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• Claude Berge (1960)
Every induced subgraph H of G must satisfy χ(H) = ω(H)

• Grötschel, Lovász, Schrijver (1984)
Polynomial-time algorithm to color perfect graphs
Using Khachiyan’s ellipsoid method

• Chudnovsky, Robertson, Seymour, Thomas (2002)
Strong Perfect Graph Conjecture (Berge - 1960)
G is perfect iff it contains no odd hole and no odd antihole

Odd hole Odd antihole
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The Precoloring Problem

• Some vertices are already colored

• Precoloring Extension (PrExt) : χPrExt(G,Q)

• More formally:

Input : Graph G, integer k, precoloring Q of G using colors from
{1, . . . , k}.

Question : Is there a k-coloring of G that extends Q ?

• NP -complete on bipartite graphs, interval graphs, permutation
graphs.
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Contraction

• Contracted graph G/Q

• 1-to-1 correspondence between colorings of G that extend Q and
colorings of G/Q.

• χPrExt(G,Q) = χ(G/Q)

• Hujter and Tuza (1996)
PrExt-perfect graphs: Graph G such that G/Q is perfect for every
precoloring Q

Which are the PrExt-perfect graphs?
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• Meyniel Graphs
Every odd cycle has at least two chords

⇐⇒ contains no odd hole and no house

Odd hole House

• Artemis Graphs
Contain no odd hole, no antihole (odd or even), and no prism

Odd hole Antihole Prism
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Results

Theorem 1

GQ is perfect for every pre-co-coloring Q ⇐⇒ G is Meyniel

Theorem 2

G is Meyniel =⇒ GQ is Artemis for every pre-co-coloring Q

Consequences

PrExt-perfect = co-Meyniel

Pre-coloring Extension is polynomial on co-Meyniel graphs

Generalization of known results

Split graphs, cographs (= P4-free graphs), P5-free bipartite
graphs, complements of bipartite graphs [Hujter, Tuza]

Co-Meyniel graphs with all pre-coloring classes of size 1 [Hertz]
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∀Q, GQ perfect =⇒ G Meyniel

• G contains an odd hole
=⇒ G∅ contains an odd hole

• G contains a house with chord xy

=⇒ G{{x},{y}} contains an odd hole

yx yx
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G Meyniel =⇒ ...

For every pre-co-coloring Q, GQ contains

• no antihole ≥ 6

• no odd hole

• no prism

... =⇒ ∀Q, GQ is Artemis
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Remarks

• Proof does not rely on Strong Perfect Graph Theorem

• Polynomiality relies on Grötschel, Lovász & Schrijver’s algorithm

Combinatorial algorithm for clique-partitioning Artemis graphs?

Which graphs are actually obtained by co-contracting Meyniel graphs?
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