does not intersect M



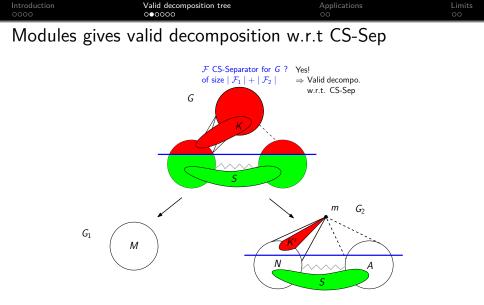
Case 2: At least one of K or S does not intersect M



Case 2: At least one of K or S does not intersect M

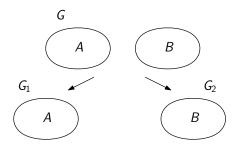


Case 2: At least one of K or S does not intersect M



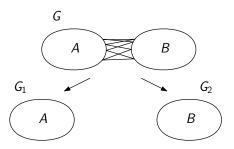
List of valid decompositions w.r.t CS-Sep

component decomposition



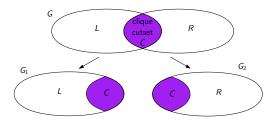
Introduction	Valid decomposition tree	Applications	Limi
	000000		

- component decomposition
- anticomponent decomposition



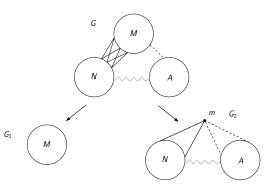
Introduction	Valid decomposition tree	Applications	Limits
0000	000000		

- component decomposition
- anticomponent decomposition
- cutset decomposition

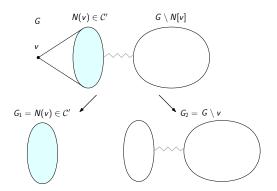


Introduction	Valid decomposition tree	Applications	Limits
	000000		

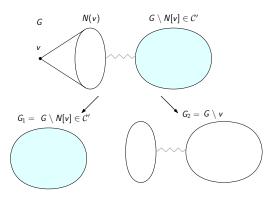
- component decomposition
- anticomponent decomposition
- cutset decomposition
- module decomposition



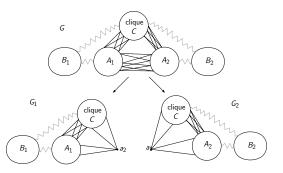
- component decomposition
- anticomponent decomposition
- cutset decomposition
- module decomposition
- *C*'-neighborhood decomposition



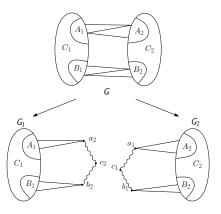
- component decomposition
- anticomponent decomposition
- cutset decomposition
- module decomposition
- *C*'-neighborhood decomposition
- C'-antineighborhood decomposition



- component decomposition
- anticomponent decomposition
- cutset decomposition
- module decomposition
- *C*'-neighborhood decomposition
- C'-antineighborhood decomposition
- amalgam decomposition



- component decomposition
- anticomponent decomposition
- cutset decomposition
- module decomposition
- *C*'-neighborhood decomposition
- C'-antineighborhood decomposition
- amalgam decomposition
- ulletpprox 2-join decomposition

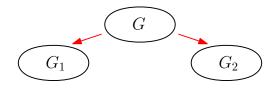


Introduction 0000 Valid decomposition tree 000000

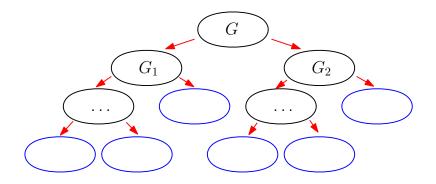
Applications Limits

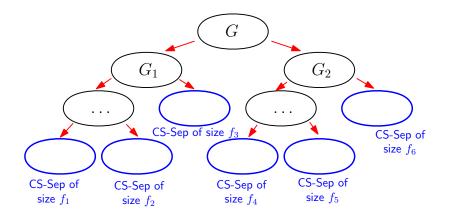
Introduction 0000 Valid decomposition tree 000000

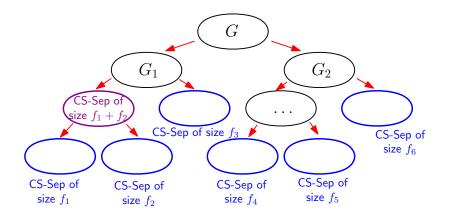
Applications Limits

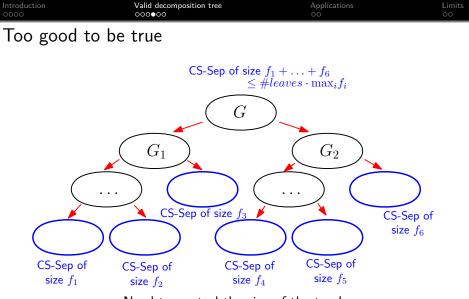


Introduction	Valid decomposition tree	Applications	Limits
	000000		



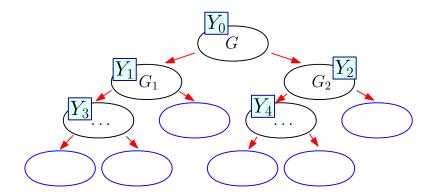






Need to control the size of the tree!

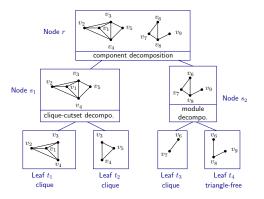
Introduction	Valid decomposition tree	Applications	Limits
	000000		



Need to control the size of the tree!

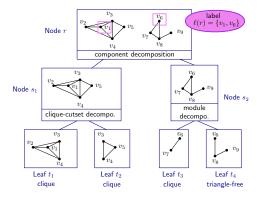
 \Rightarrow Choose a *unique* label for each (internal) node among a poly. number of subsets of V(G) (e.g. non-edges, triples, squares,)

Introduction	



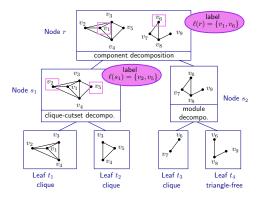
- $O(n^2)$ of them
- ≥ one non-edge is "broken" (does not survive in any child)
 ⇒ use it to label the node
- no non-edge can survive in both children

Introduction	Valid decomposition tree	Applications	Limits
0000	0000●0	00	00



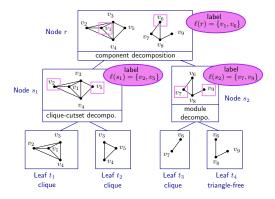
- $O(n^2)$ of them
- ≥ one non-edge is "broken" (does not survive in any child)
 ⇒ use it to label the node
- no non-edge can survive in both children

Introduction	Valid decomposition tree	Applications	Limits
0000	○○○○●○	00	00



- $O(n^2)$ of them
- ≥ one non-edge is "broken" (does not survive in any child)
 ⇒ use it to label the node
- no non-edge can survive in both children

1.1.1.1.1			
0000	000000	00	
Introduction	Valid decomposition tree	Applications	Limits



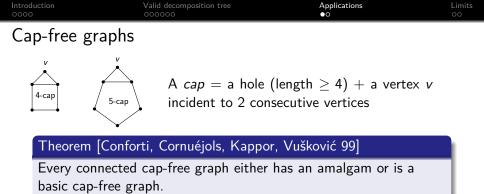
- $O(n^2)$ of them
- ≥ one non-edge is "broken" (does not survive in any child)
 ⇒ use it to label the node
- no non-edge can survive in both children

Introduction	Valid decomposition tree	Applications	Limits
0000	000000		

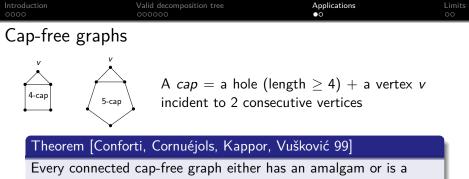
The framework

Sufficient conditions to have a polynomial CS-Sep for a graph G:

- Find a valid decomposition tree for G
- Prove that every leaf has a polynomial CS-Separator
- Bound the size of the tree by poly(n): Find a labeling as follows:
 - polynomial number of label candidates
 - the label of each node is "broken" (does not survive in any child)
 - no label candidate can survive in both children
 - $\Rightarrow \mathsf{Injective} \ \mathsf{labeling}$

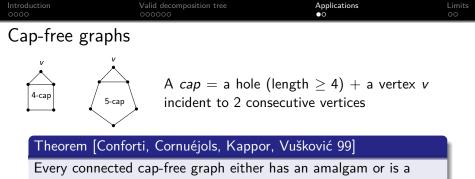


A *basic* cap-free graph is either chordal or *almost triangle-free*.



basic cap-free graph.

A *basic* cap-free graph is either chordal or *almost triangle-free*. \Rightarrow it has a quadratic CS-Separator.



basic cap-free graph.

A *basic* cap-free graph is either chordal or *almost triangle-free*. \Rightarrow it has a quadratic CS-Separator.

1. Decompose using component, anticomponent and amalgam.

0000	Valid decomposition tree	Applications ●0	Contraction Contractica Contra
Cap-free graphs			
4-cap 5-cap	A <i>cap</i> = a hole (length incident to 2 consecutiv	,	
Theorem [Confo	rti, Cornuéjols, Kappor, Vušk	ović 99]	
Every connected	cap-free graph either has an	amalgam or is a	

basic cap-free graph.

A *basic* cap-free graph is either chordal or *almost triangle-free*. \Rightarrow it has a quadratic CS-Separator.

Decompose using component, anticomponent and amalgam.
 Label each node with a *trio*: at most three vertices containing a non-edge.

0000	000000		00
Cap-free grap	hs		
4-cap 5-		ble (length \geq 4) $+$ a vertex consecutive vertices	V
Theorem [Co	nforti, Cornuéjols, Kap	ppor, Vušković 99]	
Ever compos	ted con free grouph ait	aar has an amalgam ar is a	

Every connected cap-free graph either has an amalgam or is a basic cap-free graph.

A *basic* cap-free graph is either chordal or *almost triangle-free*. \Rightarrow it has a quadratic CS-Separator.

1. Decompose using component, anticomponent and amalgam. 2. Label each node with a *trio*: at most three vertices containing a non-edge. $\Rightarrow O(n^3)$ different trios

0000	000000	●O	00
Cap-free graphs			
4-cap	A <i>cap</i> = a hole (length incident to 2 consecutiv	,	
Theorem [Confo	rti, Cornuéjols, Kappor, Vušk	ović 99]	
-	<u> </u>		

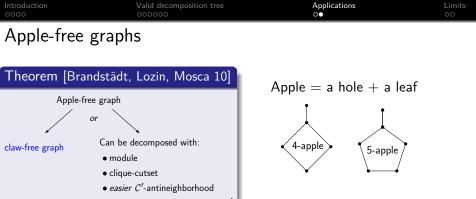
Every connected cap-free graph either has an amalgam or is a basic cap-free graph.

A *basic* cap-free graph is either chordal or *almost triangle-free*. \Rightarrow it has a quadratic CS-Separator.

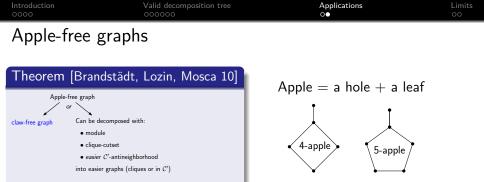
1. Decompose using component, anticomponent and amalgam. 2. Label each node with a *trio*: at most three vertices containing a non-edge. $\Rightarrow O(n^3)$ different trios

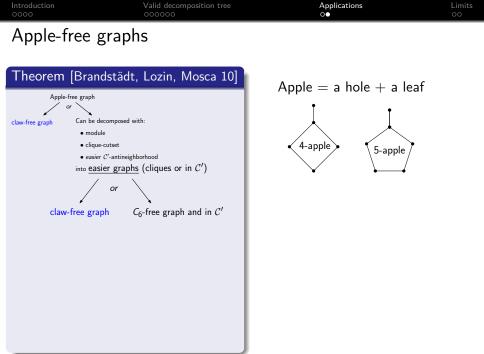
Theorem [Bousquet, L. Maffray, Pastor 18]

Every cap-free graph admits a $O(n^5)$ CS-Separator.

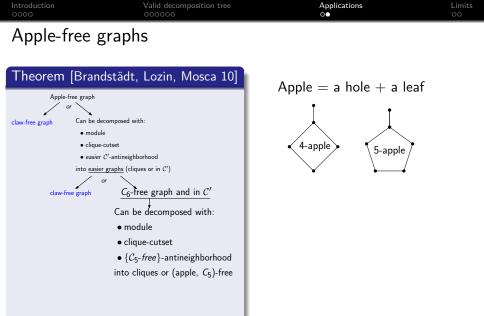


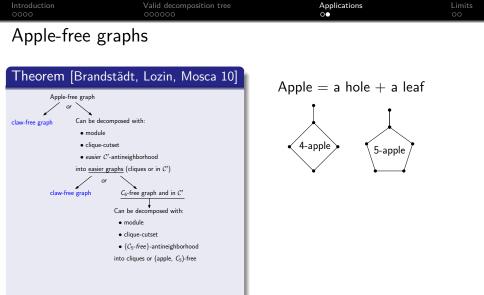
into easier graphs (cliques or in C')

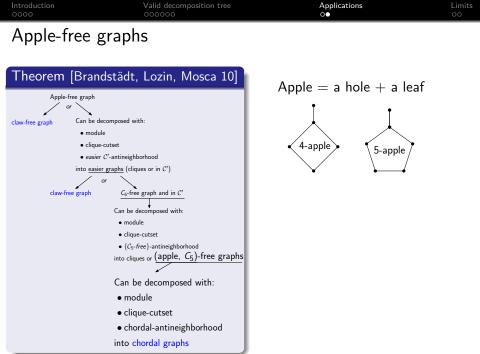


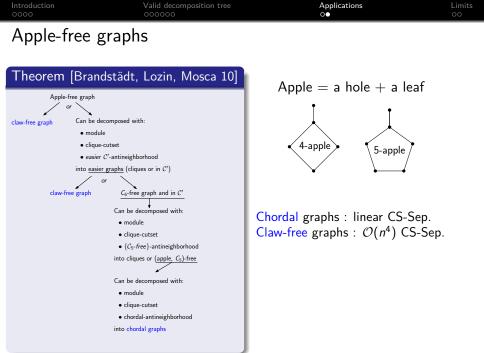


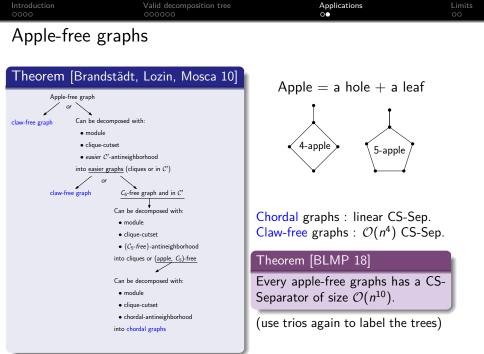
Introduction 0000	Valid decomposition tree	Applicatio ⊙●	ons	Limits 00
Apple-free grap				
Theorem [Brandstäd Apple-free graph claw-free graph - indule - clique-cutset - easier C'-antini into easier graphs - claw-free graph - Can be decompose - indule - clique-cutset - easier C'-antini into easier graphs - Can be decompose - indule - clique-cutset - clique-cu	d with: zighborhood	Apple = a h	ole + a leaf	



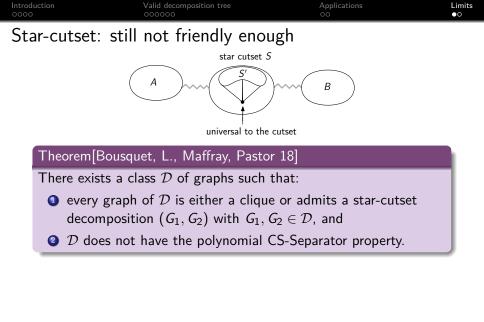


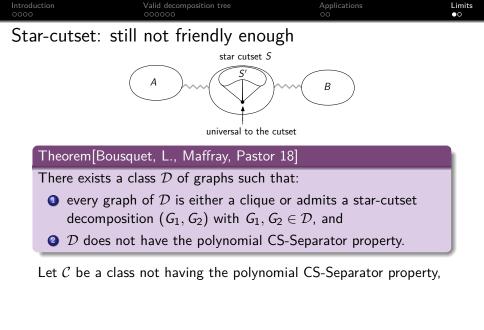


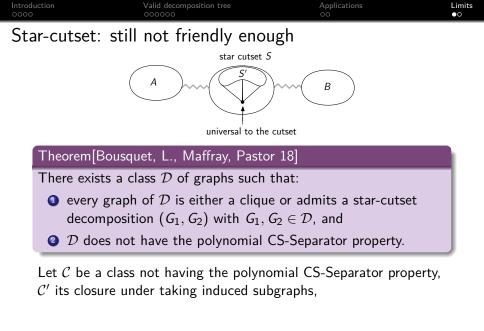


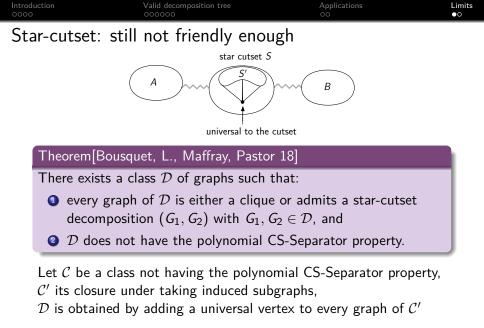


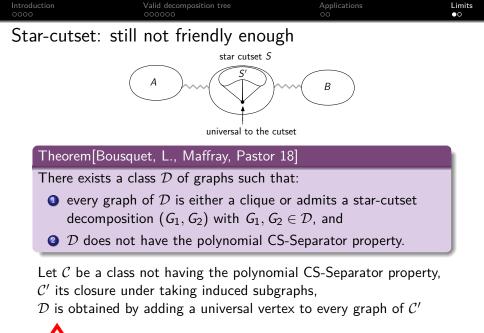
Introduction 0000	Valid decomposition tree	Applications 00	Limits ●0
Star-cutset: still	l not friendly enough		
	star cutset S		
(A S' universal to the cutset	В	











 $lackslash \mathcal{D}$ is not hereditary (so it is a bit of cheating..)

Introduction	Valid decomposition tree	Applications	Limits
0000		00	⊙●
Conclusion			

Looking for more decomposition theorems to exploit! :-)

Introduction	Valid decomposition tree	Applications	Limits
			00
/		/	/

Conclusion

Looking for more decomposition theorems to exploit! :-)

Open question

Do perfect graphs have polynomial CS-Separators?

Valid decomposition tree	Applications	Limits 0●

Conclusion

Looking for more decomposition theorems to exploit! :-)

Open question

Do perfect graphs have polynomial CS-Separators?

Thank you for your attention!