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Clique vs Independent Set Problem

Goal (Yannakakis 1991)
Find a CS-separator : a family of cuts that can separate all the
pairs Clique-Stable set.

Non-det communication complexity↔ min. size of a CS-Separator.

Main question (Yannakakis 1991)
Do perfect graphs admit polynomial-size CS-Separator?

Upper Bound: there exists a CS-separator of size O(nlog n).
Lower bound in perfect graphs? Lower bound in general?
Does there exist for all graph G on n vertices a CS-separator
of size poly(n)? Or for which classes of graphs does it exist?
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Does there exist for all graph G on n vertices a CS-separator
of size poly(n)?

What about random graphs?
Theorem [Bousquet, L., Thomassé, 2014]

Random graphs admit a CS-Separator of size O(n7) asymptotically
almost surely.

Lower Bound:

(Huang, Sudakov 2012): we need Ω(n 6
5 ) cuts for some graphs.

(Amano, Shigeta 2013): we need Ω(n2−ε) for some graphs.
(Göös 2015): we need nΩ(log0.128 n) cuts for some graphs.

For which classes of graphs does there exist a polynomial
CS-Separator?
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List of valid decompositions w.r.t CS-Sep
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Introduction Valid decomposition tree Applications Limits

Too good to be true

G

Need to control the size of the tree!

⇒ Choose a unique label for each (internal) node among a poly.
number of subsets of V (G) (e.g. non-edges, triples, squares, ....)
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Introduction Valid decomposition tree Applications Limits

Label the tree : an example

v1
v2

v3

v4

v5

v6

v7
v8

v9

v1
v2

v3

v4

v5

v6

v7
v8

v9

v1
v2

v3 v3

v5

v6

v7

v6

v8

v9

v4
v4

component decomposition

clique-cutset decompo.

Node r

Node s1
Node s2

Leaf t1 Leaf t2 Leaf t3 Leaf t4

module
decompo.

clique clique clique triangle-free

Label with non-edges because:
O(n2) of them
≥ one non-edge is "broken" (does not survive in any child)
⇒ use it to label the node
no non-edge can survive in both children
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The framework

Sufficient conditions to have a polynomial CS-Sep for a graph G :

Find a valid decomposition tree for G
Prove that every leaf has a polynomial CS-Separator
Bound the size of the tree by poly(n):
Find a labeling as follows:

polynomial number of label candidates
the label of each node is "broken" (does not survive in any
child)
no label candidate can survive in both children

⇒ Injective labeling

11/15



Introduction Valid decomposition tree Applications Limits

Cap-free graphs

5-cap
4-cap

v v

A cap = a hole (length ≥ 4) + a vertex v
incident to 2 consecutive vertices

Theorem [Conforti, Cornuéjols, Kappor, Vušković 99]
Every connected cap-free graph either has an amalgam or is a
basic cap-free graph.

A basic cap-free graph is either chordal or almost triangle-free.

⇒ it has a quadratic CS-Separator.
1. Decompose using component, anticomponent and amalgam.
2. Label each node with a trio: at most three vertices containing a
non-edge. ⇒ O(n3) different trios
Theorem [Bousquet, L. Maffray, Pastor 18]
Every cap-free graph admits a O(n5) CS-Separator.
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Introduction Valid decomposition tree Applications Limits

Apple-free graphs

Theorem [Brandstädt, Lozin, Mosca 10]
Apple-free graph

Can be decomposed with:

•module
• clique-cutset
• easier C′-antineighborhood
into easier graphs (cliques or in C′)

claw-free graph

or

Apple = a hole + a leaf

4-apple 5-apple

Chordal graphs : linear CS-Sep.
Claw-free graphs : O(n4) CS-Sep.

Theorem [BLMP 18]
Every apple-free graphs has a CS-
Separator of size O(n10).

(use trios again to label the trees)
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Introduction Valid decomposition tree Applications Limits

Star-cutset: still not friendly enough
star cutset S

universal to the cutset

A B
S ′

Theorem[Bousquet, L., Maffray, Pastor 18]
There exists a class D of graphs such that:

1 every graph of D is either a clique or admits a star-cutset
decomposition (G1, G2) with G1, G2 ∈ D, and

2 D does not have the polynomial CS-Separator property.

Let C be a class not having the polynomial CS-Separator property,
C′ its closure under taking induced subgraphs,
D is obtained by adding a universal vertex to every graph of C′

D is not hereditary (so it is a bit of cheating..)
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Conclusion

Looking for more decomposition theorems to exploit! :-)

Open question
Do perfect graphs have polynomial CS-Separators?

Thank you for your attention!
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