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Tournament

tournament = orientation of a complete graph.

A

o———>0

transitive tournament = tournament with no directed cycle
TT, = transitive tournament of order n.
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Redei’'s Theorem

Theorem (Redei, 1934) Every tournament has a directed
Hamiltonian path.
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Unavoidability

n-unavoidable = contained in every tournament of order n
unavoidable = n-unavoidable for some n.

unvd(D) : unavoidability = minimum n s.t. D is n-unavoidable.

—

Redei's Theorem: unvd(P,) = n. P, : directed path of order n.

Q1: Which digraphs are unavoidable ?
Q2: For an unavoidable digraph D, what is unvd(D) ?

F. Dross and F.Havet —i2s5— COATI @ Gzt Trees in tournaments  4/20



Unavoidable digraphs

D is unavoidable if and only if D is acyclic.

» unavoidable = contained in some TT, = no directed cycle

<« every acyclic digraph of order n is contained in TT,.
Suffices to prove it for transitive tournaments.

unvd(TT,) <2unvd(TT,_1)

[[ Proof : A tournament of order 2unvd(TT,_1) contains a
vertex with d* > unvd(TT,_1).]]

Corollary unvd(TT,) <271,
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Upper bounds on unvd(TT,)

unvd(TT,) <21

unvd(TTy) =1, unvd(TT2) =2, unvd(TT3) =4, and
unvd(TT4) = 8 (because of Paley tournament).

Reid and Parker, 1970 : unvd(TTs) = 14, unvd(TTg) = 28.
Sanchez-Flores, 1994 : unvd(TT7) = 54.

Corollary unvd(TT,) < 54 x 2"=7 (for n > 7).
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Lower bounds on unvd(TT,)

Theorem (Erd8s and Moser, 1964) unvd(TT,) > 2(n=1)/2,

[ Proof : Random tournament T on p = 2("~1)/2 vertices.
Probability that T(v1,...,v,) is transitive with hamiltonian dipath

(vi,...,vp)is (%)(Z)

Expected number of transitive n-tournaments : 0 P! _ (

First Moment Method, p-tournament with no TT,. ]

Theorem For every C > 1, C x unvd(TT,) > 2("t1/2 if n is large
enough.

[[ Use Local Lemma ]]
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Value of unvd(TT,)

Question : What is the value of unvd(TT,) ?

20=1/2 < unvd(TT,) < 2"t

F. Dross and F.Havet _izs— COATI 0 Cinta— Trees in tournaments  8/20



Unavoidability of oriented paths

P, : directed path on n vertices.

—

Theorem (Redei, 1934) unvd(P,) = n.

AN
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O—>0<——0 0>0<0>0<0 0>0<0>0<0>0<0

Theorem (H. and Thomassé, 2000) unvd(P) = |P| if |P| > 8.
T tournament, P oriented path with |T| = |P|.
T contains P unless T € {C3, Rs, P7} and P is antidirected.
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Unavoidablity of cycles

Recall directed cycles are non-unavoidable, oriented cycles are
non-universal.

Theorem (Thomason, 1986)
If C is a non-directed cycle with |C| > 2128, then unvd(C) = [C|.

Theorem (H. , 2000)
If C is an non-directed cycle with |C| > 68, then unvd(C) = |C].

Conjecture
If C is an non-directed cycle with |C| > 9, then unvd(C) = |C|.
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Unavoidability of oriented trees

Conjecture (Sumner, 1972)
Every oriented tree of order n is (2n — 2)-unavoidable.
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Unavoidability of oriented trees

Conjecture (Sumner, 1972).
If T is an oriented tree of order n, then unvd(T) < 2n — 2.

If T is an oriented tree of order n, then unvd(T) <

(Haggkvist and Thomason, 1991) 12n (44+0o(1))n
(H. and Thomassé, 2000) In—23

(EI Sahili, 2004) 3n—3

(Kiihn, Mycroft and Osthus, 2011) 2n — 2 for n large
Theorem (H. and Thomassé, 2000). T '\ /'
If Ais an arborescence, then unvd(A) <2[A| -2, & & ¢
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Beyond Sumner’s conjecture

Conjecture (H. and Thomassé, 2000).
If T is an oriented tree of order n with k leaves, then
unvd(T) < n+ k —1.

Evidences : True for k < 3. (Ceroi and H., 2004).
True for a large class of trees. (H. 2002)
unvd(T) < n + 252K (Hzggkvist and Thomason, 1991)
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Our results

Theorem (Dross and H. , 2018).
If Ais an arborescence of order n with k leaves,
then unvd(A) < n+k — 1.

Theorem (Dross and H. , 2018).
If T is a tree of order n with k leaves, then

(3 3
St k-2
2 2
unvd(T) <
\
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Median orders

median order : (vi,vo,...,vy) s.t. [{(vi,v;) : i <j}| is maximum.
Proposition : If (v, va,...,Vv,) is a median order of T, then
(M) v; dominates at least half of the vertices v; 1,...,v;, and

vj is dominated by at least half of the vertices v;,...,vj_1.
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unvd(A) < n+ k — 1 : the greedy procedure

A arborescence with root r, n nodes, k leaves.
(vi,...,Vm) median order of T with |[T|=m=n+k — 1.

Set ¢(r) = w1.
For i=1to m, do
e if v; is not hit, skip; v; is failed (v; € F)

o if v; is hit, let a; = ¢~ (v;);
assign the |NT(a;)] first not yet hit out-neighbours of v; in
{Vit1,---,Vm} to the sons of a; (according to some predefined
order);
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unvd(A) < n+ k — 1 : analysis

vertex v is active for i if vy = ¢(a) for node a and a has a son b
that is not embedded in {vi,...,v;}.

For v; € F, let /; be the largest index such that vy, is active for i.
Set I; = {Vgiﬂ, Ceey V,'}.

T
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unvd(A) < n+ k — 1 : analysis

Claim 1: If v; € F, then [N F| < |in¢(L)]. L= {out-leaves}.

Claim 2: If v;,vj € F, then either ;N[ =0, or [; C l;, or [; C I;.
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unvd(A) < n+ k — 1 : analysis

Claim 1: If v; € F, then |/ F| < |l; N ¢(L)].

L = {out-leaves}.

Claim 2: If v;,vj € F, then either ;N[ =0, or [; C l;, or [; C I;.

i
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unvd(A) < n+ k — 1 : analysis

Claim 1: If v; € F, then [N F| < |in¢(L)]. L= {out-leaves}.

Claim 2: If v;,vj € F, then either ;N[ =0, or [; C l;, or [; C I;.

M: the set of indices i such that v; € F and [; is maximal for
inclusion.

FI = Siem [ 0 FL < i 10 6(L)] < [6(L)] < k— 1.
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Thank you for your attention.

Questions 77?7
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