Precoloring co-Meyniel graphs

Vincent Jost, Benjamin Lévéque, Frédéric Maffray

{vincent.jost, benjam n.leveque, frederic.maffray}@nmag.fr

Graphs & Combinatorial Optimization group
Laboratoire Leibniz-IMAG, Grenoble

1/12



Coloring the vertices of a graph



Coloring the vertices of a graph

® One color is given to each vertex,
Any two adjacent vertices receive distinct colors

2/12



Coloring the vertices of a graph

® One color is given to each vertex,
Any two adjacent vertices receive distinct colors

® Optimal coloring: x(G)

2/12



Coloring the vertices of a graph

® One color is given to each vertex,
Any two adjacent vertices receive distinct colors

® Optimal coloring: x(G)

® Applications :
Timetables, frequency assignment, ...

2/12



Coloring the vertices of a graph

One color is given to each vertex,
Any two adjacent vertices receive distinct colors

Optimal coloring: x(G)

Applications :
Timetables, frequency assignment, ...

N P-complete problem : x(G) < kfork >37?

2/12



Coloring the vertices of a graph

One color is given to each vertex,
Any two adjacent vertices receive distinct colors

Optimal coloring: x(G)

Applications :
Timetables, frequency assignment, ...

N P-complete problem : x(G) < kfork >37?

S
~

2/12



Perfect graphs



Perfect graphs

® Claude Berge (1960)
Every induced subgraph H of G must satisfy x(H) = w(H)

3/12



Perfect graphs

® Claude Berge (1960)
Every induced subgraph H of G must satisfy x(H) = w(H)

® Grotschel, Lovasz, Schrijver (1984)
Polynomial-time algorithm to color perfect graphs
Using Khachiyan’s ellipsoid method

3/12



Perfect graphs

® Claude Berge (1960)
Every induced subgraph H of G must satisfy x(H) = w(H)

® Grotschel, Lovasz, Schrijver (1984)
Polynomial-time algorithm to color perfect graphs
Using Khachiyan’s ellipsoid method

® Chudnovsky, Robertson, Seymour, Thomas (2002)
Strong Perfect Graph Conjecture (Berge - 1960)
G Is perfect iff it contains no odd hole and no odd antihole

3/12



Perfect graphs

® Claude Berge (1960)
Every induced subgraph H of G must satisfy x(H) = w(H)

® Grotschel, Lovasz, Schrijver (1984)
Polynomial-time algorithm to color perfect graphs
Using Khachiyan’s ellipsoid method

® Chudnovsky, Robertson, Seymour, Thomas (2002)
Strong Perfect Graph Conjecture (Berge - 1960)
G Is perfect iff it contains no odd hole and no odd antihole

AN

3/12



The Precoloring Problem



The Precoloring Problem

® Some vertices are already colored

4/12



The Precoloring Problem

® Some vertices are already colored

® Precoloring Extension (PrExt) : xprp.:(G, Q)

4/12



The Precoloring Problem

® Some vertices are already colored
® Precoloring Extension (PrExt) : x prg.:(G, Q)

®* More formally:

Graph G, integer k, precoloring © of G using colors from

1,...,k}.

Is there a k-coloring of GG that extends Q ?

4/12



The Precoloring Problem

® Some vertices are already colored
® Precoloring Extension (Prext) : xprg.t(G, Q)

®* More formally:

Graph G, integer k, precoloring © of G using colors from

1,...,k}.

Is there a k-coloring of GG that extends Q ?

® N P-complete on bipartite graphs, interval graphs, permutation
graphs.
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Contraction

Contracted graph G/Q

1-to-1 correspondence between colorings of G that extend © and
colorings of G/ Q.

XPrEazt(Ga Q) — X(G/Q)

Hujter and Tuza (1996)
PrExt-perfect graphs: Graph G such that G/Q is perfect for every
precoloring O

Which are the PrExt-perfect graphs?
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® Meyniel Graphs
Every odd cycle has at least two chords

<= contains no odd hole and no house

® Artemis Graphs
Contain no odd hole, no antihole (odd or even), and no prism

<
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Results

Theorem 1

G< is perfect for every pre-co-coloring @ <= G is Meyniel

Theorem 2

G is Meyniel = G€ is Artemis for every pre-co-coloring Q

Conseqguences
PrExt-perfect = co-Meyniel
Pre-coloring Extension is polynomial on co-Meyniel graphs

Generalization of known results

Split graphs, cographs (= P,-free graphs), Ps-free bipartite
graphs, complements of bipartite graphs [Hujter, Tuza]

Co-Meyniel graphs with all pre-coloring classes of size 1 [Hertz]
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For every pre-co-coloring Q, G€ contains

® no antihole > 6
® no odd hole

® no prism

.. = V09, G<is Artemis
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Remarks

® Proof does not rely on Strong Perfect Graph Theorem

® Polynomiality relies on Grotschel, Lovasz & Schrijver’s algorithm

Combinatorial algorithm for cligue-partitioning Artemis graphs?

Which graphs are actually obtained by co-contracting Meyniel graphs?
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