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On the Structure of Bull-Free Perfect Graphs 
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Abstract. A bull is a graph obtained by adding a pendant vertex at two vertices of a triangle. 
Chvhtal and Sbihi showed that the Strong Perfect Graph Conjecture holds for bull-free 
graphs. We show that bull-free perfect graphs are quasi-parity graphs, and that bull-free 
perfect graphs with no antihole are perfectly contractile. Our proof yields a polynomial 
algorithm for coloring bull-free strict quasi-parity graphs 

1. Introduction 

A graph is called perfect if the vertices of every induced subgraph H can be colored 
with og(H) colors, where og(H) is the maximum clique size in H. Berge [1] intro- 
duced perfect graphs and conjectured the following characterization: A graph is 
perfect if and only if it contains no odd hole and no odd antihole. Here a hole is a 
chordless cycle with at least five vertices, and an antihole is the complement of a 
hole. This conjecture is still open and is known as the Strong Perfect Graph 
Conjecture. Graphs with no odd hole and no odd antihole have become known as 
Berge graphs. Recently, Chvhtal and Sbihi I-5] proved the validity of the Strong 
Perfect Graph Conjecture for bull-free graphs, i.e., graphs with no induced sub- 
graph isomorphic to a bull, where a bull is a graph with five vertices a, b, c, d, e and 
five edges ab, bc, cd, be, ce. Subsequently Reed and Sbihi [16] gave a polynomial 
algorithm for recognizing bull-free Berge graphs. 

In this article we will prove that a stronger property of bull-free Berge graphs 
holds. Recall that an even pair of a graph is any pair of vertices such that every 
chordless path between them has even length. Meyniel introduced even pairs in 
[14] together with the notion of quasi-parity graph and strict quasi-parity graph. 

* Partially supported by CNPq, grant 30 1160/91.0 
Revised Version: October 1994. Printed on September 26, 1995 
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On dart-free perfectly contractile graphs!

Cl!audia Linhares Salesa ;∗;1 , Fr!ed!eric Ma"rayb
aDC-LIA, Universidade Federal do Cear!a, Bloco 910—Campus do Pici, CEP 60455-760,

Fortaleza-CE, Brazil
bCNRS, Laboratoire Leibniz, 46 avenue F!elix Viallet, 38031 Grenoble Cedex, France

Received 25 November 2002; received in revised form 9 October 2003; accepted 25 November 2003
Communicated by A. Viola

Abstract

The dart is a graph obtained from a 4-clique by removing one edge and adding a pendant
vertex adjacent to one vertex of degree three. An even pair is pair of vertices such that every
chordless path between them has even length. A graph is perfectly contractile if every induced
subgraph has a sequence of even-pair contractions that leads to a clique. We show that the
dart-free graphs satisfy the conjecture of Everett and Reed about the forbidden structures for
perfectly contractile graphs. Our proof yields a polynomial-time algorithm to recognize dart-free
perfectly contractile graphs.
c⃝ 2003 Published by Elsevier B.V.

Keywords: Perfect graphs; Even pairs; Dart-free graphs

1. Introduction

A graph G is perfect if every induced subgraph H of G has its chromatic number
!(H) equal to the maximum size !(H) of the cliques of H . Berge [1] introduced
perfect graphs and conjectured the following characterization: A graph is perfect if and
only if it contains no odd hole and no odd antihole as an induced subgraph, where a
hole is a chordless cycle with at least #ve vertices, and an antihole is the complement
of a hole. Graphs with no odd hole and no odd antihole have become known as Berge
graphs. This conjecture, known as the Strong Perfect Graph Conjecture, was proved
recently by Chudnovksy et al. [3]; thus every Berge graph is perfect. One of the

! This research was partially supported by the cooperation CAPES (Brazil) and COFECUB (France),
project No. 213/97.

∗ Corresponding author.
E-mail address: linhares@lia.ufc.br (C.L. Sales).
1 This author is partially supported by CNPq-Brazil grant number 301330/97.

0304-3975/$ - see front matter c⃝ 2003 Published by Elsevier B.V.
doi:10.1016/j.tcs.2003.11.026
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Extremal graphs for the list-coloring version of a
theorem of Nordhaus and Gaddum!

Simone Dantasa , Sylvain Gravierb , Fr!ed!eric Ma"raya
aUniversidade Federal do Rio de Janeiro, COPPE, Brazil

bCNRS, Laboratoire Leibniz, 46 Avenue F!elix Viallet, 38031 Grenoble C!edex, France

Received 9 July 2001; received in revised form 20 January 2003; accepted 22 March 2003

Abstract

We characterize the graphs G such that Ch(G) + Ch( #G) = n+ 1, where Ch(G) is the choice
number (list-chromatic number) of G and n is its number of vertices.
? 2003 Elsevier B.V. All rights reserved.

Keywords: Graph coloring; List coloring

1. Introduction

We consider undirected, $nite, simple graphs. A coloring of a graph G = (V; E) is
a mapping c : V → {1; 2; : : :} such that c(u) ̸= c(v) for every edge uv∈E. A coloring
which uses at most k colors is called a k-coloring. The chromatic number !(G) is the
smallest integer k such that G admits a k-coloring. A graph is called k-colorable if it
admits a k-coloring. Deciding whether a graph admits a k-coloring is an NP-complete
problem [4] for any $xed k¿ 3.
Vizing [12], as well as Erdős et al. [2] introduced a variant of the coloring problem

as follows. Suppose that each vertex v is assigned a list L(v) of allowed colors; we
then want to $nd a vertex-coloring c such that c(v)∈L(v) for all v∈V . In the case
where such a c exists we will say that the graph G is L-colorable; we may also say
that c is an L-coloring of G. Graph G is k-choosable if G is L-colorable for every
assignment L that satis$es |L(v)|¿ k for all v∈V . The choice number or list-chromatic
number Ch(G) of G is the smallest k such that G is k-choosable. It is easy to see from

! This research was partially supported by the Cooperation CAPES (Brazil) and COFECUB (France),
project number 213/97.

E-mail address: frederic.ma"ray@imag.fr (F. Ma"ray).

0166-218X/$ - see front matter ? 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S0166-218X(03)00377-9
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On minimally b-imperfect graphs
Chính T. Hoànga,⇤, Cláudia Linhares Sales b, Frédéric Maffray c

a Department of Physics and Computer Science, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario, Canada N2L 3C5
b Departamento de Computação, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, Brazil
c C.N.R.S, Laboratoire G-SCOP, 46 Avenue Félix Viallet, 38031 Grenoble Cedex, France

a r t i c l e i n f o

Article history:
Received 2 December 2007
Received in revised form 30 January 2009
Accepted 24 February 2009
Available online 9 April 2009

Keywords:
Coloration
b-coloring
a-chromatic number
b-chromatic number

a b s t r a c t

A b-coloring is a coloring of the vertices of a graph such that each color class contains a
vertex that has a neighbour in all other color classes. The b-chromatic number of a graph
G is the largest integer k such that G admits a b-coloring with k colors. A graph is b-perfect
if the b-chromatic number is equal to the chromatic number for every induced subgraph
H of G. A graph is minimally b-imperfect if it is not b-perfect and every proper induced
subgraph is b-perfect. We give a list F of minimally b-imperfect graphs, conjecture that
a graph is b-perfect if and only if it does not contain a graph from this list as an induced
subgraph, and prove this conjecture for diamond-free graphs, and graphs with chromatic
number at most three.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

A proper coloring of a graph G is a mapping c from the vertex-set V (G) of G to the set of positive integers (colors) such
that any two adjacent vertices are mapped to different colors. Each set of vertices colored with one color is a stable set of
vertices of G, so a coloring is a partition of V into stable sets. The smallest number k for which G admits a coloring with k
colors is the chromatic number �(G) of G.

Many graph invariants related to colorings have been defined. Most of them try to minimize the number of colors used
to color the vertices under some constraints. For some other invariants, it is meaningful to try to maximize this number. The
b-chromatic number is such an example.Whenwe try to color the vertices of a graph, we can start from a given coloring and
try to decrease the number of colors by eliminating color classes. One possible such procedure consists in trying to reduce
the number of colors by transferring every vertex from a fixed color class to a color class in which it has no neighbour, if any
such class exists. A b-coloring is a proper coloring in which this is not possible, that is, every color class i contains at least one
vertex that has a neighbour in all the other color classes. Any such vertex will be called a b-vertex of color i. The b-chromatic
number b(G) is the largest integer k such that G admits a b-coloring with k colors.

The behavior of the b-chromatic number can be surprising. For example, the values of k for which a graph admits a b-
coloring with k colors do not necessarily form an interval of the set of integers; in fact any finite subset of {2, . . .} can be the
set of these values for some graph [5]. Irving andManlove [7,12] proved that decidingwhether a graph G admits a b-coloring
with a given number of colors is an NP-complete problem, even when it is restricted to the class of bipartite graphs [11].
On the other hand, they gave a polynomial-time algorithm that solves this problem for trees. The NP-completeness results
have incited researchers to establish bounds on the b-chromatic number in general or to find its exact values for subclasses
of graphs (see [3,9,10,2,4,8]).

⇤ Corresponding author. Tel.: +1 519 8840710; fax: +1 519 746 0677.
E-mail address: choang@wlu.ca (C.T. Hoàng).

0166-218X/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2009.02.023
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The complexity of forbidden subgraph sandwich problems
and the skew partition sandwich problemI

Simone Dantas a, Celina M.H. de Figueiredob,⇤, Frédéric Maffray c,
Rafael B. Teixeira d

a Instituto de Matemática e Estatística, Universidade Federal Fluminense, Brazil
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d Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Brazil
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a b s t r a c t

The ⇧ graph sandwich problem asks, for a pair of graphs G1 = (V , E1) and G2 = (V , E2)
with E1 ✓ E2, whether there exists a graph G = (V , E) that satisfies property ⇧ and
E1 ✓ E ✓ E2. We consider the property of being F-free, where F is a fixed graph. We show
that the claw-free graph sandwich and the bull-free graph sandwich problems are both
NP-complete, but the paw-free graph sandwich problem is polynomial. This completes
the study of all cases where F has at most four vertices. A skew partition of a graph G
is a partition of its vertex set into four nonempty parts A, B, C,D such that each vertex
of A is adjacent to each vertex of B, and each vertex of C is nonadjacent to each vertex
of D. We prove that the skew partition sandwich problem is NP-complete, establishing a
computational complexity non-monotonicity.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered here are finite and undirected. Given a graph property ⇧ , the ⇧ graph sandwich problem is
defined as follows:

Input: A pair (G1,G2) of graphs with G1 = (V , E1),G2 = (V , E2) and E1 ✓ E2;
Question: Is there a graph G = (V , E) that satisfies property ⇧ and inclusion E1 ✓ E ✓ E2?

The graph sandwich problem was introduced by Golumbic and Shamir in [16] and further studied in [13,17]. Clearly,
when G1 = G2 the problem is to decide whether G1 satisfies property ⇧ . So the graph sandwich problem generalizes
the recognition problem of deciding whether a graph satisfies a given property. In particular, if the recognition problem is
NP-complete, then the sandwich problem is also NP-complete. When the property ⇧ is to belong to a class C of graphs,
we may also speak of the C graph sandwich problem. Golumbic, Kaplan and Shamir [14,15] proved that the interval graph,
unit interval graph, permutation graph and comparability graph sandwich problems are all NP-complete, while the split
graph, threshold graph and cograph sandwich problems are in P. Graph sandwich problems have attracted much attention

I An extended abstract with some results of this paper was presented at LAGOS 2009, the Latin-American Algorithms, Graphs and Optimization
Symposium, and appeared in Electronic Notes in Discrete Mathematics 35 (2009) 9–14. Partially supported by CNPQ, FAPERJ and CAPES (Brazil) and
COFECUB (France) under joint project MA 622/08.⇤ Corresponding author. Tel.: +55 21 25628678.

E-mail addresses: sdantas@im.uff.br (S. Dantas), celina@cos.ufrj.br, cmhfig@gmail.com (C.M.H. de Figueiredo), frederic.maffray@inpg.fr (F. Maffray),
rafaelbt@ufrrj.br (R.B. Teixeira).

0166-218X/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
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special session in honor of Frédéric Maffray LAGOS 2019

Recollections by Celina Miraglia Herrera de Figueiredo (UFRJ)


