Unavoidability of trees in tournaments

François Dross and Frédéric Havet

COATI, I3S, CNRS, INRIA, Univ. Côte d'Azur Sophia Antipolis, France

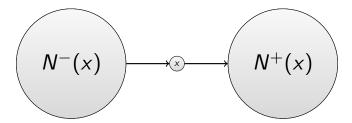
A tribute to Frédéric Maffray, September 02-04 2019

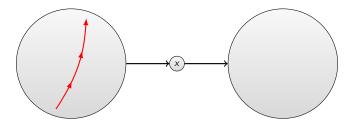
F. Dross and F.Havet

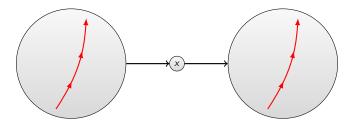
Tournament

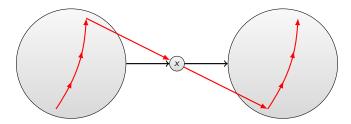
tournament = orientation of a complete graph.

transitive tournament = tournament with no directed cycle TT_n = transitive tournament of order *n*.









Unavoidability

n-unavoidable = contained in every tournament of order nunavoidable = n-unavoidable for some n. unvd(D) : unavoidability = minimum n s.t. D is n-unavoidable.

Redei's Theorem: $unvd(\vec{P}_n) = n$. \vec{P}_n : directed path of order n.

Q1: Which digraphs are unavoidable ?Q2: For an unavoidable digraph D, what is unvd(D) ?

Unavoidable digraphs

D is unavoidable if and only if D is acyclic.

- unavoidable \Rightarrow contained in some $TT_p \Rightarrow$ no directed cycle
- every acyclic digraph of order *n* is contained in *TT_n*.
 Suffices to prove it for transitive tournaments.

$unvd(TT_n) \leq 2 unvd(TT_{n-1})$

[[*Proof* : A tournament of order $2 \operatorname{unvd}(TT_{n-1})$ contains a vertex with $d^+ \ge \operatorname{unvd}(TT_{n-1})$.]]

Inta

Trees in tournaments

5/20

COATI

Corollary unvd $(TT_n) \leq 2^{n-1}$.

Upper bounds on $unvd(TT_n)$

 $\operatorname{unvd}(TT_n) \leq 2^{n-1}.$

unvd $(TT_1) = 1$, unvd $(TT_2) = 2$, unvd $(TT_3) = 4$, and unvd $(TT_4) = 8$ (because of Paley tournament). Reid and Parker, 1970 : unvd $(TT_5) = 14$, unvd $(TT_6) = 28$. Sanchez-Flores, 1994 : unvd $(TT_7) = 54$.

135 Remains COATI

Inta

Trees in tournaments

6/20

Corollary unvd $(TT_n) \le 54 \times 2^{n-7}$ (for $n \ge 7$).

F. Dross and F.Havet

Lower bounds on $unvd(TT_n)$

Theorem (Erdős and Moser, 1964) unvd $(TT_n) > 2^{(n-1)/2}$. [[*Proof* : Random tournament *T* on $p = 2^{(n-1)/2}$ vertices. Probability that $T\langle v_1, \ldots, v_n \rangle$ is transitive with hamiltonian dipath (v_1, \ldots, v_n) is $(\frac{1}{2})^{\binom{n}{2}}$. Expected number of transitive *n*-tournaments : $\frac{p!}{(p-n)!} (\frac{1}{2})^{\binom{n}{2}} < p^n (\frac{1}{2})^{\binom{n}{2}} \le 1$.

First Moment Method, *p*-tournament with no TT_n .

135 Real COATI

Theorem For every C > 1, $C \times unvd(TT_n) > 2^{(n+1)/2}$ if *n* is large enough.

Inta

[[Use Local Lemma]]

11

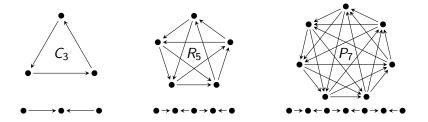
Value of $unvd(TT_n)$

Question : What is the value of $unvd(TT_n)$?

$$2^{(n-1)/2} < \mathsf{unvd}(TT_n) \le 2^{n-1}$$

CITS

 \vec{P}_n : directed path on *n* vertices. **Theorem** (Redei, 1934) unvd $(\vec{P}_n) = n$.



Theorem (H. and Thomassé, 2000) unvd(P) = |P| if $|P| \ge 8$. *T* tournament, *P* oriented path with |T| = |P|. *T* contains *P* unless $T \in \{C_3, R_5, P_7\}$ and *P* is antidirected.

COATI

Ser Marrier

Innia

Unavoidablity of cycles

Recall directed cycles are non-unavoidable, oriented cycles are non-universal.

Theorem (Thomason, 1986) If C is a non-directed cycle with $|C| \ge 2^{128}$, then unvd(C) = |C|.

Theorem (H., 2000) If C is an non-directed cycle with $|C| \ge 68$, then unvd(C) = |C|.

Conjecture

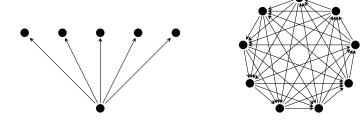
If C is an non-directed cycle with $|C| \ge 9$, then unvd(C) = |C|.

COATI

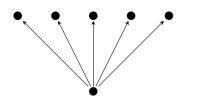
135⁻⁻⁻⁻⁻ 🕅

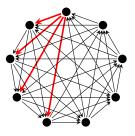
Conjecture (Sumner, 1972) Every oriented tree of order n is (2n - 2)-unavoidable.

Conjecture (Sumner, 1972) Every oriented tree of order n is (2n - 2)-unavoidable.



Conjecture (Sumner, 1972) Every oriented tree of order n is (2n - 2)-unavoidable.





Conjecture (Sumner, 1972). If T is an oriented tree of order n, then $unvd(T) \le 2n - 2$.

If T is an oriented tree of order n, then $unvd(T) \leq$ (Häggkvist and Thomason, 1991)12n (4 + o(1))n(H. and Thomassé, 2000) $\frac{7}{2}n - \frac{5}{2}$ (El Sahili, 2004)3n - 3(Kühn, Mycroft and Osthus, 2011)2n - 2 for n large .

COATI

Inta

Theorem (H. and Thomassé, 2000). If A is an arborescence, then $unvd(A) \le 2|A| - 2$.

Trees in tournaments

12/20

Beyond Sumner's conjecture

Conjecture (H. and Thomassé, 2000). If T is an oriented tree of order n with k leaves, then $unvd(T) \le n + k - 1$.

Evidences : True for $k \leq 3$. (Ceroi and H., 2004). True for a large class of trees. (H. 2002) . $unvd(T) \leq n + 2^{512k^3}$. (Häggkvist and Thomason, 1991)

Theorem (Dross and H., 2018). If A is an arborescence of order n with k leaves, then $unvd(A) \le n + k - 1$.

Theorem (Dross and H. , 2018). If T is a tree of order n with k leaves, then

Theorem (Dross and H., 2018). If A is an arborescence of order n with k leaves, then $unvd(A) \le n + k - 1$.

Theorem (Dross and H. , 2018). If T is a tree of order n with k leaves, then

135

unvd(
$$T$$
) $\leq \begin{cases} \frac{3}{2}n + \frac{3}{2}k - 2 \Rightarrow \text{Sumner holds} \\ \text{when } k \leq n/3 \end{cases}$

COATI

Inta

Trees in tournaments 14/20

Theorem (Dross and H., 2018). If A is an arborescence of order n with k leaves, then $unvd(A) \le n + k - 1$.

Theorem (Dross and H. , 2018). If T is a tree of order n with k leaves, then

unvd(T)
$$\leq \begin{cases} \frac{3}{2}n + \frac{3}{2}k - 2\\ \frac{9}{2}n - \frac{5}{2}k - \frac{9}{2} \end{cases}$$

Theorem (Dross and H., 2018). If A is an arborescence of order n with k leaves, then $unvd(A) \le n + k - 1$.

Theorem (Dross and H. , 2018). If T is a tree of order n with k leaves, then

unvd(
$$T$$
) $\leq \begin{cases} \frac{3}{2}n + \frac{3}{2}k - 2 \\ \frac{9}{2}n - \frac{5}{2}k - \frac{9}{2} \end{cases} \end{cases} \Rightarrow \frac{21}{8}n - \frac{47}{16}$

Inta

Theorem (Dross and H., 2018). If A is an arborescence of order n with k leaves, then $unvd(A) \le n + k - 1$.

Theorem (Dross and H. , 2018). If T is a tree of order n with k leaves, then

135

unvd(T)
$$\leq \begin{cases} \frac{3}{2}n + \frac{3}{2}k - 2\\ \frac{9}{2}n - \frac{5}{2}k - \frac{9}{2} \end{cases} \implies \frac{21}{8}n - \frac{47}{16}\\ n + 144k^2 - 280k + 124 \end{cases}$$

COATI

Inta

Trees in tournaments

15/20

Median orders

median order : (v_1, v_2, \ldots, v_n) s.t. $|\{(v_i, v_j) : i < j\}|$ is maximum.

Proposition : If $(v_1, v_2, ..., v_n)$ is a median order of T, then

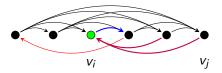
(M) v_i dominates at least half of the vertices v_{i+1}, \ldots, v_j , and v_j is dominated by at least half of the vertices v_i, \ldots, v_{j-1} .

Median orders

median order : $(v_1, v_2, ..., v_n)$ s.t. $|\{(v_i, v_j) : i < j\}|$ is maximum.

Proposition : If $(v_1, v_2, ..., v_n)$ is a median order of T, then

(M) v_i dominates at least half of the vertices v_{i+1},..., v_j, and v_j is dominated by at least half of the vertices v_i,..., v_{j-1}.



COATI

Inta

Trees in tournaments

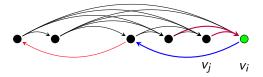
16/20

Median orders

median order : $(v_1, v_2, ..., v_n)$ s.t. $|\{(v_i, v_j) : i < j\}|$ is maximum.

Proposition : If $(v_1, v_2, ..., v_n)$ is a median order of T, then

(M) v_i dominates at least half of the vertices v_{i+1},..., v_j, and v_j is dominated by at least half of the vertices v_i,..., v_{j-1}.



COATI

Inta

Trees in tournaments

16/20

A arborescence with root r, n nodes, k leaves. (v_1, \ldots, v_m) median order of T with |T| = m = n + k - 1.

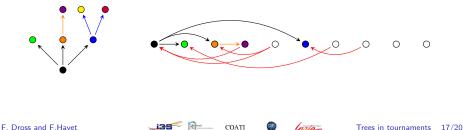
Set
$$\phi(r) = v_1$$
.
For $i = 1$ to m , do
• if v_i is not hit, skip; v_i is failed $(v_i \in F)$
• if v_i is hit, let $a_i = \phi^{-1}(v_i)$;
assign the $|N^+(a_i)|$ first not yet hit out-neighbours of v_i in
 $\{v_{i+1}, \ldots, v_m\}$ to the sons of a_i (according to some predefined
order);

A arborescence with root r, n nodes, k leaves. (v_1, \ldots, v_m) median order of T with |T| = m = n + k - 1. Set $\phi(r) = v_1$. For i = 1 to m, do • if v_i is not hit, skip; v_i is failed $(v_i \in F)$ • if v_i is hit, let $a_i = \phi^{-1}(v_i)$; assign the $|N^+(a_i)|$ first not yet hit out-neighbours of v_i in $\{v_{i+1}, \ldots, v_m\}$ to the sons of a_i (according to some predefined order);

A arborescence with root r, n nodes, k leaves. (v_1, \ldots, v_m) median order of T with |T| = m = n + k - 1. Set $\phi(r) = v_1$. For i = 1 to m, do v_i is failed ($v_i \in F$) • if v_i is not hit, skip; • if v_i is hit, let $a_i = \phi^{-1}(v_i)$; assign the $|N^+(a_i)|$ first not yet hit out-neighbours of v_i in $\{v_{i+1}, \ldots, v_m\}$ to the sons of a_i (according to some predefined order);

A arborescence with root r, n nodes, k leaves. (v_1, \ldots, v_m) median order of T with |T| = m = n + k - 1. Set $\phi(r) = v_1$. For i = 1 to m, do v_i is failed ($v_i \in F$) • if v_i is not hit, skip; • if v_i is hit, let $a_i = \phi^{-1}(v_i)$; assign the $|N^+(a_i)|$ first not yet hit out-neighbours of v_i in $\{v_{i+1}, \ldots, v_m\}$ to the sons of a_i (according to some predefined order);

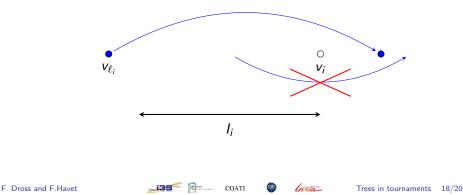
A arborescence with root r, n nodes, k leaves. (v_1, \ldots, v_m) median order of T with |T| = m = n + k - 1. Set $\phi(r) = v_1$. For i = 1 to m, do • if v_i is not hit, skip; v_i is failed $(v_i \in F)$ • if v_i is hit, let $a_i = \phi^{-1}(v_i)$; assign the $|N^+(a_i)|$ first not yet hit out-neighbours of v_i in $\{v_{i+1}, \ldots, v_m\}$ to the sons of a_i (according to some predefined order);



A arborescence with root r, n nodes, k leaves. (v_1, \ldots, v_m) median order of T with |T| = m = n + k - 1. Set $\phi(r) = v_1$. For i = 1 to m, do v_i is failed ($v_i \in F$) • if v_i is not hit, skip; • if v_i is hit, let $a_i = \phi^{-1}(v_i)$; assign the $|N^+(a_i)|$ first not yet hit out-neighbours of v_i in $\{v_{i+1}, \ldots, v_m\}$ to the sons of a_i (according to some predefined order);

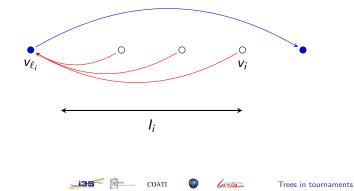
vertex v_{ℓ} is active for *i* if $v_{\ell} = \phi(a)$ for node *a* and *a* has a son *b* that is not embedded in $\{v_1, \ldots, v_i\}$. For $v_i \in F$, let ℓ_i be the largest index such that v_{ℓ_i} is active for *i*. Set $I_i = \{v_{\ell_{i+1}}, \ldots, v_i\}$.

vertex v_{ℓ} is active for *i* if $v_{\ell} = \phi(a)$ for node *a* and *a* has a son *b* that is not embedded in $\{v_1, \ldots, v_i\}$. For $v_i \in F$, let ℓ_i be the largest index such that v_{ℓ_i} is active for *i*. Set $I_i = \{v_{\ell_{i+1}}, \ldots, v_i\}$.



vertex v_{ℓ} is active for *i* if $v_{\ell} = \phi(a)$ for node *a* and *a* has a son *b* that is not embedded in $\{v_1, \ldots, v_i\}$. For $v_i \in F$, let ℓ_i be the largest index such that v_{ℓ_i} is active for *i*. Set $I_i = \{v_{\ell_{i+1}}, \ldots, v_i\}$.

Claim 1: If $v_i \in F$, then $|I_i \cap F| \le |I_i \cap \phi(L)|$. $L = \{\text{out-leaves}\}$.

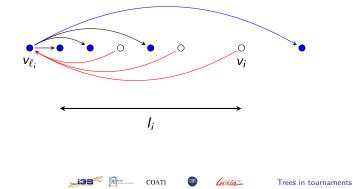


18/20

F. Dross and F.Havet

vertex v_{ℓ} is active for *i* if $v_{\ell} = \phi(a)$ for node *a* and *a* has a son *b* that is not embedded in $\{v_1, \ldots, v_i\}$. For $v_i \in F$, let ℓ_i be the largest index such that v_{ℓ_i} is active for *i*. Set $I_i = \{v_{\ell_{i+1}}, \ldots, v_i\}$.

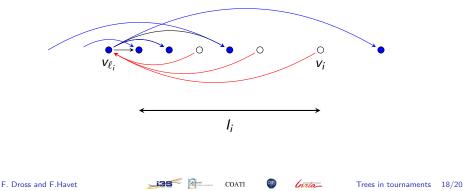
Claim 1: If $v_i \in F$, then $|I_i \cap F| \le |I_i \cap \phi(L)|$. $L = \{\text{out-leaves}\}$.



18/20

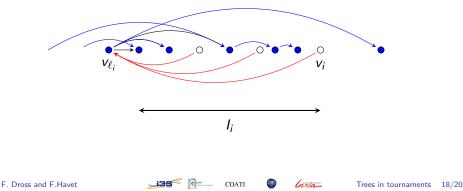
vertex v_{ℓ} is active for *i* if $v_{\ell} = \phi(a)$ for node *a* and *a* has a son *b* that is not embedded in $\{v_1, \ldots, v_i\}$. For $v_i \in F$, let ℓ_i be the largest index such that v_{ℓ_i} is active for *i*. Set $I_i = \{v_{\ell_{i+1}}, \ldots, v_i\}$.

Claim 1: If $v_i \in F$, then $|I_i \cap F| \le |I_i \cap \phi(L)|$. $L = \{$ out-leaves $\}$.



vertex v_{ℓ} is active for *i* if $v_{\ell} = \phi(a)$ for node *a* and *a* has a son *b* that is not embedded in $\{v_1, \ldots, v_i\}$. For $v_i \in F$, let ℓ_i be the largest index such that v_{ℓ_i} is active for *i*. Set $I_i = \{v_{\ell_{i+1}}, \ldots, v_i\}$.

Claim 1: If $v_i \in F$, then $|I_i \cap F| \le |I_i \cap \phi(L)|$. $L = \{\text{out-leaves}\}$.

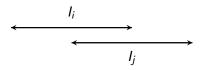


Claim 1: If $v_i \in F$, then $|I_i \cap F| \leq |I_i \cap \phi(L)|$. $L = \{\text{out-leaves}\}$.

Claim 2: If $v_i, v_j \in F$, then either $l_i \cap l_j = \emptyset$, or $l_i \subseteq l_j$, or $l_j \subseteq l_j$.

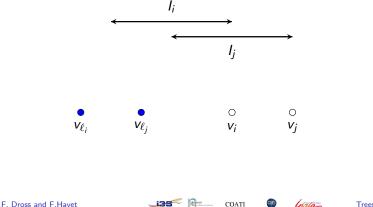
Claim 1: If $v_i \in F$, then $|I_i \cap F| \le |I_i \cap \phi(L)|$. $L = \{$ out-leaves $\}$.

Claim 2: If $v_i, v_j \in F$, then either $I_i \cap I_j = \emptyset$, or $I_i \subseteq I_j$, or $I_j \subseteq I_i$.



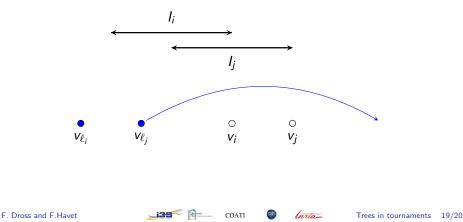
Claim 1: If $v_i \in F$, then $|I_i \cap F| \le |I_i \cap \phi(L)|$. $L = \{$ out-leaves $\}$.

Claim 2: If $v_i, v_j \in F$, then either $I_i \cap I_j = \emptyset$, or $I_i \subseteq I_j$, or $I_j \subseteq I_i$.



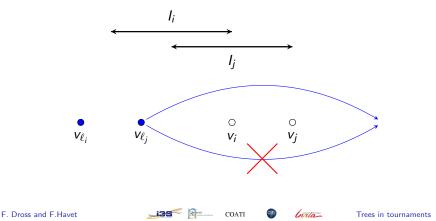
Claim 1: If $v_i \in F$, then $|I_i \cap F| \le |I_i \cap \phi(L)|$. $L = \{$ out-leaves $\}$.

Claim 2: If $v_i, v_j \in F$, then either $I_i \cap I_j = \emptyset$, or $I_i \subseteq I_j$, or $I_j \subseteq I_i$.



Claim 1: If $v_i \in F$, then $|I_i \cap F| \le |I_i \cap \phi(L)|$. $L = \{$ out-leaves $\}$.

Claim 2: If $v_i, v_j \in F$, then either $I_i \cap I_j = \emptyset$, or $I_i \subseteq I_j$, or $I_j \subseteq I_i$.



19/20

Claim 1: If $v_i \in F$, then $|I_i \cap F| \le |I_i \cap \phi(L)|$. $L = \{$ out-leaves $\}$.

Claim 2: If $v_i, v_j \in F$, then either $I_i \cap I_j = \emptyset$, or $I_i \subseteq I_j$, or $I_j \subseteq I_i$.

M: the set of indices *i* such that $v_i \in F$ and I_i is maximal for inclusion.

$$|F| = \sum_{i \in M} |I_i \cap F| \le \sum_{i \in M} |I_i \cap \phi(L)| \le |\phi(L)| \le k - 1.$$

COATI

Inta

Trees in tournaments 19/20

F. Dross and F.Havet

Thank you for your attention.

Questions ???

CITS

