
LP based approximation of induced matchings

Dieter Rautenbach

Universität Ulm

Joint with Julien Baste and Maximilian Fürst

1 / 19



LP based approximation of induced matchings

Dieter Rautenbach

Universität Ulm

Joint with Julien Baste and Maximilian Fürst

1 / 19



Joint work with Frédéric

F. Maffray and D. Rautenbach,
Small Step-Dominating Sets in Trees,
Discrete Math. 307 (2007), 1212-1215.

S. Chaplick, M. Fürst, F. Maffray, and D. Rautenbach,
On some Graphs with a Unique Perfect Matching,
Inf. Process. Lett. 139 (2018), 60-63.

2 / 19



Induced matchings

A matching M in a graph G is induced if no two of its edges are joined by
an edge, that is, G [V (M)] is 1-regular. The maximum size of an induced
matching is the induced matching number νs(G ).

Negative results (Stockmeyer & Vazirani ’82,

Chalermsook et al. ’13):

NP-hard to approximate within a factor of n(G )1−ε

... within a factor of ∆1−ε for graphs G with ∆(G ) ≤ ∆

Approximation factors:

2∆− 2 for graphs G with ∆(G ) ≤ ∆ (greedy)

∆ for graphs G with ∆(G ) ≤ ∆ (Lin, Mestre, & Vasiliev ’18)

∆− ∆−1
2∆−1 for ∆-regular graphs (greedy)

0.75∆ + 0.15 for ∆-regular graphs (Gotthilf & Lewenstein ’06)
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Induced matchings

Observation (Zito ’99)

If G is a ∆-regular graph, then

νs(G ) ≤ m(G )

2∆− 1
.

Theorem (Gotthilf & Lewenstein ’06)

There is an efficient algorithm that, for a given graph G of maximum
degree at most ∆ at least 3, produces an induced matching M in G with

|M| ≥ m(G )

1.5∆2 − 0.5∆
.
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ILP for νs(G )

u ve

For u ∈ V (G ): δG (u)

For e ∈ E (G ): δG (e)

For e ∈ E (G ): CG (e)

(PI )

max
∑

e∈E(G)

xe

s.t.
∑

f ∈δG (e)

xf ≤ 1 ∀e ∈ E (G )

xe ∈ {0, 1} ∀e ∈ E (G )

νs(G ) = OPT (PI )
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ILP for νs(G )
Relax PI

(P)

max
∑

e∈E(G)

xe

s.t.
∑

f ∈δG (e)

xf ≤ 1 ∀e ∈ E (G )

xe ≥ 0 ∀e ∈ E (G )

Relaxation of minimum maximal matching/edge domination

(D)

min
∑

e∈E(G)

ye

s.t.
∑

f ∈δG (e)

yf ≥ 1 ∀e ∈ E (G )

ye ≥ 0 ∀e ∈ E (G )

νs(G ) ≤ ν∗s (G ) = τ∗s (G )

< γe(G ) = γ(L(G ))
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ILP for νs(G )

For edge weighted versions of (PI ) and (P) Lin et al. showed that the
integrality gap is at least ∆− 1.

Conjecture (Baste, Fürst, & R ’18+)

If G is a graph with maximum degree at most ∆, then

ν∗s (G )

νs(G )
≤ 5

8
∆ + O(1).

νs(G ) = 1

m(G ) = 1.25∆2 (for even ∆)

ν∗s (G ) = m(G )/(2∆− 1) (for even ∆)
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ILP for νs(G )

Theorem (Baste, Fürst, & R ’18+)

If G is as above and each component has order at least 3, then

ν∗s (G ) ≤ ∆

2∆ + 1
n(G )

with equality if and only if each component of G is a complete subdivision
of K1,∆.

Combining this with νs(G ) ≥ n(G )/6 (Joos, Sasse, R ’14) for connected
subcubic graphs G of order at least 7, yields an approximation algorithm
with factor

18

7
≈ 2.57

for subcubic graphs.
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LP-based approximation

Theorem (Baste, Fürst, & R ’18+)

There is an efficient algorithm that, for a given subcubic graph G,
produces an induced matching M in G as well as a feasible solution
(ye)e∈E(G) of (D) with

|M| ≥ 3

7
y(E (G )).

7
3 = 2, 3.

v0

v1

I

G ′0
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LP-based approximation

Recursively perform the following steps:

(1) Select v0v1 with dG (v0) = δ(G ) < 3. G ′ = G − NG [{v0, v1}]− I .
H = G − V (G ′).

(2) Recurring on G ′ yields
(
M ′, (ye)e∈E(G ′)

)
for G ′.

(3) M = M ′ ∪ {v0v1}.
(4) Specify ye for all edges e ∈ E (G ) \ E (G ′) such that:

I y (δH(e)) ≥ 1 for every edge e of H.

I y(δH(u)) ≥ 2
3 for every degree-≤ 2 vertex u ∈ NG ({v0, v1}).

I y(δH(u)) ≥ 1
3 for every degree-≤ 2 vertex u ∈ {v0, v1} ∪ I

I ye = 0 for all edges of G between V (H) and V (G ′).

I y (E (H)) ≤ 7
3 .
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(1) Select v0v1 with dG (v0) = δ(G ) < 3. G ′ = G − NG [{v0, v1}]− I .
H = G − V (G ′).

(2) Recurring on G ′ yields
(
M ′, (ye)e∈E(G ′)

)
for G ′.
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LP-based approximation

Conjecture (Erdős & Nešeťril ’89)

If G is a graph with maximum degree at most ∆, then

χ′s(G ) ≤ 1.25∆2.

χ′s(G ) ≤ 2∆2 (greedy)

χ′s(G ) ≤ 1.998∆2 for large ∆ (Molloy & Reed ’97)

χ′s(G ) ≤ 1.93∆2 for large ∆ (Bruhn & Joos ’18)

χ′s(G ) ≤ 1.835∆2 for large ∆ (Bonamy et al. ’18+)
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LP-based approximation

Theorem (Baste, Fürst, & R ’18+)

There is an efficient algorithm that, for a given graph G of maximum
degree at most ∆ ≥ 3, produces an induced matching M in G with

|M| ≥ ν∗s (G )

(1− ε)∆ + 0.5
, where ε ≈ 0.02005.

f = (1− ε)∆ + 0.5
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LP-based approximation

Input: A graph G .
Output: An induced matching M in G , and a subgraph of G .

begin
M ← ∅;
Let (xe)e∈E(G) be an optimal solution of (P);

while G has an edge e satisfying x(CG (e)) ≤ f do
M ← M ∪ {e}; G ← G − CG (e);

end
return (M,G );

end

∑
f ∈CG (e)

xf

Greedy
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LP-based approximation

Greedy returns (M,G ′), where the induced matching M satisfies

M ≥ x (E (G ) \ E (G ′))

f
.

Choosing f = ∆, one can show that G ′ is empty ( Lin et al. ’18). Now,
applying Gotthilf & Lewenstein to G ′ yields an induced matching M ′ in G ′

with

|M ′| ≥ m(G ′)

1.5∆2
.

If
m(G ′)

1.5∆2
≥ x(E (G ′))

f
,

then

|M ∪M ′| ≥ x (E (G ) \ E (G ′))

f
+

x(E (G ′))

f
=
ν∗s (G )

f
.
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LP-based approximation

Lemma (Baste, Fürst, & R ’18+)

Let ε ≈ 0.02005 and f = (1− ε)∆ + 0.5.

If G is a graph of maximum degree at most ∆ ≥ 3, and (xe)e∈E(G) is a
feasible solution for (P) that satisfies

x(CG (e)) ≥ f for every edge e of G,

then

x(E (G )) ≤ (1− ε)m(G )

1.5∆
.

Suppose that all degrees are large (≥ β∆):

m(G ) ≥
∑

e∈E(G)

x(δG (e)) =
∑

e∈E(G)

xe |δG (e)| ≥ x(E )(2β∆− 1),

that is, the lemma follows for a suitable β.
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LP-based approximation

(ε, c) is an optimal solution of the following quadratic program:

(Q)



max ε

s.th. 1.5
(

1 + ε(2c−1+ε)
1−c−ε

)
≤ 2c(1− ε)

ε ≤ (1− c)2

ε+ c < 1
ε, c > 0

Standard software yields

ε ≈ 0.02005 and c ≈ 0.85838,

and feasibility suffices for the proof.
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Thank you!
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