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Drawing	on	Plato’s	Wall
2004	Isaiah	Berlin	Lecture	by	Tom	Stoppard

Is	the	artist	a	mere	artisan,	like	a	bootmaker,	 or	a	conduit	to	the	divine?

Artists	are	not	the	state-funded	functionaries	of	the	Arts	Council’s	
pedestrian	outlook,	winning	grants	to	perform	ludicrous	emperor’s-
clothes	activities;	for	Stoppard	they	are	 the	ruffians	on	the	stair	who	
are	just	possibly	coming	down	from	seeing	God;
Artists	are	divinely	inspired	maniacs	and	the	unacknowledged	
legislators	of	the	world.	
This	talk	may	contain	some		shards	falling	from	the	wall	of	truth.	
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The	Early	Days



Thèse	
Paris	1984

On	The	Existence	Of	Kernels	in	Perfect	
Graphs.	

Supervisors:	Berge	and	Duchet



Home																																			Work





Duchet Meyniel



Frederic	and	Mostafa in	1984								
Tours																																		Algeria



A	Favourite Pastime	



Solvable	Graphs			

A	kernel	in	an	oriented	graph	is	a	set	K	such	that	there	is	an	edge	from	
every	vertex	outside	K		to	K.	
An	orientation	is	normal	if	every	clique	contains	a	sink.	
G		is	solvable	if	every		normal	orientation	of	G	has	a	kernel.	
Conjecture(Berge		and	Duchet,	1983):		A	graph	is	solvable	if	and	only	if	
it	is	perfect.
Theorem(Maffray1988):	A	line	graph	is	solvable	iff it	is	perfect.	



Solvable	Graphs			

A	kernel	in	an	oriented	graph	is	a	set	K	such	that	there	is	an	edge	from	
every	vertex	outside	K		to	K.	
An	orientation	is	normal	if	every	clique	contains	a	sink.	
G		is	solvable	if	every		normal	orientation	of	G	has	a	kernel.	
Conjecture(Berge		and	Duchet,	1983):		A	graph	is	solvable	if	and	only	if	
it	is	perfect.
Theorem(Maffray1988):	A	line	graph	is	solvable	iff it	is	perfect.	



Solvable	Graphs			

A	kernel	in	an	oriented	graph	is	a	set	K	such	that	there	is	an	edge	from	
every	vertex	outside	K		to	K.	
An	orientation	is	normal	if	every	clique	contains	a	sink.	
G		is	solvable	if	every		normal	orientation	of	G	has	a	kernel.	
Conjecture(Berge		and	Duchet,	1983):		A	graph	is	solvable	if	and	only	if	
it	is	perfect.
Theorem(Maffray1988):	A	line	graph	is	solvable	iff it	is	perfect.	



Solvable	Graphs			

A	kernel	in	an	oriented	graph	is	a	set	K	such	that	there	is	an	edge	from	
every	vertex	outside	K		to	K.	
An	orientation	is	normal	if	every	clique	contains	a	sink.	
G		is	solvable	if	every		normal	orientation	of	G	has	a	kernel.	
Conjecture(Berge		and	Duchet,	1983):		A	graph	is	solvable	if	and	only	if	
it	is	perfect.
Theorem(Maffray1988):	A	line	graph	is	solvable	iff it	is	perfect.	



Solvable	Graphs			

A	kernel	in	an	oriented	graph	is	a	set	K	such	that	there	is	an	edge	from	
every	vertex	outside	K		to	K.	
An	orientation	is	normal	if	every	clique	contains	a	sink.	
G		is	solvable	if	every		normal	orientation	of	G	has	a	kernel.	
Conjecture(Berge		and	Duchet,	1983):		A	graph	is	solvable	if	and	only	if	
it	is	perfect.
Theorem(Maffray1988):	A	line	graph	is	solvable	iff it	is	perfect.	



Even	Pairs

𝑥	and	𝑦 form	an	even	pair	if	every	
induced	path	between		them	has	an	
even	number	of	edges.
Contracting	an	even	pair	changes	
neither	the	clique	number	nor	the	
chromatic	number	
Fonlupt+Uhry 1980
No	minimal	imperfect	graph	has	an	
even	pair	Meyniel 1984
If	no	odd	cycle	of	G	has	<two	chords	
then	G	has	an	even	pair.	Me	1984
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A	New	Strand



Star	Cutsets,	Skew	Cutsets,	and	WT	Graphs

A	cutset C		is	a	star	cutset if	some	
vertex	v	of	C	sees	all	of	C-v.	

A	cutset C	is	a	skew	cutset if	𝐺[𝐶]
Is	disconected.	
Thm:	No	minimal	imperfect	graph	
contains	a	star	cutset Chvatal ‘84.
Conj:	No	minimal	imperfect	graph	
contains	a	skew	cutset Chvatal ‘84

G	is	weakly	triangulated	 if	it	
contains	no	𝐶(, 𝐶( k≥ 5.

Thm:	For	every	weakly	
triangulated	G	with	|V(G)|>3,	
either	G	or	�̅� has	a	star	cutset.

Hayward	85.	
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A	Conjecture	

For	every	Berge	graph	either:
G	or	�̅� contains	a	star(skew)	cutset,	
G	or	𝐺	. contains	an	even	pair,	or
G	or	�̅� is	LGBG.	



Ph.D.	
Rutgers,	1989	

Structural	Aspects	of	Perfect	Graphs
Supervisor:	P.	Hammer.	



Two	Pairs

Graphs and Combinatorics 5, 339-349 (1989) 
Graphs and 
Combinatorics 
© Springer-Vedag 1989 

Optimizing Weakly Triangulated Graphs 
Ryan Hayward 1., Chinh Ho~ng 1., and Fr~d6ric Maffray 2.* 
I Computer Science Department, Rutgers University, New Brunswick, NJ 08903, USA 
2 Rutgers Center for Operations Research, Rutgers University, New Brunswick, NJ 08903, USA 

Abstract. A graph is weakly triangulated if neither the graph nor its complement contains a 
chordless cycle with five or more vertices as an induced subgraph. We use a new characterization 
of weakly triangulated graphs to solve certain optimization problems for these graphs. Specifically, 
an algorithm which runs in O((n + e)n 3) time is presented which solves the maximum clique and 
minimum colouring problems for weakly triangulated graphs; performing the algorithm on the 
complement gives a solution to the maximum stable set and minimum clique covering problems. 
Also, an O((n + e)n 4) time algorithm is presented which solves the weighted versions of these 
problems. 

1. Introduction 

Let Ck represent the chordless cycle with k vertices and Pk the chordless path with 
k vertices. Let G represent the complement of the graph G. A graph is weakly 
triangulated if it does not contain Ck or Ck as an induced subgraph, for any k ~ 5. 
See 1-5] for an introduction to weakly triangulated graphs. 

A clique of a graph is a subset K of the vertices, such that every two vertices in 
K are adjacent. An independent set of a graph, also called a stable set, is a subset S 
of the vertices, such that no two vertices in S are adjacent. A colouring of the vertices 
of a graph is a mapping of colours to the vertices of a graph, such that every two 
adjacent vertices receive different colours. Note that in a colouring of a graph, every 
set of vertices with the same colour is a stable set; thus a colouring can be thought 
of as a partition of the vertices of a graph into stable sets. A clique covering is 
a partition of the vertices of a graph into cliques. 

In this paper we present polynomial time algorithms which solve the following 
problems: find a largest clique, a largest stable set, a minimum colouring, and 
a minimum clique covering of a weakly triangulated graph. We also present algo- 
rithms which solve the weighted versions of these problems (see Sect. 3). 

* The author acknowledges the support of an N.S.E.R.C. Canada postgraduate scholarship. 
** The author acknowledges the support of the U.S. Air Force Office of Scientific Research 
under grant number AFOSR 0271 to Rutgers University. 
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x	and	y	form	a	2-pair	if	and	only	if	
they	are	in	the	same	component	
of	G-(N(x)∩ 𝑁(𝑦)).	
Theorem:	Every	WT- graph	which	
is	not	a	clique	contains	a	2-pair.

Hayward,Hoang,	Maffray ‘87
Observation:	Contracting	a	2-pair	
in	a	WT	graph	yields	a	WT	graph.
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an algorithm which runs in O((n + e)n 3) time is presented which solves the maximum clique and 
minimum colouring problems for weakly triangulated graphs; performing the algorithm on the 
complement gives a solution to the maximum stable set and minimum clique covering problems. 
Also, an O((n + e)n 4) time algorithm is presented which solves the weighted versions of these 
problems. 

1. Introduction 

Let Ck represent the chordless cycle with k vertices and Pk the chordless path with 
k vertices. Let G represent the complement of the graph G. A graph is weakly 
triangulated if it does not contain Ck or Ck as an induced subgraph, for any k ~ 5. 
See 1-5] for an introduction to weakly triangulated graphs. 

A clique of a graph is a subset K of the vertices, such that every two vertices in 
K are adjacent. An independent set of a graph, also called a stable set, is a subset S 
of the vertices, such that no two vertices in S are adjacent. A colouring of the vertices 
of a graph is a mapping of colours to the vertices of a graph, such that every two 
adjacent vertices receive different colours. Note that in a colouring of a graph, every 
set of vertices with the same colour is a stable set; thus a colouring can be thought 
of as a partition of the vertices of a graph into stable sets. A clique covering is 
a partition of the vertices of a graph into cliques. 

In this paper we present polynomial time algorithms which solve the following 
problems: find a largest clique, a largest stable set, a minimum colouring, and 
a minimum clique covering of a weakly triangulated graph. We also present algo- 
rithms which solve the weighted versions of these problems (see Sect. 3). 

* The author acknowledges the support of an N.S.E.R.C. Canada postgraduate scholarship. 
** The author acknowledges the support of the U.S. Air Force Office of Scientific Research 
under grant number AFOSR 0271 to Rutgers University. 

x	and	y	form	a	2-pair	if	and	only	if	
they	are	in	the	same	component	
of	G-(N(x)∩ 𝑁(𝑦)).	
Theorem:	Every	WT- graph	which	
is	not	a	clique	contains	a	2-pair.

Hayward,Hoang,	Maffray ‘87
Observation:	Contracting	a	2-pair	
in	a	WT	graph	yields	a	WT	graph.



Completely	Separable	Graphs	

G	is	completely	separable	if	every	
cycle	of	G	of	length	at	least	5	has	at	
least	two	chords.	
Theorem:	(a)	G	is	completely	
separable	if	and	only	if	for	every	pair	
u	and	v	of	vertices	of	G,	all	the	paths	
between	u	and	v	have	the	same	
length,	
(b)	G	is	completely	separable	iff.	
Every	induced	subgraphhas	a	pair	of	
twins	or	a	vertex	of	degree	1.	

Hammer	and	Maffray 1987		
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Later	Accomplishments



More	on	Kernels



Kernels	and	Choosability

List	Colouring Conjecture:	For	any	
line	graph	G,	the	chromatic	number	
and	choice	number	of	G		are	equal	
Vizing 1976,	ERT	1979.	
Dinitz Conjecture	LCC	for	Kn,n 1979
Galvin’s	Theorem:	LCC	for	bipartite	
G.	1994
=>	DC	

Proof	of	Galvin’s	Theorem:
Lemma	1:	If	G	has	an	orientation	
such	that	every	induced	subgraph
has	a	kernel	then	its	choice	number	
exceeds	the	maximum	outdegree by	
at	most	1	BBS	‘92
Lemma	2:	For	any	normal	orientation	
of	an	LGBG,	every	induced	subgraph
has	a	kernel.	Maffray 1984
Lemma	3:	Every	LGBG	G	has	a	
normal	orientation	of	outdegree at	
most	χ(𝐺)-1.		



Kernels	and	Choosability

List	Colouring Conjecture:	For	any	
line	graph	G,	the	chromatic	number	
and	choice	number	of	G		are	equal	
Vizing 1976,	ERT	1979.	
Dinitz Conjecture LCC	for	Kn,n 1979
Galvin’s	Theorem:	LCC	for	bipartite	
G.	1994
=>	DC	

Proof	of	Galvin’s	Theorem:
Lemma	1:	If	G	has	an	orientation	
such	that	every	induced	subgraph
has	a	kernel	then	its	choice	number	
exceeds	the	maximum	outdegree by	
at	most	1	BBS	‘92
Lemma	2:	For	any	normal	orientation	
of	an	LGBG,	every	induced	subgraph
has	a	kernel.	Maffray 1984
Lemma	3:	Every	LGBG	G	has	a	
normal	orientation	of	outdegree at	
most	χ(𝐺)-1.		



Kernels	and	Choosability

List	Colouring Conjecture:	For	any	
line	graph	G,	the	chromatic	number	
and	choice	number	of	G		are	equal	
Vizing 1976,	ERT	1979.	
Dinitz Conjecture LCC	for	Kn,n 1979
Galvin’s	Theorem:	LCC	for	bipartite	
G.	1994
=>	DC	

Proof	of	Galvin’s	Theorem:
Lemma	1:	If	G	has	an	orientation	
such	that	every	induced	subgraph
has	a	kernel	then	its	choice	number	
exceeds	the	maximum	outdegree by	
at	most	1	BBS	‘92
Lemma	2:	For	any	normal	orientation	
of	an	LGBG,	every	induced	subgraph
has	a	kernel.	Maffray 1984
Lemma	3:	Every	LGBG	G	has	a	
normal	orientation	of	outdegree at	
most	χ(𝐺)-1.		



Kernels	and	Choosability

List	Colouring Conjecture:	For	any	
line	graph	G,	the	chromatic	number	
and	choice	number	of	G		are	equal	
Vizing 1976,	ERT	1979.	
Dinitz Conjecture LCC	for	Kn,n 1979
Galvin’s	Theorem:	LCC	for	bipartite	
G.	1994
=>	DC	

Proof	of	Galvin’s	Theorem:
Lemma	1:	If	G	has	an	orientation	
such	that	every	induced	subgraph
has	a	kernel	then	its	choice	number	
exceeds	the	maximum	outdegree by	
at	most	1	BBS	‘92
Lemma	2:	For	any	normal	orientation	
of	an	LGBG,	every	induced	subgraph
has	a	kernel.	Maffray 1984
Lemma	3:	Every	LGBG	G	has	a	
normal	orientation	of	outdegree at	
most	χ(𝐺)-1.		



Kernels	and	Choosability

List	Colouring Conjecture:	For	any	
line	graph	G,	the	chromatic	number	
and	choice	number	of	G		are	equal	
Vizing 1976,	ERT	1979.	
Dinitz Conjecture LCC	for	Kn,n 1979
Galvin’s	Theorem:	LCC	for	bipartite	
G.	1994
=>	DC	

Proof	of	Galvin’s	Theorem:
Lemma	1:	If	G	has	an	orientation	
such	that	every	induced	subgraph
has	a	kernel	then	its	choice	number	
exceeds	the	maximum	outdegree by	
at	most	1	BBS	‘92
Lemma	2:	For	any	normal	orientation	
of	an	LGBG,	every	induced	subgraph
has	a	kernel.	Maffray 1984
Lemma	3:	Every	LGBG	G	has	a	
normal	orientation	of	outdegree at	
most	χ(𝐺)-1.		



Kernels	and	Choosability

List	Colouring Conjecture:	For	any	
line	graph	G,	the	chromatic	number	
and	choice	number	of	G		are	equal	
Vizing 1976,	ERT	1979.	
Dinitz Conjecture LCC	for	Kn,n 1979
Galvin’s	Theorem:	LCC	for	bipartite	
G.	1994
=>	DC	

Proof	of	Galvin’s	Theorem:
Lemma	1:	If	G	has	an	orientation	
such	that	every	induced	subgraph
has	a	kernel	then	its	choice	number	
exceeds	the	maximum	outdegree by	
at	most	1	BBS	‘92
Lemma	2:	For	any	normal	orientation	
of	an	LGBG,	every	induced	subgraph
has	a	kernel.	Maffray 1984
Lemma	3:	Every	LGBG	G	has	a	
normal	orientation	of	outdegree at	
most	χ(𝐺)-1.		



Some	Related	Papers	by	Frederic

On	kernels	in	perfect	graphs											
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On	the	orientation	of	Meyniel
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Graphs	whose	choice	number	is	
equal	to	their	chromatic	numbers	
Gravier and	Maffray 1998
Some	operations	preserving	the	
existence	of	kernels	BDJMM	1999

On	a	list	colouring problem		Gravier
MaffrayMohar 2003
On	the	choice	number	of	claw-free	
perfect	graphs	GM	2004	
PrecolouringExtension	of	Co-Meyniel
Graphs	JLM	2007
List	colouring claw	free	graphs	with	
small	clique	number		EGM	2014
On	the	choosabilityof	claw	free	
perfect	graphs	GMP	2016



Frederic’s	papers	on	domination

On	lower	independence	and	
domination	numbers	in	graphs	
Blidia,	Chellali,	Maffray 2005.	
Exact	double	domination	in	graphs	
Chellali,	Khelladi,	Maffray 2005
Extremal graphs	for	a	new	upper	
bound	on	domination	parameters	in	
graphsBCM	2006.	
Small	step-dominating	sets	in	tree	
Maffray,	Rautenbach2007.	
Locating	domination	&	identifying	
codes	in	treesBCM,Moncel,Sefri 2007

Extremal perfect	graphs	for	a	bound	
on	the	domination	number	BCM	
2008
Double	Domination	edge	removal	
critical	graphsKhelifi,B,C,M2010
Connected	domination	dot-critical	
graphs	C,M,Tablennehas 2010
Characterization	of	trees	with	unique	
minimum	location-dominating	sets	
B,C,Lounes,M 2011



Ceci N’est Pas	Une Session	Algérienne



Frederic	and	Mustafa,	Grenoble	1993



Frederic	at		Blidia 2006	(I	of	II)	



Frederic	at	Blidia 2006	(II	of	II)	



Frederic	at	Blidia 2009	(I	of	II)



Frederic	at	Blidia 2009	(II	of	II)



More	On	The	Structure	Of	
Perfect	Graphs



Frederic’s	Papers	on	
Even	Pairs	And	Perfectly	Contractile	Graphs



Frederic’s	Papers	on	
Even	Pairs	And	Perfectly	Contractile	Graphs

Opposition	Graphs	are	Quasi-Parity	Graphs	
Hoang+M 1989
On	Slim	Graphs,	even	pairs,	and	star	cutsets
Hoang	+Maffray 1992
Colouring,	Path	Parity,	and	Perfection	EdFLMPR
1997
On	Planar	Perfectly	Contractile	Graphs	LMR	
1997.
Even	Pairs	in	Claw-free	Perfect	Graphs,	Linhares-
Sales,M 1998
Recognizing	Planar	Strict	Quasi-Parity	Graphs	
LMR	2001
Even	Pairs EdFLMPR 2001
Even	Pairs	in	Square-Free	Berge	Graphs	LM	2003

On	Dart-free	Perfectly	Contractile	Graphs								
LM	2004
Algorithms	for	Perfectly	Contractile	Graphs	
Maffray and	Trotignon 2005
A	class	of	Perfectly	Contractile	Graphs	MT	2006
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Colouring Artemis	Graphs	LMRT	2009	
Even	Pairs	in	Square-Free	Berge	Graphs	M	2015



The	Structure	of	
Claw-Free	(Perfect)	Graphs



Elementary	and	Peculiar	Graphs	

A	graph	is	elementary	if	we	can	
two	colour its	edge	so	that	no	
induced	path	of	kength three	is	
monochromatic.
A	graph	is	peculiar	if	it	can	be	
partitioned	into	3	cliques,	contains	
no	cycle	of	length	exceeding	four,		
and		satisfies	certain	additional	
properties.	

Theorem;	Every	claw-free	perfect	
graph	is	elementary	or	peculiar.	

Chvatal and	Sbihi 1988



The	Structure	of	Elementary	Graphs

An	edge	of	G	is	flat	if	it	is	in	no	
triangle.

We		augment	G	on	a	matching	M	
by	substituting	a	clique	Kx for	each	
vertex	x	of	M	and	then	deleting	
some	of	the	edges	between	Kx
and	Ky for	every		

Theorem:	Every	elementary	graph	
arises	by	augmenting	a	matching	
of	flat	edges	in	an	LGBG.

Maffray and	Reed	1999



The	Structure	of	Quasi-Line	Graphs	
Without	Homogenous	Pairs	of	Cliques.	

A	graph	is	quasi-line if	the	
neighbourhood of	every	vertex	can	be	
partititoned into	two	cliques.
A	linear	(circular)	interval	graph	is	the	
intersection	 	graph	of	a	set	of		intervals	
on	the	real	line	(on	a	circle).	
An	ordered		linear	strip	consists	of	a	
linear	interval	graph	G,		a	clique	
consisiting of		some	set	of	vertices	
whose		interval		starts	first	and	a	clique	
consisting	of	some	set	of	vertices		
whose	interval	starts	last.	
A		pair	of		(disjoint)	cliques	 is	
homogenous	if	every	vertex	outside	the	
pair	sees	all	or	none	of	both	cliques.	

An	augmentation of	the	line	graph	of	H	
is	obtained	from	a	set	of	ordered	linear	
strips	indexed	by	the	arcs	of	an		
orientation	of	H	by	adding	edges	
between	all	the	cliques	corresponding	
to	the	edges	 incident	to	v	for	all	v𝜖V(H)

Theorem:	Every	connected	 	quasi	line	
graph	with	no	homogeneous	pair	of	
cliques	 is	either	a	circular	interval	graph	
or	the	augmentation	of	a	line	graph.



The	Structure	of	Claw	Free	Graphs	

An	ordered		strip	consists	of	a	graph	G	
and	ordered	pair	of	cliques	of	G.	
A	1-join	of	G1 and	G2 is	obtained	by	deleting	a	simplicial vertex	ai of	Gi and	a	simplicial vertex	a2 of	G2	 and	
adding	all	edges	frm N(a1)	to	N(a2)

If	G	has	a	1-join	it	has	a	star	cutset.	

An	augmentation of	the	line	graph	of	H	
is	obtained	from	a	set	of	ordered	strips	
indexed	by	the	arcs	of	an		orientation	of	
H	by	adding	edges	between	all	the	
cliques	corresponding	to	the	edges	
incident	to	v	for	all	v𝜖V(H)

Theorem:	Every	connected	 	claw-free		
graph	with	stability	number	at	least	four	
which	does	not	arise	by	a	1-join		and	
contains	no	homogeneous	pair	of	
cliques	 is	either	a	circular	interval	graph	
or	the	augmentation	of	a	line	graph	
using	special	types	of	strips.

Chudnovsky and	Seymoure 2005



An	Open	Question

Is	𝜒 𝐺 ≤ 7
8
𝜒9(G)	for	every	claw-free	G?	



Thank	you	for	your	attention!	


