Some Thoughts on Frederic's Mathematics and Mathematical Legacy

Bruce Reed
Grenoble, France
September $4^{\text {th }} 2019$

Drawing on Plato's Wall
 2004 Isaiah Berlin Lecture by Tom Stoppard

Is the artist a mere artisan, like a bootmaker, or a conduit to the divine?

Drawing on Plato's Wall 2004 Isaiah Berlin Lecture by Tom Stoppard

Is the artist a mere artisan, like a bootmaker, or a conduit to the divine?

Artists are not the state-funded functionaries of the Arts Council's pedestrian outlook, winning grants to perform ludicrous emperor'sclothes activities; for Stoppard they are the ruffians on the stair who are just possibly coming down from seeing God;

Drawing on Plato's Wall 2004 Isaiah Berlin Lecture by Tom Stoppard

Is the artist a mere artisan, like a bootmaker, or a conduit to the divine?

Artists are not the state-funded functionaries of the Arts Council's pedestrian outlook, winning grants to perform ludicrous emperor'sclothes activities; for Stoppard they are the ruffians on the stair who are just possibly coming down from seeing God;
Artists are divinely inspired maniacs and the unacknowledged legislators of the world.

The Early Days

Thèse Paris 1984

On The Existence Of Kernels in Perfect Graphs.
Supervisors: Berge and Duchet

Home

Duchet Meyniel

Frederic and Mostafa in 1984 Tours
 Algeria

A Favourite Pastime

Solvable Graphs

A kernel in an oriented graph is a set K such that there is an edge from every vertex outside K to K .

Solvable Graphs

A kernel in an oriented graph is a set K such that there is an edge from every vertex outside K to K .
An orientation is normal if every clique contains a sink.

Solvable Graphs

A kernel in an oriented graph is a set K such that there is an edge from every vertex outside K to K.
An orientation is normal if every clique contains a sink.
G is solvable if every normal orientation of G has a kernel.

Solvable Graphs

A kernel in an oriented graph is a set K such that there is an edge from every vertex outside K to K.
An orientation is normal if every clique contains a sink.
G is solvable if every normal orientation of G has a kernel.
Conjecture(Berge and Duchet, 1983): A graph is solvable if and only if it is perfect.

Solvable Graphs

A kernel in an oriented graph is a set K such that there is an edge from every vertex outside K to K.
An orientation is normal if every clique contains a sink.
G is solvable if every normal orientation of G has a kernel.
Conjecture(Berge and Duchet, 1983): A graph is solvable if and only if it is perfect.
Theorem(Maffray 1988): A line graph is solvable iff it is perfect.

Even Pairs

Europ. J. Combinatorics (1987) 8, 313-316

A New Property of Critical Imperfect Graphs and some Consequences
h. Meyniel

We prove a new property of critical imperfect graphs. As a consequence, we define a new class
of perfect graphs. This class contains perfectly ordcrable graphs and graphs in which that every odd oycle has two chords.

1. Introduction

A graph G is said to be γ-perfect if the chromatic number $\gamma\left(G^{\prime}\right)$ of any induced subgraph $G^{G^{\prime}}$ of G is equal to $\omega\left(G^{\prime}\right)$, the size of the largest complete s and only if its complementary \bar{G} is γ-perfect Lovasz [12] or [13] proved that a graph is γ-perfect if
speak of perfect graphs instead of θ or γ-perfect graphs.
The well k ' 'stris perfect graph coniectu' due. C. a chord), nor an antihole (i.e. a hole in \bar{G}). For further information on the strong perfec graph conjecture the reader is referred to $[2]$.
In the present paper we give a new pro
In the present paper we give a new property of critical imperfect graphs and as a consequence, we define a new class or perfect graphs. this new class contains two known
classes of perfect graphs: perfectly orderable graphs defined by V . Chvatal $[$ [$]$ and graphs such that every odd cycle has two chords [14].

2. Defintions and Notaton

Definitions and notations are classical, see [1]. We consider here only finite simple is a path $\left(x_{0}=x, x_{1}\right.$ onerwise specified. An induced pain between two vertices x an y is a path $\left(x_{0}=x, x_{1}, \ldots, x_{m}=y\right.$ such tuat $\left(x_{i}, x\right)$, , $<$, is an edge of G iv and onl
if $j=i+1, i=0,1, \ldots, m-1$. An induced path is even if it contains an even number of edges. The length of a path is its number of edges.
A graph G is said to be critical imperfect if any proper induced subgraph of G is perfec G itself is not perfect.

位 independent subset by $\alpha(G)$, the chromatic number of G by $\gamma(G)$. The set of vertices of adjacent to a vertex x is denoted by $\Gamma_{G}(x)$. If G is directed, we denote by $\Gamma_{\sigma}^{+}(x)$, (resp.
$\Gamma_{\sigma}^{-}(x)$) the set of vertices y such that (x, y), (resp. (y, (y), is an arc of G.
3. The Results

We shall prove that a critical imperfect graph is such that each pair of different vertic
We shall prove that a critical imperfect graph is such that each pair of different vertics
Lemma 1. Let G be a graph. If two non adjacent vertices x and y of G are not linked b, an induced path of
$\omega\left(G^{\prime}\right)=\omega(G)$.

Proof. Clearly $\omega\left(G^{\prime}\right) \geqslant \omega(G)$. Suppose we have $\omega\left(G^{\prime}\right)>\omega(G)$, then there m exist in G some complete subgraph on a set of vertices K of size $\omega(G)$ such that
x and y form an even pair if every induced path between them has an even number of edges.

Even Pairs

Europ. J. Combinatorics (1987) 8, 313-316

A New Property of Critical Imperfect Graphs and some Consequences h. Meyniel

We prove a new property of critical imperfect graphs. As a consequence, we cectine a new class
of perfect graphs. This class contains perfectly ordcrable graphs and graphs in which that every odd ocyce has two chords.

1. Introduction

A graph G is said to be γ-perfect if the chromatic number $\gamma\left(G^{\prime}\right)$ of any induced subgraph G^{\prime} of G is equal to $\omega\left(G^{\prime}\right)$, the size of the largest complete subgraph in $G^{\prime} . G$ is said to be Lovasz [12] or [13] its complementary \bar{G} is γ-perfect.
seak of perfect graphs instead of graph is γ-perfect if and only if it is θ-perfect. We ca The well-known 'strong perfect graph ψ-perfect graphs.
tes that G is perfect if and only if G contanis neither an odd hole (ie (see for instance [2] a chord), nor an antihole (i.e. a hole in \bar{G}). For further information on the strong perfect graph conjecture the reader is referred to $[2]$
In the present paper we give a new pro
In the present paper we give a new property of critical imperfect graphs and as consequence, we define a new class or perfect graphs. this new class contains two known
classes of perfect graphs: perfectly orderable graphs defined by V . Chvatal $[$ [$]$ and graphs such that every odd cycle has two chords [14].

2. Defintions and notation

Definitions and notations are classical, see [1]. We consider here only finite simple undirected graphs unless otherwise specified. An induced path between two vertices x an y is a path $\left(x_{0}=x, x_{1}, \ldots, x_{m}=y\right)$ such that $\left(x_{i}, x_{j}\right), i<j$, is an edge of G if and onl
if $j=i+1, i=0,1, \ldots, m-1$. An induced path is even if it contains an even number of edges. The length of a path is its number of edges.
A graph G is said to be critical imperfect if any proper induced shaph of G is perfect G itself is not perfect.

线 subgraph in G is denoted by $\omega(G)$, the size of the arge independent subset by $\alpha(G)$, the chromatic number of G by $\gamma(G)$. The set of vertices of C adjacent to a vertex x is denoted by $\Gamma_{G}(x)$. If G is directed, we denote by $\Gamma_{\sigma}^{+}(x)$, (resp.
$\Gamma_{\sigma}^{-}(x)$) the set of vertices y such that (x, y), (resp. (y, (y), is an arc of G.
3. The Results

We shall prove that a critical imperfect graph is such that each pair of different vertice
We shall prove that a critical imperfect graph is such that each pair of different vertics
is joined by an odd induced path. In order to prove this result, we need two lemmas.
Lemma 1. Let G be a graph. If two non adjacent vertices x and y of G are not linked by

Proof. Clearly $\omega\left(G^{\prime}\right) \geqslant \omega(G)$. Suppose we have $\omega\left(G^{\prime}\right)>\omega(G)$, then there mus vertices K of size $\omega(G)$ such that
x and y form an even pair if every induced path between them has an even number of edges.
Contracting an even pair changes neither the clique number nor the chromatic number

Fonlupt+Uhry 1980

Even Pairs

Europ. J. Combinatorics (1987) 8, 313-316

A New Property of Critical Imperfect Graphs and some Consequences h. Meyniel

We prove a new property of critical imperfect graphs. As a consequence, we define a new class
of perfect graphs. This class contains perfectly ordcrable graphs and graphs in which that every odd ocyce has two chords.

A graph G is said to be γ-perfect if the chromatic number $\gamma\left(G^{\prime}\right)$ of any induced subgraph G^{G} of G is equal to ω (G, the sizect if and only if its complementary \bar{G} is γ-perfect. Lovasz [12] or [13] proved that a graph is γ-perfect if speak of perfect graphs instead of θ or γ-perfect graphs.
The 12 litis ' C Berse states that G is perfect if and only if G contains neither an odd hole (ie. an odd cycle withou a chord), nor an antihole (i.e. a hole in \bar{G}). For further information on the strong perfect graph conjecture the reader is referred to [2].
In the present paper we give a new pro
In the present paper we give a new property of critical imperfect graphs and as a
consequence, we define a new class of perfect graphs. this new class contains two known consequence, we define a new class of perfect graphs. this new class contains
clases of perfect graphs: perfectly orderable graphs defined by V . Chvatal $[$ [$]$ and graphs such that every odd cycle has two chords [14].

2. Defintions and notation

Definitions and notations are classical, see [1]. We consider here only finite simple
undirected graphs unless otherwise specified. An induced path between two vertices x and undirected graphs unless otherwise specified. An induced path between two vertices x an y is a path $\left(x_{0}=x, x_{1}, \ldots, x_{m}=y\right)$ such that $\left(x_{i}, x_{j}\right), i<j$, is an edge of G if and onl
if $j=i+1, i=0,1, \ldots, m-1$. An induced path is even if it contains an even number of edges. The length of a path is its number of edges.
A graph G is said to be critical imperfect if any proper induced i G itself is not perfect.
independent subset by $\alpha(G)$, the chromatic number of G by $\gamma \omega(G)$, the size of the large . $\Gamma_{\sigma}^{-}(x)$), the set of vertices y such bat (x, y), (resp. (y, x)) is an arc of $G \Gamma_{\sigma}^{+}(x)$, (res)
3. The Results

We shall prove that a critical imperfect graph is such that each pair of different vertice
We shall prove that a critical imperfect graph is such that each pair of different vertics
is joined by an odd induced path. In order to prove this result, we need two lemmas.
Lemma 1. Let G be a graph. If two non adjacent verices x and y of G are not linked b, an induced path of length 3 , the graph G^{\prime} obtained from G by idenify ving x and y satisfie
$\omega\left(G^{\prime}\right)=\omega(G)$

Proof. Clearly $\omega\left(G^{\prime}\right) \geqslant \omega(G)$. Suppose we have $\omega\left(G^{\prime}\right)>\omega(G)$, then there mus exist in G some complete subgraph on a set of vertices K of size $\omega(G)$ such tha
x and y form an even pair if every induced path between them has an even number of edges.
Contracting an even pair changes neither the clique number nor the chromatic number
Fonlupt+Uhry 1980
No minimal imperfect graph has an even pair Meyniel 1984

Even Pairs

2. Defintions and notation

Definitions and notations are classical, see [1]. We consider here only finite simple
undirected graphs unless otherwise specified. An induced path between two vertices x and undirected graphs unless otherwise specified. An induced path between two vertices x an
v is a path $\left(x_{0}=x, x_{1}, \ldots, x_{m}=y\right)$ such that $\left(x_{1}, x\right), i<j$, is an edge of G if and onl y is a path $\left(x_{0}=x, x_{1}, \ldots, x_{m}=y\right)$ such that $\left(x_{i}, x_{j}\right), i<j$, is an edge of G if and onl
if $j=i+1, i=0,1, \ldots, m-1$. An induced path is even if it contains an even number of edges. The length of a path is its number of edges.
A graph G is said to be critical imperfect if any proper if G itself is not perfect.
. independent subset by $\alpha(G)$, the chromatic number of G by $\gamma(G)$. The set of vertices of adjacent to a vertex x is denoted by $\Gamma_{G}(x)$. If G is directed, we denote by $\Gamma_{\sigma}^{+}(x)$, (resp.
$\Gamma_{\sigma}^{-}(x)$) the set of vertices y such that (x, y), (resp. (y, (y), is an arc of G.
3. The Results

We shall prove that a critical imperfect graph is such that each pair of different vertice
We shall prove that a critical imperfect graph is such that each pair of different vertic
is joined by an odd induced path. In order to prove this result, we need two lemmas.
Lemma 1. Let G be a graph. If two non adjacent vertices x and y of G are not linked b, $a n$ induced path of length 3 , the graph G^{\prime} obtained from G by idenifying x and y satisfie
$\omega\left(G^{\prime}\right)=\omega(G)$

Proof. Clearly $\omega\left(G^{\prime}\right) \geqslant \omega(G)$. Suppose we have $\omega\left(G^{\prime}\right)>\omega(G)$, then there mus exist in G some complete subgraph on a set of vertices K of size $\omega(G)$ such tha
x and y form an even pair if every induced path between them has an even number of edges.
Contracting an even pair changes neither the clique number nor the chromatic number

Fonlupt+Uhry 1980
No minimal imperfect graph has an even pair Meyniel 1984
If no odd cycle of G has <two chords then G has an even pair. Me 1984

A New Strand

Star Cutsets, Skew Cutsets, and WT Graphs

Star Cutsets, Skew Cutsets, and WT Graphs

A cutset C is a star cutset if some vertex vof C sees all of C - v .

Star Cutsets, Skew Cutsets, and WT Graphs

A cutset C is a star cutset if some vertex v of C sees all of $\mathrm{C}-\mathrm{v}$.

A cutset C is a skew cutset if $\overline{G[C]}$
Is disconected.

Star Cutsets, Skew Cutsets, and WT Graphs

A cutset C is a star cutset if some vertex vof C sees all of $\mathrm{C}-\mathrm{v}$.

A cutset C is a skew cutset if $\overline{G[C]}$
Is disconected.
Thm: No minimal imperfect graph contains a star cutset Chvatal' 84 .

Star Cutsets, Skew Cutsets, and WT Graphs

A cutset C is a star cutset if some vertex vof C sees all of $\mathrm{C}-\mathrm{v}$.

A cutset C is a skew cutset if $\overline{G[C]}$
Is disconected.
Thm: No minimal imperfect graph contains a star cutset Chvatal' 84.
Conj: No minimal imperfect graph contains a skew cutset Chvatal ' 84

Star Cutsets, Skew Cutsets, and WT Graphs

A cutset C is a star cutset if some vertex vof C sees all of $\mathrm{C}-\mathrm{v}$.

G is weakly triangulated if it contains no $C_{k}, \overline{C_{k}} \mathrm{k} \geq 5$.

A cutset C is a skew cutset if $\overline{G[C]}$
Is disconected.
Thm: No minimal imperfect graph contains a star cutset Chvatal' 84.
Conj: No minimal imperfect graph contains a skew cutset Chvatal ' 84

Star Cutsets, Skew Cutsets, and WT Graphs

A cutset C is a star cutset if some vertex vof C sees all of $\mathrm{C}-\mathrm{v}$.

A cutset C is a skew cutset if $\overline{G[C]}$ Is disconected.
Thm: No minimal imperfect graph contains a star cutset Chvatal' 84.
Conj: No minimal imperfect graph contains a skew cutset Chvatal ' 84

G is weakly triangulated if it contains no $C_{k}, \overline{C_{k}} \mathrm{k} \geq 5$.

Thm: For every weakly triangulated G with $|\mathrm{V}(\mathrm{G})|>3$, either G or \bar{G} has a star cutset.

Hayward 85.

A Conjecture

For every Berge graph either:
G or \bar{G} contains a star(skew) cutset, G or \bar{G} contains an even pair, or G or \bar{G} is LGBG.

Ph.D.

Rutgers, 1989
Structural Aspects of Perfect Graphs
Supervisor: P. Hammer.

Two Pairs

The author acknowledges the support of an N.S.E.R.C.C Canada postgraduate scholaraship.
The author acknowledges the support of the U.S. Air Force Ofice of Scientific Research inder grant number AFOSR 0271 to Rutgers Universit

Two Pairs

* The author acknowledges the support of an N.S.E.R.C.C Canada postsraduate scholarssip. under grant number AFOSR 0271 to Rutgers University

Two Pairs

[^0]x and y form a 2-pair if and only if they are in the same component of G-($N(x) \cap N(y))$.
Theorem: Every WT- graph which is not a clique contains a 2-pair.

Hayward,Hoang, Maffray ‘87
Observation: Contracting a 2-pair in a WT graph yields a WT graph.

Completely Separable Graphs

G is completely separable if every

COMPLETELY SEPARABLE GRAPHS*
Peter L. HAMMER and Fréderic MAFFRAY**
RUTCOR, Ruyerer Center for operations Research, Hul Ceneer, Busch Cempus, Ruseer
Received 30 May 1989

1. Introduction

Many problem
Maximize $\quad w \cdot x$,
subject to $f(x)=0$,
where f is a given Boolean function of the n-dimensional vector x. For example, the weighted stability number of a graph, in which the vertices x_{1}, \ldots, x_{n} are assigned
weights $w_{1} \ldots w_{n}$ is given by any solution of problem (1) when f is a weights w_{1}, \ldots, w_{n}, is given by any solution of problem (1), when f is a certain
Boolean function associated with the oraph Simiarly the maximum weight matching problem can be formulated as an instance of (1).
In the general case, problem (1) is known to be NP-complete. One idea to hel
solving such a problem is to try to reduce it to smaller (and easier) instances.
solving such a problem is to try to reduce it to smaller (and easier) instances.
Definition 1.1. We will say
separable if we can write
$f(x)=\alpha(A) \vee \alpha^{\prime}(A) \cdot \beta^{\prime}(B) \vee \beta(B)$,
where $\alpha(A)$ and $\alpha^{\prime}(A)$ are Boolean functions of the variables of a set
$A \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$, and $\beta(B)$ and $\beta^{\prime}(B)$ are Boolean functions of the variables of a set $A \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$, and $\beta(B)$ and $\beta(B)$ are Boolean functions of the variables of a sed

- A preieiminary version of this paper was presentec at the
 umber AFOSRR $85-0271$ and 89.0066 to Rutgers Univesity and of the NSF gral
cycle of G of length at least 5 has at least two chords.

Completely Separable Graphs

Discrete Applied Mathematics 27 (1990) 85-99
North:Holand

COMPLETELY SEPARABLE GRAPHS*
ter L. HAMMER and Frédéic MAFFRAY**
RUTCOR, Rugaer Center for Operaions Research, Hill Cener, Buch Campus, Rugeen
Received 30 May 1989
We define a propery of Boolean functions called separability, and specitize it for a class of
functions naurally associaced with gaphss. "Complecely scoparable eraphs" are then derived and

for her eco onition and for hhe usual optimization problems (maximum weigheces sable sect and
maximum weighted clique)

1. Introduction

Many problems that arise in combinatorial optimization can be expressed as:
subject to $f(x)=0$,
where f is a given Boolean function of the n-dimensional vector x. For example, the
weighted stability number of a graph, in which the vertices x_{1}, \ldots, x_{n} are assigned
weights w_{1}, \ldots, w_{n}, is given by any solution of problem (1), when f is a certain
Boolean function associated with the graph. Similarly, the maximum weight
matching problem can be formulated as an instance of (1).
In the general case, problem (1) is known to be NP-complete. One idea to help
solving such a problem is to try to reduce it to smaller (and easier) instances.
Definition 1.1. We will say that a Boolean function f on n variables $x_{1} \ldots, x_{n}$ is separable if we can write
$f(x)=\alpha(A) \vee \alpha^{\prime}(A) \cdot \beta^{\prime}(B) \vee \beta(B)$,
where $\alpha(A)$ and $\alpha^{\prime}(A)$ are Boolean functions of the variables of a set
$A \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$, and $\beta(B)$ and $\beta^{\prime}(B)$ are Boolean functions of the variables of a set $A \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$, and $\beta(B)$ and $\beta^{\prime}(B)$ are Boolean functions of the variables of a sel
$B \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$, with $|A| \geq 2,|B| \geq 2$, and $A \cap B=\varnothing$.

 $0166 \cdot 218 \times / 90 / 53.50$ @ 1990 , Elsevier Science Pulishers B.V. (North-Holland)

G is completely separable if every cycle of G of length at least 5 has at least two chords.
Theorem: (a) G is completely separable if and only if for every pair u and v of vertices of G, all the paths between u and v have the same length,
(b) G is completely separable iff. Every induced subgraph has a pair of twins or a vertex of degree 1.

Hammer and Maffray 1987

Later Accomplishments

More on Kernels

Kernels and Choosability

List Colouring Conjecture: For any line graph G, the chromatic number and choice number of G are equal Vizing 1976, ERT 1979.

Kernels and Choosability

List Colouring Conjecture: For any

 line graph G, the chromatic number and choice number of G are equal Vizing 1976, ERT 1979.Dinitz Conjecture LCC for $\mathrm{K}_{\mathrm{n}, \mathrm{n}} 1979$

Kernels and Choosability

List Colouring Conjecture: For any

 line graph G, the chromatic number and choice number of G are equal Vizing 1976, ERT 1979.Dinitz Conjecture LCC for $\mathrm{K}_{\mathrm{n}, \mathrm{n}} 1979$
Galvin's Theorem: LCC for bipartite
G. 1994
=> DC

Kernels and Choosability

List Colouring Conjecture: For any line graph G, the chromatic number and choice number of G are equal Vizing 1976, ERT 1979.
Dinitz Conjecture LCC for $\mathrm{K}_{\mathrm{n}, \mathrm{n}} 1979$ Galvin's Theorem: LCC for bipartite G. 1994
=> DC

Proof of Galvin's Theorem:
Lemma 1: If G has an orientation such that every induced subgraph has a kernel then its choice number exceeds the maximum outdegree by at most 1 BBS '92

Kernels and Choosability

List Colouring Conjecture: For any line graph G, the chromatic number and choice number of G are equal Vizing 1976, ERT 1979.
Dinitz Conjecture LCC for $\mathrm{K}_{\mathrm{n}, \mathrm{n}} 1979$ Galvin's Theorem: LCC for bipartite G. 1994
=> DC

Proof of Galvin's Theorem:
Lemma 1: If G has an orientation such that every induced subgraph has a kernel then its choice number exceeds the maximum outdegree by at most 1 BBS '92
Lemma 2: For any normal orientation of an LGBG, every induced subgraph has a kernel. Maffray 1984

Kernels and Choosability

List Colouring Conjecture: For any line graph G, the chromatic number and choice number of G are equal Vizing 1976, ERT 1979.
Dinitz Conjecture LCC for $\mathrm{K}_{\mathrm{n}, \mathrm{n}} 1979$ Galvin's Theorem: LCC for bipartite G. 1994
=> DC

Proof of Galvin's Theorem:
Lemma 1: If G has an orientation such that every induced subgraph has a kernel then its choice number exceeds the maximum outdegree by at most 1 BBS '92
Lemma 2: For any normal orientation of an LGBG, every induced subgraph has a kernel. Maffray 1984
Lemma 3: Every LGBG G has a normal orientation of outdegree at most $\chi(G)-1$.

Some Related Papers by Frederic

On kernels in perfect graphs Blidia, Duchet,Meyniel 1993
On the orientation of Meyniel graphs. BDM 1994
Graphs whose choice number is equal to their chromatic numbers Gravier and Maffray 1998
Some operations preserving the existence of kernels BDJMM 1999

On a list colouring problem Gravier Maffray Mohar 2003
On the choice number of claw-free perfect graphs GM 2004
Precolouring Extension of Co-Meyniel GraphsJLM 2007
List colouring claw free graphs with small clique number EGM 2014
On the choosability of claw free perfect graphs GMP 2016

Frederic's papers on domination

On lower independence and domination numbers in graphs Blidia, Chellali, Maffray 2005.
Exact double domination in graphs Chellali, Khelladi, Maffray 2005
Extremal graphs for a new upper bound on domination parameters in graphs BCM 2006.
Small step-dominating sets in tree Maffray, Rautenbach 2007.
Locating domination \& identifying codes in treesBCM,Moncel,Sefri 2007

Extremal perfect graphsfor a bound on the domination number BCM 2008
Double Domination edge removal critical graphs Khelifi,B,C,M 2010 Connected domination dot-critical graphs C,M,Tablennehas 2010 Characterization of trees with unique minimum location-dominating sets B,C,Lounes,M 2011

Ceci N’est Pas Une Session Algérienne

Frederic and Mustafa, Grenoble 1993

Frederic at Blidia 2006 (I of II)

Frederic at Blidia 2006 (II of II)

Frederic at Blidia 2009 (I of II)

Frederic at Blidia 2009 (II of II)

More On The Structure Of Perfect Graphs

Frederic's Papers on

Even Pairs And Perfectly Contractile Graphs

Frederic's Papers on Even Pairs And Perfectly Contractile Graphs

Opposition Graphs are Quasi-Parity Graphs Hoang+M 1989
On Slim Graphs, even pairs, and star cutsets Hoang +Maffray 1992
Colouring, Path Parity, and Perfection EdFLMPR 1997
On Planar Perfectly Contractile Graphs LMR 1997.

Even Pairs in Claw-free Perfect Graphs, LinharesSales,M 1998
Recognizing Planar Strict Quasi-Parity Graphs LMR 2001
Even Pairs EdFLMPR 2001
Even Pairs in Square-Free Berge Graphs LM 2003

On Dart-free Perfectly Contractile Graphs LM 2004
Algorithms for Perfectly Contractile Graphs
Maffray and Trotignon 2005
A class of Perfectly Contractile Graphs MT 2006
Even Pairs in Bull-Reducible Graphs dFMM 2006
Colouring Bull-free Perfectly Contractile Graphs
Levesque \& Maffray 2008
On Planar Quasi-Parity Graphs LMR 2008
Colouring Artemis Graphs LMRT 2009
Even Pairs in Square-Free Berge Graphs M 2015

The Structure of Claw-Free (Perfect) Graphs

Elementary and Peculiar Graphs

A graph is elementary if we can two colour its edge so that no induced path of kength three is monochromatic.

A graph is peculiar if it can be partitioned into 3 cliques, contains no cycle of length exceeding four, and satisfies certain additional properties.

Theorem; Every claw-free perfect graph is elementary or peculiar.

Chvatal and Sbihi 1988

The Structure of Elementary Graphs

An edge of G is flat if it is in no triangle.

We augment G on a matching M by substituting a clique K_{x} for each vertex x of M and then deleting some of the edges between K_{x} and K_{y} for every

Theorem: Every elementary graph arises by augmenting a matching of flat edges in an LGBG.

Maffray and Reed 1999

The Structure of Quasi-Line Graphs Without Homogenous Pairs of Cliques.

A graph is quasi-line if the neighbourhood of every vertex can be partititoned into two cliques.
A linear (circular) interval graph is the intersection graph of a set of intervals on the real line (on a circle).
An ordered linear strip consists of a linear interval graph G, a clique consisiting of some set of vertices whose interval starts first and a clique consisting of some set of vertices whose interval starts last.
A pair of (disjoint) cliques is homogenous if every vertex outside the pair sees all or none of both cliques.

An augmentation of the line graph of H is obtained from a set of ordered linear strips indexed by the arcs of an orientation of H by adding edges between all the cliques corresponding to the edges incident to v for all $\mathrm{v} \in \mathrm{V}(\mathrm{H})$

Theorem: Every connected quasi line graph with no homogeneous pair of cliques is either a circular interval graph or the augmentation of a line graph.

The Structure of Claw Free Graphs

An ordered strip consists of a graph G and ordered pair of cliques of G.
A 1-join of G_{1} and G_{2} is obtained by deleting a simplicial vertex a_{i} of G_{i} and a simplicial vertex a_{2} of G_{2} and adding all edges frm $N\left(a_{1}\right)$ to $N\left(a_{2}\right)$

If G has a 1-join it has a star cutset.

An augmentation of the line graph of H is obtained from a set of ordered strips indexed by the arcs of an orientation of H by adding edges between all the cliques corresponding to the edges incident to v for all $v \in \mathrm{~V}(\mathrm{H})$

Theorem: Every connected claw-free graph with stability number at least four which does not arise by a 1 -join and contains no homogeneous pair of cliques is either a circular interval graph or the augmentation of a line graph using special types of strips.

Chudnovsky and Seymoure 2005

An Open Question

Is $\chi(G) \leq \frac{6}{5} \chi_{f}(\mathrm{G})$ for every claw-free G ?

Thank you for your attention!

[^0]: Graphs and Combinatorics

 Optimizing Weakly Triangulated Graphs
 Ryan Hayward ${ }^{1 *}$, Chính Hoàng ${ }^{1 *}$, and Frédéric Maffray ${ }^{2 * *}$
 Computer Science Department, Rutgers University, New Brunswick, NJ N0903, USA
 Rutgers Center for Operations Research, Rutgers Univesity, New Brunswick, NJ 08903 , USA

 an algorithm which runs in $O\left((n+e) n^{3}\right)$ time is presented which solves the maximum cique and
 minimum colouring problems for weakly triangulated graphs performing the algorithm on the complement gives a solution to the maximum stable set and minimum ciquec covering problems.
 Asso, an $\left.O(n+e) n^{4}\right)$ time algorithm is presented which solves the weighted versions of these
 problems.

 1. Introduction

 Lith \bar{C}_{k} represen $\overline{\bar{G}}$ chordess cycle with k vertices and P_{k} the chordess path with triangulated if it does not contain C_{k} or \bar{C}_{k} as an induced subgraph, for any $k \geqq 5$ A clique on introduction to weakly triangulated graphs.
 K are adjacent. An independent set of a graph, also called a stable set, is a subset S
 of a graph is a mapping of colours to the vertices of a graph such that evertices
 of agraph is a mapping of colours to the vertices of a graph, such that every two
 adjuctices receive different colours. Note that in a colouring of a graph, ever
 set of vertices with the same colour is a stable set; thus a colouring can be though
 partition of the vertices of a graph into cliques.
 In this paper we present polynomial time algorithms which solve the following
 problems: find a largest clique, a largest stable set, a minimum colouring and a minimum clique covering of a weakly triangulated graph. We also present algo-
 rithms which solve the weighted versions of these problems (see Sect. 3).
 . The author acknowledges the support of an N.S.E.R.C. Canada postgraduate scholarship, der grant number AFosR 0271 to Rutgers Universit

