LP based approximation of induced matchings

Dieter Rautenbach

Universität Ulm

LP based approximation of induced matchings

Dieter Rautenbach

Universität Ulm

Joint with Julien Baste and Maximilian Fürst

Joint work with Frédéric

- F. Maffray and D. Rautenbach, Small Step-Dominating Sets in Trees, Discrete Math. 307 (2007), 1212-1215.
- S. Chaplick, M. Fürst, F. Maffray, and D. Rautenbach, On some Graphs with a Unique Perfect Matching, *Inf. Process. Lett.* **139** (2018), 60-63.

A matching M in a graph G is induced if no two of its edges are joined by an edge,

A matching M in a graph G is induced if no two of its edges are joined by an edge, that is, G[V(M)] is 1-regular.

A matching M in a graph G is induced if no two of its edges are joined by an edge, that is, G[V(M)] is 1-regular. The maximum size of an induced matching is the induced matching number $\nu_s(G)$.

A matching M in a graph G is induced if no two of its edges are joined by an edge, that is, G[V(M)] is 1-regular. The maximum size of an induced matching is the induced matching number $\nu_s(G)$.

Negative results (Stockmeyer & Vazirani '82,

NP-hard

A matching M in a graph G is induced if no two of its edges are joined by an edge, that is, G[V(M)] is 1-regular. The maximum size of an induced matching is the induced matching number $\nu_s(G)$.

Negative results (Stockmeyer & Vazirani '82, Chalermsook et al. '13):

• NP-hard to approximate within a factor of $n(G)^{1-\epsilon}$

A matching M in a graph G is induced if no two of its edges are joined by an edge, that is, G[V(M)] is 1-regular. The maximum size of an induced matching is the induced matching number $\nu_s(G)$.

Negative results (Stockmeyer & Vazirani '82, Chalermsook et al. '13):

- NP-hard to approximate within a factor of $n(G)^{1-\epsilon}$
- ... within a factor of $\Delta^{1-\epsilon}$ for graphs G with $\Delta(G) \leq \Delta$

A matching M in a graph G is induced if no two of its edges are joined by an edge, that is, G[V(M)] is 1-regular. The maximum size of an induced matching is the induced matching number $\nu_s(G)$.

Negative results (Stockmeyer & Vazirani '82, Chalermsook et al. '13):

- NP-hard to approximate within a factor of $n(G)^{1-\epsilon}$
- ... within a factor of $\Delta^{1-\epsilon}$ for graphs G with $\Delta(G) \leq \Delta$

Approximation factors:

• $2\Delta - 2$ for graphs G with $\Delta(G) \leq \Delta$ (greedy)

A matching M in a graph G is induced if no two of its edges are joined by an edge, that is, G[V(M)] is 1-regular. The maximum size of an induced matching is the induced matching number $\nu_s(G)$.

Negative results (Stockmeyer & Vazirani '82, Chalermsook et al. '13):

- NP-hard to approximate within a factor of $n(G)^{1-\epsilon}$
- ... within a factor of $\Delta^{1-\epsilon}$ for graphs G with $\Delta(G) \leq \Delta$

Approximation factors:

• $2\Delta - 2$ for graphs G with $\Delta(G) \leq \Delta$ (greedy)

•
$$\Delta - rac{\Delta-1}{2\Delta-1}$$
 for Δ -regular graphs (greedy)

A matching M in a graph G is induced if no two of its edges are joined by an edge, that is, G[V(M)] is 1-regular. The maximum size of an induced matching is the induced matching number $\nu_s(G)$.

Negative results (Stockmeyer & Vazirani '82, Chalermsook et al. '13):

- NP-hard to approximate within a factor of $n(G)^{1-\epsilon}$
- ... within a factor of $\Delta^{1-\epsilon}$ for graphs G with $\Delta(G) \leq \Delta$

Approximation factors:

• $2\Delta - 2$ for graphs G with $\Delta(G) \leq \Delta$ (greedy)

•
$$\Delta - \frac{\Delta - 1}{2\Delta - 1}$$
 for Δ -regular graphs (greedy)

• $0.75\Delta + 0.15$ for Δ -regular graphs (Gotthilf & Lewenstein '06)

A matching M in a graph G is induced if no two of its edges are joined by an edge, that is, G[V(M)] is 1-regular. The maximum size of an induced matching is the induced matching number $\nu_s(G)$.

Negative results (Stockmeyer & Vazirani '82, Chalermsook et al. '13):

- NP-hard to approximate within a factor of $n(G)^{1-\epsilon}$
- ... within a factor of $\Delta^{1-\epsilon}$ for graphs G with $\Delta(G) \leq \Delta$

Approximation factors:

- $2\Delta 2$ for graphs G with $\Delta(G) \leq \Delta$ (greedy)
- Δ for graphs G with $\Delta(G) \leq \Delta$ (Lin, Mestre, & Vasiliev '18)

•
$$\Delta - \frac{\Delta - 1}{2\Delta - 1}$$
 for Δ -regular graphs (greedy)

• $0.75\Delta + 0.15$ for Δ -regular graphs (Gotthilf & Lewenstein '06)

Observation (Zito '99)

If G is a Δ -regular graph, then

$$\nu_{s}(G) \leq \frac{m(G)}{2\Delta - 1}.$$

Observation (Zito '99) If G is a Δ -regular graph, then

$$\nu_{s}(G) \leq \frac{m(G)}{2\Delta - 1}.$$

Theorem (Gotthilf & Lewenstein '06)

There is an efficient algorithm that, for a given graph G of maximum degree at most Δ at least 3, produces an induced matching M in G with

$$|M| \geq \frac{m(G)}{1.5\Delta^2 - 0.5\Delta}.$$

• For $u \in V(G)$: $\delta_G(u)$

- For $u \in V(G)$: $\delta_G(u)$
- For $e \in E(G)$: $\delta_G(e)$

- For $u \in V(G)$: $\delta_G(u)$
- For $e \in E(G)$: $\delta_G(e)$
- For $e \in E(G)$: $C_G(e)$

- For $u \in V(G)$: $\delta_G(u)$
- For $e \in E(G)$: $\delta_G(e)$

• For
$$e \in E(G)$$
: $C_G(e)$

$$(P_I) \qquad \begin{array}{lll} \max & \sum\limits_{e \in E(G)} x_e \\ s.t. & \sum\limits_{f \in \delta_G(e)} x_f \leq 1 \quad \forall e \in E(G) \\ & x_e \in \{0,1\} \quad \forall e \in E(G) \end{array}$$

- For $u \in V(G)$: $\delta_G(u)$
- For $e \in E(G)$: $\delta_G(e)$

• For
$$e \in E(G)$$
: $C_G(e)$

$$\begin{array}{rcl} \max & \sum\limits_{e \in E(G)} x_e \\ (P_I) & s.t. & \sum\limits_{f \in \delta_G(e)} x_f & \leq & 1 & \forall e \in E(G) \\ & & x_e & \in & \{0,1\} & \forall e \in E(G) \end{array}$$

$$\nu_s(G) = OPT(P_I)$$

ILP for $\nu_s(G)$ Relax P_l

ILP for $\nu_s(G)$ Relax P_l

$$(P) \qquad \begin{array}{ll} \max & \sum\limits_{e \in E(G)} x_e \\ s.t. & \sum\limits_{f \in \delta_G(e)} x_f & \leq 1 \quad \forall e \in E(G) \\ & x_e & \geq 0 \quad \forall e \in E(G) \end{array}$$

$$(D) \qquad \begin{array}{ll} \min & \sum\limits_{e \in E(G)} y_e \\ s.t. & \sum\limits_{f \in \delta_G(e)} y_f \geq 1 \quad \forall e \in E(G) \\ & y_e \geq 0 \quad \forall e \in E(G) \end{array}$$

ILP for $\nu_s(G)$ Relax P_l

$$(P) \qquad \begin{array}{ll} \max & \sum\limits_{e \in E(G)} x_e \\ s.t. & \sum\limits_{f \in \delta_G(e)} x_f & \leq 1 \quad \forall e \in E(G) \\ & x_e & \geq 0 \quad \forall e \in E(G) \end{array}$$

$$(D) \qquad \begin{array}{ll} \min & \sum\limits_{e \in E(G)} y_e \\ s.t. & \sum\limits_{f \in \delta_G(e)} y_f \geq 1 \quad \forall e \in E(G) \\ & y_e \geq 0 \quad \forall e \in E(G) \end{array}$$

$$\nu_{s}(G) \leq \nu^{*}_{s}(G) = \tau^{*}_{s}(G)$$

ILP for $\nu_s(G)$ Relax P_I

$$(P) \qquad \begin{array}{ll} \max & \sum\limits_{e \in E(G)} x_e \\ s.t. & \sum\limits_{f \in \delta_G(e)} x_f & \leq 1 \quad \forall e \in E(G) \\ & x_e & \geq 0 \quad \forall e \in E(G) \end{array}$$

Relaxation of minimum maximal matching/edge domination

$$(D) \qquad \begin{array}{ll} \min & \sum\limits_{e \in E(G)} y_e \\ (D) & s.t. & \sum\limits_{f \in \delta_G(e)} y_f \geq 1 \quad \forall e \in E(G) \\ & y_e \geq 0 \quad \forall e \in E(G) \end{array}$$

$$u_{s}(G) \leq
u_{s}^{*}(G) = au_{s}^{*}(G)$$

ILP for $\nu_s(G)$ Relax P_I

$$(P) \qquad \begin{array}{ll} \max & \sum\limits_{e \in E(G)} x_e \\ s.t. & \sum\limits_{f \in \delta_G(e)} x_f & \leq 1 \quad \forall e \in E(G) \\ & x_e & \geq 0 \quad \forall e \in E(G) \end{array}$$

Relaxation of minimum maximal matching/edge domination

$$(D) \qquad \begin{array}{ll} \min & \sum\limits_{e \in E(G)} y_e \\ (D) & s.t. & \sum\limits_{f \in \delta_G(e)} y_f \geq 1 \quad \forall e \in E(G) \\ & y_e \geq 0 \quad \forall e \in E(G) \end{array}$$

$$\nu_{s}(G) \leq \nu_{s}^{*}(G) = \tau_{s}^{*}(G) < \gamma_{e}(G) = \gamma(L(G))$$

For edge weighted versions of (P_I) and (P) Lin et al. showed that the integrality gap is at least $\Delta - 1$.

For edge weighted versions of (P_I) and (P) Lin et al. showed that the integrality gap is at least $\Delta - 1$.

Conjecture (Baste, Fürst, & R '18+)

If G is a graph with maximum degree at most Δ , then

$$\frac{\nu_s^*(G)}{\nu_s(G)} \leq \frac{5}{8}\Delta + O(1).$$

For edge weighted versions of (P_I) and (P) Lin et al. showed that the integrality gap is at least $\Delta - 1$.

Conjecture (Baste, Fürst, & R '18+)

If G is a graph with maximum degree at most Δ , then

$$\frac{\nu_{\mathfrak{s}}^*(G)}{\nu_{\mathfrak{s}}(G)} \leq \frac{5}{8}\Delta + O(1).$$

- $\nu_s(G) = 1$
- $m(G) = 1.25\Delta^2$ (for even Δ)
- $\nu_s^*(G) = m(G)/(2\Delta 1)$ (for even Δ)

Theorem (Baste, Fürst, & R '18+)

If G is as above and each component has order at least 3, then

$$u_s^*(G) \leq \frac{\Delta}{2\Delta+1}n(G)$$

with equality if and only if each component of G is a complete subdivision of $K_{1,\Delta}$.

Theorem (Baste, Fürst, & R '18+)

If G is as above and each component has order at least 3, then

$$u_s^*(G) \leq \frac{\Delta}{2\Delta+1}n(G)$$

with equality if and only if each component of G is a complete subdivision of $K_{1,\Delta}$.

Combining this with $\nu_s(G) \ge n(G)/6$ (Joos, Sasse, R '14) for connected subcubic graphs G of order at least 7, yields an approximation algorithm with factor

$$\frac{18}{7} \approx 2.57$$

for subcubic graphs.

Theorem (Baste, Fürst, & R '18+)

There is an efficient algorithm that, for a given subcubic graph G, produces an induced matching M in G as well as a feasible solution $(y_e)_{e \in E(G)}$ of (D) with

$$|M|\geq \frac{3}{7}y(E(G)).$$

Theorem (Baste, Fürst, & R '18+)

There is an efficient algorithm that, for a given subcubic graph G, produces an induced matching M in G as well as a feasible solution $(y_e)_{e \in E(G)}$ of (D) with

$$|M|\geq \frac{3}{7}y(E(G)).$$

 $\frac{7}{3} = 2, \overline{3}.$

Theorem (Baste, Fürst, & R '18+)

There is an efficient algorithm that, for a given subcubic graph G, produces an induced matching M in G as well as a feasible solution $(y_e)_{e \in E(G)}$ of (D) with

$$|M|\geq \frac{3}{7}y(E(G)).$$

 $\frac{7}{3} = 2, \overline{3}.$

Recursively perform the following steps:

(1) Select v_0v_1 with $d_G(v_0) = \delta(G)$

Recursively perform the following steps:

(1) Select v_0v_1 with $d_G(v_0) = \delta(G) < 3$.

Recursively perform the following steps:

(1) Select v_0v_1 with $d_G(v_0) = \delta(G) < 3$. $G' = G - N_G[\{v_0, v_1\}] - I$.

(1) Select
$$v_0v_1$$
 with $d_G(v_0) = \delta(G) < 3$. $G' = G - N_G[\{v_0, v_1\}] - I$.
 $H = G - V(G')$.

- (1) Select v_0v_1 with $d_G(v_0) = \delta(G) < 3$. $G' = G N_G[\{v_0, v_1\}] I$. H = G - V(G').
- (2) Recurring on G' yields $(M', (y_e)_{e \in E(G')})$ for G'.

- (1) Select v_0v_1 with $d_G(v_0) = \delta(G) < 3$. $G' = G N_G[\{v_0, v_1\}] I$. H = G - V(G').
- (2) Recurring on G' yields $(M', (y_e)_{e \in E(G')})$ for G'.
- (3) $M = M' \cup \{v_0 v_1\}.$

- (1) Select v_0v_1 with $d_G(v_0) = \delta(G) < 3$. $G' = G N_G[\{v_0, v_1\}] I$. H = G - V(G').
- (2) Recurring on G' yields $(M', (y_e)_{e \in E(G')})$ for G'.
- (3) $M = M' \cup \{v_0v_1\}.$
- (4) Specify y_e for all edges $e \in E(G) \setminus E(G')$ such that:

Recursively perform the following steps:

- (1) Select v_0v_1 with $d_G(v_0) = \delta(G) < 3$. $G' = G N_G[\{v_0, v_1\}] I$. H = G - V(G').
- (2) Recurring on G' yields $(M', (y_e)_{e \in E(G')})$ for G'.
- (3) $M = M' \cup \{v_0v_1\}.$
- (4) Specify y_e for all edges $e \in E(G) \setminus E(G')$ such that:

• $y(\delta_H(e)) \ge 1$ for every edge e of H.

- (1) Select v_0v_1 with $d_G(v_0) = \delta(G) < 3$. $G' = G N_G[\{v_0, v_1\}] I$. H = G - V(G').
- (2) Recurring on G' yields $(M', (y_e)_{e \in E(G')})$ for G'.
- (3) $M = M' \cup \{v_0 v_1\}.$
- (4) Specify y_e for all edges $e \in E(G) \setminus E(G')$ such that:
 - $y(\delta_H(e)) \ge 1$ for every edge e of H.
 - ► $y(\delta_H(u)) \ge \frac{2}{3}$ for every degree- ≤ 2 vertex $u \in N_G(\{v_0, v_1\})$.
 - ▶ $y(\delta_H(u)) \ge \frac{1}{3}$ for every degree- ≤ 2 vertex $u \in \{v_0, v_1\} \cup I$

- (1) Select v_0v_1 with $d_G(v_0) = \delta(G) < 3$. $G' = G N_G[\{v_0, v_1\}] I$. H = G - V(G').
- (2) Recurring on G' yields $(M', (y_e)_{e \in E(G')})$ for G'.
- (3) $M = M' \cup \{v_0 v_1\}.$
- (4) Specify y_e for all edges $e \in E(G) \setminus E(G')$ such that:
 - $y(\delta_H(e)) \ge 1$ for every edge e of H.
 - ► $y(\delta_H(u)) \ge \frac{2}{3}$ for every degree- ≤ 2 vertex $u \in N_G(\{v_0, v_1\})$.
 - ▶ $y(\delta_H(u)) \ge \frac{1}{3}$ for every degree- ≤ 2 vertex $u \in \{v_0, v_1\} \cup I$
 - $y_e = 0$ for all edges of G between V(H) and V(G').

- (1) Select v_0v_1 with $d_G(v_0) = \delta(G) < 3$. $G' = G N_G[\{v_0, v_1\}] I$. H = G - V(G').
- (2) Recurring on G' yields $(M', (y_e)_{e \in E(G')})$ for G'.
- (3) $M = M' \cup \{v_0 v_1\}.$
- (4) Specify y_e for all edges $e \in E(G) \setminus E(G')$ such that:
 - $y(\delta_H(e)) \ge 1$ for every edge e of H.
 - ► $y(\delta_H(u)) \ge \frac{2}{3}$ for every degree- ≤ 2 vertex $u \in N_G(\{v_0, v_1\})$.
 - ▶ $y(\delta_H(u)) \ge \frac{1}{3}$ for every degree- ≤ 2 vertex $u \in \{v_0, v_1\} \cup I$
 - $y_e = 0$ for all edges of G between V(H) and V(G').
 - $y(E(H)) \leq \frac{7}{3}$.

Conjecture (Erdős & Nešetřil '89)

If G is a graph with maximum degree at most Δ , then

 $\chi'_{s}(G) \leq 1.25\Delta^{2}.$

Conjecture (Erdős & Nešetřil '89)

If G is a graph with maximum degree at most Δ , then

 $\chi'_{s}(G) \leq 1.25\Delta^{2}.$

• $\chi'_s(G) \leq 2\Delta^2$ (greedy)

Conjecture (Erdős & Nešetřil '89)

If G is a graph with maximum degree at most Δ , then

 $\chi'_{s}(G) \leq 1.25\Delta^{2}.$

- $\chi'_s(G) \leq 2\Delta^2$ (greedy)
- $\chi_s'(G) \leq 1.998 \Delta^2$ for large Δ (Molloy & Reed '97)

Conjecture (Erdős & Nešetřil '89)

If G is a graph with maximum degree at most Δ , then

 $\chi'_s(G) \leq 1.25\Delta^2.$

- $\chi'_s(G) \leq 2\Delta^2$ (greedy)
- $\chi'_s(G) \leq 1.998\Delta^2$ for large Δ (Molloy & Reed '97)
- $\chi_s'(G) \leq 1.93 \Delta^2$ for large Δ (Bruhn & Joos '18)

Conjecture (Erdős & Nešetřil '89)

If G is a graph with maximum degree at most Δ , then

 $\chi'_s(G) \leq 1.25\Delta^2.$

- $\chi'_s(G) \leq 2\Delta^2$ (greedy)
- $\chi'_s(G) \leq 1.998\Delta^2$ for large Δ (Molloy & Reed '97)
- $\chi_s'(G) \leq 1.93 \Delta^2$ for large Δ (Bruhn & Joos '18)
- $\chi'_s(G) \leq 1.835 \Delta^2$ for large Δ (Bonamy et al. '18+)

Theorem (Baste, Fürst, & R '18+)

There is an efficient algorithm that, for a given graph G of maximum degree at most $\Delta \ge 3$, produces an induced matching M in G with

$$|M| \geq rac{
u_s^*(G)}{(1-\epsilon)\Delta+0.5}$$
, where $\epsilon pprox 0.02005$.

Theorem (Baste, Fürst, & R '18+)

There is an efficient algorithm that, for a given graph G of maximum degree at most $\Delta \ge 3$, produces an induced matching M in G with

$$|M| \geq rac{
u_s^*(G)}{(1-\epsilon)\Delta+0.5}$$
, where $\epsilon pprox 0.02005$.

$$f = (1 - \epsilon)\Delta + 0.5$$

Input: A graph G. **Output:** An induced matching M in G, and a subgraph of G.

Input: A graph G. **Output:** An induced matching M in G, and a subgraph of G. **begin**

 $M \leftarrow \emptyset;$

Input: A graph *G*. **Output:** An induced matching *M* in *G*, and a subgraph of *G*. **begin**

 $M \leftarrow \emptyset$; Let $(x_e)_{e \in E(G)}$ be an optimal solution of (P);

```
Input: A graph G.
```

Output: An induced matching M in G, and a subgraph of G. **begin**

 $M \leftarrow \emptyset$; Let $(x_e)_{e \in E(G)}$ be an optimal solution of (P); while G has an edge e satisfying $x(C_G(e)) \le f$ do

Input: A graph G.

Output: An induced matching M in G, and a subgraph of G. **begin**

 $M \leftarrow \emptyset;$ Let $(x_e)_{e \in E(G)}$ be an optimal solution of (P);while G has an edge e satisfying $x(C_G(e)) \le f$ do

Input: A graph G.

Output: An induced matching M in G, and a subgraph of G. **begin**

 $M \leftarrow \emptyset;$ Let $(x_e)_{e \in E(G)}$ be an optimal solution of (P);while *G* has an edge *e* satisfying $x(C_G(e)) \le f$ do $| M \leftarrow M \cup \{e\}; G \leftarrow G - C_G(e);$ end $\sum_{f \in C_G(e)} x_f$

```
Input: A graph G.
```

Output: An induced matching M in G, and a subgraph of G. **begin**

```
M \leftarrow \emptyset;
Let (x_e)_{e \in E(G)} be an optimal solution of (P);
while G has an edge e satisfying x(C_G(e)) \le f do
| M \leftarrow M \cup \{e\}; G \leftarrow G - C_G(e);
end
return (M, G);
```

end

Input: A graph G.

Output: An induced matching M in G, and a subgraph of G. **begin**

 $\begin{vmatrix} M \leftarrow \emptyset; \\ \text{Let } (x_e)_{e \in E(G)} \text{ be an optimal solution of } (P); \\ \text{while } G \text{ has an edge } e \text{ satisfying } x(C_G(e)) \leq f \text{ do} \\ | M \leftarrow M \cup \{e\}; G \leftarrow G - C_G(e); \\ \text{end} \\ \text{return } (M, G); \\ end \\ \end{vmatrix}$

Greedy

Greedy returns (M, G'), where the induced matching M satisfies

$$M \geq \frac{x \left(E(G) \setminus E(G') \right)}{f}.$$

Greedy returns (M, G'), where the induced matching M satisfies

$$M \geq \frac{x \left(E(G) \setminus E(G') \right)}{f}.$$

Choosing $f = \Delta$, one can show that G' is empty (\rightsquigarrow Lin et al. '18).

Greedy returns (M, G'), where the induced matching M satisfies

$$M \geq \frac{x \left(E(G) \setminus E(G') \right)}{f}$$

Choosing $f = \Delta$, one can show that G' is empty (\rightsquigarrow Lin et al. '18). Now, applying Gotthilf & Lewenstein to G' yields an induced matching M' in G' with

$$|M'| \geq \frac{m(G')}{1.5\Delta^2}.$$

Greedy returns (M, G'), where the induced matching M satisfies

$$M \geq \frac{x \left(E(G) \setminus E(G') \right)}{f}$$

Choosing $f = \Delta$, one can show that G' is empty (\rightsquigarrow Lin et al. '18). Now, applying Gotthilf & Lewenstein to G' yields an induced matching M' in G' with

$$|M'| \geq \frac{m(G')}{1.5\Delta^2}.$$

lf

$$\frac{m(G')}{1.5\Delta^2} \geq \frac{x(E(G'))}{f},$$

then

$$|M \cup M'| \geq \frac{x(E(G) \setminus E(G'))}{f} + \frac{x(E(G'))}{f}$$

Greedy returns (M, G'), where the induced matching M satisfies

$$M \geq \frac{x \left(E(G) \setminus E(G') \right)}{f}$$

Choosing $f = \Delta$, one can show that G' is empty (\rightsquigarrow Lin et al. '18). Now, applying Gotthilf & Lewenstein to G' yields an induced matching M' in G' with

$$|M'| \geq \frac{m(G')}{1.5\Delta^2}.$$

lf

$$\frac{m(G')}{1.5\Delta^2} \geq \frac{x(E(G'))}{f},$$

then

$$|M \cup M'| \geq \frac{x(E(G) \setminus E(G'))}{f} + \frac{x(E(G'))}{f} = \frac{\nu_s^*(G)}{f}.$$

Lemma (Baste, Fürst, & R '18+)

Let $\epsilon \approx 0.02005$ and $f = (1 - \epsilon)\Delta + 0.5$.

If G is a graph of maximum degree at most $\Delta \ge 3$, and $(x_e)_{e \in E(G)}$ is a feasible solution for (P) that satisfies

 $x(C_G(e)) \ge f$ for every edge e of G,

then

$$x(E(G)) \leq \frac{(1-\epsilon)m(G)}{1.5\Delta}.$$

Lemma (Baste, Fürst, & R '18+)

Let $\epsilon \approx 0.02005$ and $f = (1 - \epsilon)\Delta + 0.5$.

If G is a graph of maximum degree at most $\Delta \ge 3$, and $(x_e)_{e \in E(G)}$ is a feasible solution for (P) that satisfies

 $x(C_G(e)) \ge f$ for every edge e of G,

then

$$x(E(G)) \leq \frac{(1-\epsilon)m(G)}{1.5\Delta}.$$

Suppose that all degrees are large ($\geq \beta \Delta$):
Lemma (Baste, Fürst, & R '18+)

Let $\epsilon \approx 0.02005$ and $f = (1 - \epsilon)\Delta + 0.5$.

If G is a graph of maximum degree at most $\Delta \ge 3$, and $(x_e)_{e \in E(G)}$ is a feasible solution for (P) that satisfies

 $x(C_G(e)) \ge f$ for every edge e of G,

then

$$x(E(G)) \leq \frac{(1-\epsilon)m(G)}{1.5\Delta}.$$

Suppose that all degrees are large ($\geq \beta \Delta$):

m(G)

Lemma (Baste, Fürst, & R '18+)

Let $\epsilon \approx 0.02005$ and $f = (1 - \epsilon)\Delta + 0.5$.

If G is a graph of maximum degree at most $\Delta \ge 3$, and $(x_e)_{e \in E(G)}$ is a feasible solution for (P) that satisfies

 $x(C_G(e)) \ge f$ for every edge e of G,

then

$$x(E(G)) \leq \frac{(1-\epsilon)m(G)}{1.5\Delta}.$$

Suppose that all degrees are large ($\geq \beta \Delta$):

$$m(G) \geq \sum_{e \in E(G)} x(\delta_G(e))$$

Lemma (Baste, Fürst, & R '18+)

Let $\epsilon \approx 0.02005$ and $f = (1 - \epsilon)\Delta + 0.5$.

If G is a graph of maximum degree at most $\Delta \ge 3$, and $(x_e)_{e \in E(G)}$ is a feasible solution for (P) that satisfies

 $x(C_G(e)) \ge f$ for every edge e of G,

then

$$x(E(G)) \leq \frac{(1-\epsilon)m(G)}{1.5\Delta}.$$

Suppose that all degrees are large ($\geq \beta \Delta$):

$$m(G) \geq \sum_{e \in E(G)} x(\delta_G(e)) = \sum_{e \in E(G)} x_e |\delta_G(e)|$$

Lemma (Baste, Fürst, & R '18+)

Let $\epsilon \approx 0.02005$ and $f = (1 - \epsilon)\Delta + 0.5$.

If G is a graph of maximum degree at most $\Delta \ge 3$, and $(x_e)_{e \in E(G)}$ is a feasible solution for (P) that satisfies

 $x(C_G(e)) \ge f$ for every edge e of G,

then

$$x(E(G)) \leq \frac{(1-\epsilon)m(G)}{1.5\Delta}.$$

Suppose that all degrees are large ($\geq \beta \Delta$):

$$m(G) \geq \sum_{e \in E(G)} x(\delta_G(e)) = \sum_{e \in E(G)} x_e |\delta_G(e)| \geq x(E)(2\beta\Delta - 1),$$

Lemma (Baste, Fürst, & R '18+)

Let $\epsilon \approx 0.02005$ and $f = (1 - \epsilon)\Delta + 0.5$.

If G is a graph of maximum degree at most $\Delta \ge 3$, and $(x_e)_{e \in E(G)}$ is a feasible solution for (P) that satisfies

 $x(C_G(e)) \ge f$ for every edge e of G,

then

$$x(E(G)) \leq \frac{(1-\epsilon)m(G)}{1.5\Delta}.$$

Suppose that all degrees are large ($\geq \beta \Delta$):

$$m(G) \geq \sum_{e \in E(G)} x(\delta_G(e)) = \sum_{e \in E(G)} x_e |\delta_G(e)| \geq x(E)(2\beta\Delta - 1),$$

that is, the lemma follows for a suitable β .

 (ϵ, c) is an optimal solution of the following quadratic program:

$$(Q) \begin{cases} \max & \epsilon \\ s.th. \quad 1.5\left(1 + \frac{\epsilon(2c-1+\epsilon)}{1-c-\epsilon}\right) &\leq 2c(1-\epsilon) \\ \epsilon &\leq (1-c)^2 \\ \epsilon+c &< 1 \\ \epsilon,c &> 0 \end{cases}$$

Standard software yields

$$\epsilon \approx 0.02005$$
 and $c \approx 0.85838$.

and feasibility suffices for the proof.

Thank you!