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Observation (Zito '99)
If G is a A-regular graph, then

Theorem (Gotthilf & Lewenstein '06)
There is an efficient algorithm that, for a given graph G of maximum
degree at most A at least 3, produces an induced matching M in G with

m(G)
M| > ———.
M| = 1.5A2 — 0.5A
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For edge weighted versions of (P;) and (P) Lin et al. showed that the
integrality gap is at least A — 1.

Conjecture (Baste, Fiirst, & R '18+)

If G is a graph with maximum degree at most A, then

vi(G) _5
7.(G) < §A + 0(1)
o 1(G)=1

o m(G) = 1.25A2 (for even A)
e v}(G)=m(G)/(2A — 1) (for even A)
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Theorem (Baste, Fiirst, & R '18+)

If G is as above and each component has order at least 3, then

. A
2(6) < 55 -77(6)

v

with equality if and only if each component of G is a complete subdivision
of Kl,A-

Combining this with v5(G) > n(G)/6 (Joos, Sasse, R '14) for connected
subcubic graphs G of order at least 7, yields an approximation algorithm
with factor 18

— ~2.57
7

for subcubic graphs.
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Theorem (Baste, Fiirst, & R '18+)

There is an efficient algorithm that, for a given subcubic graph G,
produces an induced matching M in G as well as a feasible solution
(Ye)ecE(c) of (D) with
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Recursively perform the following steps:

(1) Select vov1 with dg(v) = d6(G) <3. G' = G — Ng[{vo,v1}] — 1.
H=G—V(G.

(2) Recurring on G’ yields (/\/I’,(ye)eeg(g)) for G'.
(3) M=MuU {V()Vl}.
(4) Specify ye for all edges e € E(G) \ E(G’) such that:

> y (du(e)) > 1 for every edge e of H.

>

y(0r(u)) > 3 for every degree-< 2 vertex u € Ng({vo, v1}).

v

y(0n(u)) >  for every degree-< 2 vertex u € {vo, v} U/

v

Ye = 0 for all edges of G between V(H) and V(G’).



LP-based approximation

Recursively perform the following steps:

(1) Select vov1 with dg(v) = d6(G) <3. G' = G — Ng[{vo,v1}] — 1.
H=G—V(G.

(2) Recurring on G’ yields (/\/I’,(ye)eeg(g)) for G'.

(3) M=MuU {V()Vl}.

(4) Specify ye for all edges e € E(G) \ E(G’) such that:
> y (du(e)) > 1 for every edge e of H.

> y(61(u)) > 5 for every degree-< 2 vertex u € Ng({vo, v1}).

> y(61(u)) > 1 for every degree-< 2 vertex u € {vo,v1} U/

v

Ye = 0 for all edges of G between V(H) and V(G’).
y (E(H))

v
IN

7
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Conjecture (Erd6s & Nesetfil '89)

If G is a graph with maximum degree at most A, then

Y5(G) < 1.25A2.

X+(G) < 242 (greedy)

X+(G) < 1.998A2 for large A (Molloy & Reed '97)

X+(G) < 1.93A2 for large A (Bruhn & Joos '18)

X+(G) < 1.835A2 for large A (Bonamy et al. '18+)
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There is an efficient algorithm that, for a given graph G of maximum
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(G
M| > u_’;s)(ﬁ, where € ~ 0.02005.

f=(1-¢€A+05
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begin

M «+ 0;
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Lemma (Baste, Fiirst, & R '18+)
Let € ~ 0.02005 and f = (1 — €)A + 0.5.

If G is a graph of maximum degree at most A > 3, and (xe)ece(G) iS @
feasible solution for (P) that satisfies

x(Cg(e)) > f for every edge e of G,

then

(1—¢e)m(G)
x(E(6)) < o r—

Suppose that all degrees are large (> SA):

m(G) > Y x(6c(e))= Y xeldg(e)l = x(E)(26A — 1),

ecE(G) ecE(G)

that is, the lemma follows for a suitable 5.
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(¢, c) is an optimal solution of the following quadratic program:

;

maxXx €
sth. 15 (14 G} < 2c(1- o)
(Q) e < (1 _ C)2
e+c < 1
e,c > 0

Standard software yields
€ ~ 0.02005 and ¢ ~ 0.85838,

and feasibility suffices for the proof.



Thank you!



