Precoloring co-Meyniel graphs

Vincent Jost, Benjamin Lévêque, Frédéric Maffray

{vincent.jost, benjamin.leveque, frederic.maffray}@imag.fr

Graphs & Combinatorial Optimization group Laboratoire Leibniz-IMAG, Grenoble

 One color is given to each vertex, Any two adjacent vertices receive distinct colors

- One color is given to each vertex, Any two adjacent vertices receive distinct colors
- Optimal coloring: $\chi(G)$

- One color is given to each vertex, Any two adjacent vertices receive distinct colors
- Optimal coloring: $\chi(G)$
- Applications : Timetables, frequency assignment, ...

- One color is given to each vertex, Any two adjacent vertices receive distinct colors
- Optimal coloring: $\chi(G)$
- Applications : Timetables, frequency assignment, ...
- *NP*-complete problem : $\chi(G) \le k$ for $k \ge 3$?

- One color is given to each vertex, Any two adjacent vertices receive distinct colors
- Optimal coloring: $\chi(G)$
- Applications : Timetables, frequency assignment, ...
- *NP*-complete problem : $\chi(G) \le k$ for $k \ge 3$?

• Claude Berge (1960) Every induced subgraph H of G must satisfy $\chi(H) = \omega(H)$

- Claude Berge (1960) Every induced subgraph H of G must satisfy $\chi(H) = \omega(H)$
- Grötschel, Lovász, Schrijver (1984)
 Polynomial-time algorithm to color perfect graphs Using Khachiyan's ellipsoid method

- Claude Berge (1960) Every induced subgraph H of G must satisfy $\chi(H) = \omega(H)$
- Grötschel, Lovász, Schrijver (1984)
 Polynomial-time algorithm to color perfect graphs
 Using Khachiyan's ellipsoid method
- Chudnovsky, Robertson, Seymour, Thomas (2002)
 Strong Perfect Graph Conjecture (Berge 1960)
 G is perfect iff it contains no odd hole and no odd antihole

- Claude Berge (1960) Every induced subgraph H of G must satisfy $\chi(H) = \omega(H)$
- Grötschel, Lovász, Schrijver (1984)
 Polynomial-time algorithm to color perfect graphs
 Using Khachiyan's ellipsoid method
- Chudnovsky, Robertson, Seymour, Thomas (2002)
 Strong Perfect Graph Conjecture (Berge 1960)
 G is perfect iff it contains no odd hole and no odd antihole

• Some vertices are already colored

- Some vertices are already colored
- Precoloring Extension (PrExt) : $\chi_{PrExt}(G, Q)$

- Some vertices are already colored
- Precoloring Extension (PrExt) : $\chi_{PrExt}(G, Q)$
- More formally:

Input : Graph G, integer k, precoloring Q of G using colors from $\{1, \ldots, k\}$.

Question : Is there a k-coloring of G that extends Q?

- Some vertices are already colored
- Precoloring Extension (PrExt) : $\chi_{PrExt}(G, Q)$
- More formally:

Input : Graph G, integer k, precoloring Q of G using colors from $\{1, \ldots, k\}$.

Question : Is there a k-coloring of G that extends Q?

NP-complete on bipartite graphs, interval graphs, permutation graphs.

• Contracted graph G/Q

- Contracted graph G/Q
- 1-to-1 correspondence between colorings of G that extend Q and colorings of G/Q.

- Contracted graph G/Q
- 1-to-1 correspondence between colorings of G that extend Q and colorings of G/Q.
- $\chi_{PrExt}(G, \mathcal{Q}) = \chi(G/\mathcal{Q})$

- Contracted graph G/Q
- 1-to-1 correspondence between colorings of G that extend Q and colorings of G/Q.
- $\chi_{PrExt}(G, \mathcal{Q}) = \chi(G/\mathcal{Q})$
- Hujter and Tuza (1996) PrExt-perfect graphs: Graph G such that G/Q is perfect for every precoloring Q

- Contracted graph G/Q
- 1-to-1 correspondence between colorings of G that extend Q and colorings of G/Q.
- $\chi_{PrExt}(G, \mathcal{Q}) = \chi(G/\mathcal{Q})$
- Hujter and Tuza (1996) PrExt-perfect graphs: Graph G such that G/Q is perfect for every precoloring Q

Which are the PrExt-perfect graphs?

 Meyniel Graphs Every odd cycle has at least two chords Meyniel Graphs Every odd cycle has at least two chords

- Meyniel Graphs
 Every odd cycle has at least two chords
 - \iff contains no odd hole and no house

 Meyniel Graphs Every odd cycle has at least two chords

 \iff contains no odd hole and no house

 Artemis Graphs Contain no odd hole, no antihole (odd or even), and no prism

Complementary point of view

Complementary point of view

• Coloring \rightsquigarrow co-coloring (partition into cliques)
Complementary point of view

- Coloring \rightsquigarrow co-coloring (partition into cliques)
- Pre-co-coloring : collection of disjoint cliques \mathcal{Q}

Complementary point of view

- Coloring
 ~> co-coloring (partition into cliques)
- Pre-co-coloring : collection of disjoint cliques \mathcal{Q}
- Co-contraction : $G^{\mathcal{Q}}$

Complementary point of view

- Coloring ~> co-coloring (partition into cliques)
- Pre-co-coloring : collection of disjoint cliques \mathcal{Q}
- Co-contraction : $G^{\mathcal{Q}}$

Theorem 1

 $G^{\mathcal{Q}}$ is perfect for every pre-co-coloring $\mathcal{Q} \iff G$ is Meyniel

Results

Theorem 1

 $G^{\mathcal{Q}}$ is perfect for every pre-co-coloring $\mathcal{Q} \iff G$ is Meyniel

Theorem 2

G is Meyniel $\Longrightarrow G^{\mathcal{Q}}$ is Artemis for every pre-co-coloring \mathcal{Q}

Results

Theorem 1

 $G^{\mathcal{Q}}$ is perfect for every pre-co-coloring $\mathcal{Q} \iff G$ is Meyniel

Theorem 2

G is Meyniel $\Longrightarrow G^{\mathcal{Q}}$ is Artemis for every pre-co-coloring \mathcal{Q}

Consequences

PrExt-perfect = co-Meyniel

Pre-coloring Extension is polynomial on co-Meyniel graphs

Results

Theorem 1

 $G^{\mathcal{Q}}$ is perfect for every pre-co-coloring $\mathcal{Q} \iff G$ is Meyniel

Theorem 2

G is Meyniel $\Longrightarrow G^{\mathcal{Q}}$ is Artemis for every pre-co-coloring \mathcal{Q}

Consequences

PrExt-perfect = co-Meyniel

Pre-coloring Extension is polynomial on co-Meyniel graphs

Generalization of known results

Split graphs, cographs (= P_4 -free graphs), P_5 -free bipartite graphs, complements of bipartite graphs [Hujter, Tuza] Co-Meyniel graphs with all pre-coloring classes of size 1 [Hertz]

$\forall \mathcal{Q}, G^{\mathcal{Q}} \text{ perfect} \Longrightarrow G \text{ Meyniel}$

$\forall \mathcal{Q}, G^{\mathcal{Q}} \text{ perfect} \Longrightarrow G \text{ Meyniel}$

• G contains an odd hole $\implies G^{\emptyset}$ contains an odd hole

$\forall \mathcal{Q}, G^{\mathcal{Q}} \text{ perfect} \Longrightarrow G \text{ Meyniel}$

- G contains an odd hole $\implies G^{\emptyset}$ contains an odd hole
- G contains a house with chord xy $\implies G^{\{x\},\{y\}\}}$ contains an odd hole

 $\forall \mathcal{Q}, G^{\mathcal{Q}} \text{ perfect} \Longrightarrow G \text{ Meyniel}$

- G contains an odd hole $\implies G^{\emptyset}$ contains an odd hole
- G contains a house with chord xy $\implies G^{\{x\},\{y\}\}}$ contains an odd hole

G Meyniel \Longrightarrow ...

G Meyniel \Longrightarrow ...

G Meyniel \Longrightarrow ...

G Meyniel \Longrightarrow ...

G Meyniel \Longrightarrow ...

G Meyniel \Longrightarrow ...

G Meyniel \Longrightarrow ...

G Meyniel \Longrightarrow ...

G Meyniel \Longrightarrow ...

G Meyniel \Longrightarrow ...

G Meyniel \Longrightarrow ...

G Meyniel \Longrightarrow ...

- no antihole ≥ 6
- no odd hole

G Meyniel \Longrightarrow ...

- no antihole ≥ 6
- no odd hole

G Meyniel \Longrightarrow ...

- no antihole ≥ 6
- no odd hole

G Meyniel \Longrightarrow ...

- no antihole ≥ 6
- no odd hole

G Meyniel \Longrightarrow ...

- no antihole ≥ 6
- no odd hole

G Meyniel \Longrightarrow ...

- no antihole ≥ 6
- no odd hole

G Meyniel \Longrightarrow ...

- no antihole ≥ 6
- no odd hole

G Meyniel \Longrightarrow ...

- no antihole ≥ 6
- no odd hole
- no prism

G Meyniel \Longrightarrow ...

- no antihole ≥ 6
- no odd hole
- no prism

G Meyniel \Longrightarrow ...

- no antihole ≥ 6
- no odd hole
- no prism

G Meyniel \Longrightarrow ...

- no antihole ≥ 6
- no odd hole
- no prism

G Meyniel \Longrightarrow ...

- no antihole ≥ 6
- no odd hole
- no prism

G Meyniel \Longrightarrow ...

- no antihole ≥ 6
- no odd hole
- no prism
G Meyniel \Longrightarrow ...

For every pre-co-coloring Q, G^{Q} contains

- no antihole ≥ 6
- no odd hole
- no prism

$\dots \Longrightarrow \forall \mathcal{Q}, G^{\mathcal{Q}} \text{ is Artemis}$

Proof does not rely on Strong Perfect Graph Theorem

Proof does not rely on Strong Perfect Graph Theorem

• Polynomiality relies on Grötschel, Lovász & Schrijver's algorithm

Proof does not rely on Strong Perfect Graph Theorem

• Polynomiality relies on Grötschel, Lovász & Schrijver's algorithm

Combinatorial algorithm for clique-partitioning Artemis graphs?

Proof does not rely on Strong Perfect Graph Theorem

• Polynomiality relies on Grötschel, Lovász & Schrijver's algorithm

Combinatorial algorithm for clique-partitioning Artemis graphs?

Which graphs are actually obtained by co-contracting Meyniel graphs?