Finding an Easily Recognizable Strong Stable Set or a Meyniel Obstruction in any Graph

Kathie Cameron Wilfrid Laurier University Waterloo, Canada

Joint work with Frédéric Maffray, Jack Edmonds, and Benjamin Lévêque

Maximal means "with respect to inclusion"

0

An algorithm for finding a strong stable set can be applied repeatedly to obtain a clique and colouring of the same size.

To find a clique of the same size, start with a vertex of the last colour.

An algorithm for finding a strong stable set can be applied repeatedly to obtain a clique and colouring of the same size.

To find a clique of the same size, start with a vertex of the last colour. It was adjacent to a vertex of the second-last colour.

An algorithm for finding a strong stable set can be applied repeatedly to obtain a clique and colouring of the same size.

To find a clique of the same size, start with a vertex of the last colour. It was adjacent to a vertex of the second-last colour.

An algorithm for finding a strong stable set can be applied repeatedly to obtain a clique and colouring of the same size.

To find a clique of the same size, start with a vertex of the last colour. It was adjacent to a vertex of the second-last colour. They were both adjacent to a vertex of the third-last colour.

An algorithm for finding a strong stable set can be applied repeatedly to obtain a clique and colouring of the same size.

To find a clique of the same size, start with a vertex of the last colour. It was adjacent to a vertex of the second-last colour. They were both adjacent to a vertex of the third-last colour...

A Meyniel graph is a graph with no induced Meyniel obstruction.

Theorem [Meyniel (1976), Markosyan and Karapetyan (1976)] Meyniel graphs are perfect.

This can be re-stated:

For any graph G,

either G contains a Meyniel obstruction

or **G** has a clique and colouring of the same size (or both)

Theorem (Hoàng 1987) Graph G is a Meyniel graph if and only if

for every induced subgraph H of G, and every vertex v of H, H contains a strong stable set containing v.

It is easy to see that a Meyniel obstruction contains a vertex which is not in any strong stable set.

Theorem (Hoàng 1987) Graph G is a Meyniel graph if and only if

for every induced subgraph H of G, and every vertex v of H, H contains a strong stable set containing v.

It is easy to see that a Meyniel obstruction contains a vertex which is not in any strong stable set.

No strong stable set

Thus the main content of Hoàng's Theorem is: For any graph G and any vertex v of G, either G contains a Meyniel obstruction or G contains a strong stable set containing v (or both). We give a polytime algorithm: G, v Strong stable set containing v

If G contains both, we cannot predict which the algorithm will give

Meyniel obstruction

Does not have a strong stable set containing v

We give a polytime algorithm: G, v Strong stable set containing v

If G contains both, we cannot predict which the algorithm will give

Strong stable set containing v

Does not have a Meyniel obstruction We give a polytime algorithm:

If G contains both, we cannot predict which the algorithm will give

We give a polytime algorithm:

If G contains both, we cannot predict which the algorithm will give

How can we verify that a stable set is strong?

Recall definition: A stable set is strong if it contains a vertex of every maximal clique of G.

A graph can have an exponential number of maximal cliques.

Thus the definition of strong stable set may not be an NPpredicate.

Proof. Let $S = \{s_1, \dots, s_q\}$ be a nice set.

Proof. Let $S = \{s_1, \dots, s_q\}$ be a nice set. Suppose C is a maximal clique in G and that $S \cap C = \emptyset$.

Proof. Let $S = \{s_1, \dots, s_q\}$ be a nice set. Suppose C is a maximal clique in G and that $S \cap C = \emptyset$. Vertex s_1 can not be adjacent to all of C, since C is a maximal clique.

•

• Sq

Sq

Sq

Proof. Let $S = \{s_1, \dots s_q\}$ be a nice set. Suppose C is a maximal clique in G and that $S \cap C = \emptyset$. Vertex s_1 can not be adjacent to all of C, since C is a maximal clique. Since S is a maximal stable set, every vertex of C is adjacent to some vertex of S.

Proof. Let $S = \{s_1, \dots, s_q\}$ be a nice set. Suppose C is a maximal clique in G

and that $\mathbf{S} \cap \mathbf{C} = \emptyset$. Vertex $\mathbf{s_1}$ can not be adjacent to all of \mathbf{C} , since \mathbf{C} is a maximal clique. Since \mathbf{S} is a maximal stable set, every vertex of \mathbf{C} is adjacent to some vertex of \mathbf{S} .

Proof. Let $S = \{s_1, \dots, s_q\}$ be a nice set. Suppose C is a maximal clique in G

and that $S \cap C = \emptyset$. Vertex s_1 can not be adjacent to all of C, since C is a maximal clique. Since S is a maximal stable set, every vertex of C is adjacent to some vertex of S. Let w_i be the pseudonode consisting of $\{s_1, ..., s_i\}$

Proof. Let $S = \{s_1, \dots, s_q\}$ be a nice set. Suppose C is a maximal clique in G

be a nice set. Suppose C is a maximal clique in G and that $S \cap C = \emptyset$. Vertex s_1 can not be adjacent to all of C, since C is a maximal clique. Since S is a maximal stable set, every vertex of C is adjacent to some vertex of S. Let w_i be the **pseudonode** consisting of $\{s_1, ..., s_i\}$

Proof. Let $S = \{s_1, \dots, s_q\}$ be a nice set. Suppose C is a maximal clique in G

be a nice set. Suppose C is a maximal clique in G and that $S \cap C = \emptyset$. Vertex s_1 can not be adjacent to all of C, since C is a maximal clique. Since S is a maximal stable set, every vertex of C is adjacent to some vertex of S. Let w_i be the pseudonode consisting of $\{s_1, ..., s_i\}$

Pseudonode w₁ is not adjacent to all of **C**

Proof. Let $S = \{s_1, \dots, s_q\}$ be a nice set. Suppose C is a maximal clique in G and that $S \cap C = \emptyset$. Vertex s_1 can not be adjacent to all of C, since C is a maximal clique. Since S is a maximal stable set, every vertex of C is adjacent to some vertex of S. Let w_i be the **pseudonode** consisting of $\{s_1, \dots, s_i\}$

> Pseudonode w_1 is not adjacent to all of C Pseudonode w_q is adjacent to all of C

Proof. Let $S = \{s_1, \dots, s_q\}$ be a nice set. Suppose C is a maximal clique in G

be a nice set. Suppose C is a maximal clique in G and that $S \cap C = \emptyset$. Vertex s_1 can not be adjacent to all of C, since C is a maximal clique. Since S is a maximal stable set, every vertex of C is adjacent to some vertex of S. Let w_i be the **pseudonode** consisting of $\{s_1, ..., s_i\}$

Pseudonode w_1 is not adjacent to all of C **Pseudonode** w_q is adjacent to all of C

Let w_{k-1} be the a pseudonode such that w_{k-1} is not adjacent to all of C but w_k is.

Proof. Let $S = \{s_1, \dots, s_q\}$ be a nice set. Suppose C is a maximal clique in G

be a nice set. Suppose C is a maximal clique in G and that $S \cap C = \emptyset$. Vertex s_1 can not be adjacent to all of C, since C is a maximal clique. Since S is a maximal stable set, every vertex of C is adjacent to some vertex of S. Let w_i be the pseudonode consisting of $\{s_1, ..., s_i\}$

Pseudonode w_1 is not adjacent to all of C **Pseudonode** w_q is adjacent to all of C

Let w_{k-1} be the a pseudonode such that w_{k-1} is not adjacent to all of C but w_k is.

Proof. Let $S = \{s_1, \dots, s_q\}$ be a nice set. Suppose C is a maximal clique in G

be a nice set. Suppose C is a maximal clique in G and that $S \cap C = \emptyset$. Vertex s_1 can not be adjacent to all of C, since C is a maximal clique. Since S is a maximal stable set, every vertex of C is adjacent to some vertex of S. Let w_i be the pseudonode consisting of $\{s_1, ..., s_i\}$

Pseudonode w_1 is not adjacent to all of C **Pseudonode** w_q is adjacent to all of C

Let w_{k-1} be the a pseudonode such that w_{k-1} is not adjacent to all of C but w_k is. Let \bigcirc be a vertex of C which is not adjacent to s_k

Proof. Let $S = \{s_1, \dots, s_q\}$ be a nice set. Suppose C is a maximal clique in G

be a nice set. Suppose C is a maximal clique in G and that $S \cap C = \emptyset$. Vertex s_1 can not be adjacent to all of C, since C is a maximal clique. Since S is a maximal stable set, every vertex of C is adjacent to some vertex of S. Let w_i be the pseudonode consisting of $\{s_1, ..., s_i\}$

Pseudonode w_1 is not adjacent to all of C **Pseudonode** w_q is adjacent to all of C

Let w_{k-1} be the a pseudonode such that w_{k-1} is not adjacent to all of C but w_k is. Let \bigcirc be a vertex of C which is not adjacent to s_k

Proof. Let $S = \{s_1, \dots, s_q\}$ be a nice set. Suppose C is a maximal clique in G

be a nice set. Suppose C is a maximal clique in G and that $S \cap C = \emptyset$. Vertex s_1 can not be adjacent to all of C, since C is a maximal clique. Since S is a maximal stable set, every vertex of C is adjacent to some vertex of S. Let w_i be the pseudonode consisting of $\{s_1, ..., s_i\}$

Pseudonode w_1 is not adjacent to all of C **Pseudonode** w_q is adjacent to all of C

Let w_{k-1} be the a pseudonode such that w_{k-1} is not adjacent to all of C but w_k is. Let \bigcirc be a vertex of C which is not adjacent to s_k There is a P_4 from pseudonode w_{k-1} to $s_k \implies <=$ Not every strong stable set is a nice set.

Recall: Hoàng's Theorem:

For any graph G and any vertex v of G, either G contains a Meyniel obstruction or G contains a <u>strong stable set</u> containing v (or both).

Our algorithm provides the following EP strengthening of Hoàng's Theorem:

For any graph G and any vertex v of G,either G contains a Meyniel obstruction orG contains a nice set containing v(or both).

KC, Lévêque, Maffray (2012)O(n³)KC &Edmonds (2005)O(n²)

Algorithm 1

Input: Graph G and vertex v of G.Output: Nice set containing v or Meyniel obstruction.

* Let $v = u_1$

- * Suppose $u_1, u_2, ..., u_k$, have been chosen.
 - If every vertex of V(G) − { u₁, u₂, ..., u_k} is adjacent to one of u₁, u₂, ..., u_k, then the chosen vertices form a nice set.
 - Otherwise, choose u_{k+1} not adjacent to any chosen vertices such that it has the largest nunber of common neighbours with the pseudonode v(u₁, u₂, ..., u_k) obtained by identifying u₁, u₂, ..., u_k.
 - \circ If there is a P₄ from v(u₁, u₂, ..., u_k) to u_{k+1}, then G contains a Meyniel obstruction, which we can find using Algorithm 2.
 - \circ Otherwise continue.

Three Levels of Algorithmic Approach

(1) If the input graph is guaranteed to be Meyniel, we can omit the step of looking for a P_4 - such a path never exists.

Promise G is Meyniel Algorithm > Nice Set Containing v

(2) To have a **robust algorithm** in the sense of **Sprinrad**, we can stop as soon as we find a P_4 from $v(u_1, u_2, ..., u_k)$ to u_{k+1} , since this indicates that G contains a Meyniel obstruction.

Declare G is not Meyniel

G, v \implies Polytime Algorithm \checkmark Nice Set Containing v

(3) Algorithm 1 as described is an **EP search algorithm**.

Meyniel Obstruction

 $G, v \implies$ Polytime Algorithm

Nice Set Containing v

Three Levels of Algorithmic Approach

(1) If the input graph is **guaranteed to be Meyniel**, we can omit the step of looking for a P_4 - such a path never exists.

Promise G is Meyniel \implies Algorithm \implies Nice Set Containing v

(2) To have a robust algorithm in the sense of Sprinrad, we can stop as soon as we find a P₄ from v(u₁, u₂, ..., u_k) to u_{k+1}, since this indicates that G contains a Meyniel obstruction.

Declare G is not Meyniel

G, v \implies Polytime Algorithm \checkmark Nice Set Containing v

(3) Algorithm 1 as described is an **EP search algorithm**.

G, v \Longrightarrow Polytime Algorithm Nice Set Containing v

Three Levels of Algorithmic Approach

(1) If the input graph is **guaranteed to be Meyniel**, we can omit the step of looking for a P_4 - such a path never exists.

Promise G is Meyniel \implies Algorithm \implies Nice Set Containing v

(2) To have a robust algorithm in the sense of Sprinrad, we can stop as soon as we find a P₄ from v(u₁, u₂, ..., u_k) to u_{k+1}, since this indicates that G contains a Meyniel obstruction.

Declare G is not Meyniel

G, v \Longrightarrow Polytime Algorithm Nice Set Containing v

(3) Algorithm 1 as described is an **EP search algorithm**.

G, v Polytime Algorithm Nice Set Containing v i.e. in NP

Finding a Meyniel Obstruction

Algorithm says: Choose u_{k+1} not adjacent to any of $u_1, u_2, ..., u_k$ such that it has the largest nunber of common neighbours with with the pseudonode $v(u_1, u_2, ..., u_k)$ obtained by identifying $u_1, u_2, ..., u_k$. If there is a P₄ from $v(u_1, u_2, ..., u_k)$ to u_{k+1} , then G has a Meyniel obstruction.

Ravindra's Lemma (1984). In an odd cycle of size at least 5 with all chords hitting the same vertex \mathbf{h} and at least one of these possible chords missing, there is a Meyniel obstruction

and if the Meyniel obstruction is an odd cycle with one chord, the chord is short and hits **h**. **h**

y is non-adjacent to the pseudonode and has common neighbour x with the pseudonode

y is non-adjacent to the pseudonode and has common neighbour x with the pseudonode. By choice of s_{k+1} , w exists

If w and x have a common neighbour in the pseudonode, we have a Meyniel obstruction

If w and x have a common neighbour in the pseudonode, we have a Meyniel obstruction

If w and x have a common neighbour in the pseudonode, we have a Meyniel obstruction

y is non-adjacent to the pseudonode and has common neighbour x with the pseudonode. By choice of s_q , z exists

y is non-adjacent to the pseudonode and has common neighbour x with the pseudonode. By choice of s_q , z exists

If z and x have a common neighbour in the pseudonode, we have a Meyniel obstruction.....

Can be applied repeatedly to give an algorithm:

Easier

KC, Lévêque, Maffray (2012) **O**(**n**²) KC, Edmonds (2005) **O**(**n**³) Algorithm (KC, Lévêque, Maffray (2012))

- Apply (slight variant of) Lexcolour Algorithm of Roussel and Rusu
- Where the colours are C₁, ..., C_k, construct a set Q as follows: For i=k, k-1, ..., 1, let v_i be a vertex of colour i with the largest number of neighbours in Q. Add v_i to Q.
- If Q is a clique, we have a clique and colouring of the same size.
- If Q is not a clique, we can find a Meyniel obstruction.

Algorithm (KC, Lévêque, Maffray (2012))

- Apply (slight variant of) Lexcolour Algorithm of Roussel and Rusu, choosing the specified vertex to be of the first colour C₁
- Where the colours are C₁, ..., C_k, construct a set Q as follows: For i=k, k-1, ..., 1, let v_i be a vertex of colour i with the largest number of neighbours in Q. Add v_i to Q.
- If Q is a clique, we have a clique and colouring of the same size.
- If Q is not a clique, we can find a Meyniel obstruction
- Check whether C_1 is a nice set. If not, we find a Meyniel obstruction

G Clique and colouring of the same size

If G contains both, we cannot predict which the algorithm will give

Meyniel obstruction

Does not have clique and colouring of the same size

G Clique and colouring of the same size

If G contains both, we cannot predict which the algorithm will give

clique and colouring of the same size

Does not have a Meyniel obstruction

G G Clique and colouring of the same size

If G contains both, we cannot predict which the algorithm will give

G G Clique and colouring of the same size

If G contains both, we cannot predict which the algorithm will give

A hole is a chordless cycle with at least least four vertices.

A hole is **odd** or **even** depending on whether it has an odd or even number of vertices.

A **cap** consists of a hole together with an additional vertex which creates a triangle with the hole.

Meyniel graphs are the (cap, odd hole)-free graphs.

Meyniel graphs are the (cap, odd hole)-free graphs.

With Kristina Vušković, University of Leeds, Leeds, United Kingdom
Murilo da Silva, Federal University of Technology, Curitba, Brazil
Shenwei Huang, Nankai University, Tianjin, China

we have studied

(Cap, even hole)-free graphs

We obtained

- Structural results
- Chi-bound: $\chi(G) \le (3/2) \omega(G)$
- O(nm) algorithms for q-colouring and max weight stable set
- polytime algorithm for minimum colouring
- Hadwiger's Conjecture holds

Let G be a (cap, 4-hole)-free graph that contains a hole and has no clique cutset.

Let \mathbf{F} be any maximal induced subgraph of G with at least 3 vertices that is triangle-free and and has no clique cutset.

Then G is obtained from F by blowing vertices of F into cliques and then adding a universal clique.

Let G be a (cap, 4-hole)-free graph that contains a hole and has no clique cutset.

Let \mathbf{F} be any maximal induced subgraph of G with at least 3 vertices that is triangle-free and has no clique cutset.

Then G is obtained from F by blowing vertices of F into cliques and then adding a universal clique.

Let G be a (cap, 4-hole)-free graph that contains a hole and has no clique cutset.

Let \mathbf{F} be any maximal induced subgraph of G with at least 3 vertices that is triangle-free and has no clique cutset.

Then G is obtained from F by blowing vertices of F into cliques and then adding a universal clique.

Let G be a (cap, 4-hole)-free graph that contains a hole and has no clique cutset.

Let \mathbf{F} be any maximal induced subgraph of G with at least 3 vertices that is triangle-free and has no clique cutset.

Then G is obtained from F by blowing vertices of F into cliques and then adding a universal clique.

Let G be a (cap, 4-hole)-free graph that contains a hole and has no clique cutset.

Let \mathbf{F} be any maximal induced subgraph of G with at least 3 vertices that is triangle-free and has no clique cutset.

Then G is obtained from F by blowing vertices of F into cliques and then adding a universal clique.

Let G be a (cap, 4-hole)-free graph that contains a hole and has no clique cutset.

Let \mathbf{F} be any maximal induced subgraph of G with at least 3 vertices that is triangle-free and has no clique cutset.

Then G is obtained from F by blowing vertices of F into cliques and then adding a universal clique.

Let G be a (cap, 4-hole)-free graph that contains a hole and has no clique cutset.

Let \mathbf{F} be any maximal induced subgraph of G with at least 3 vertices that is triangle-free and has no clique cutset.

Then G is obtained from F by blowing vertices of F into cliques and then adding a universal clique.

Further, any graph obtained by this sequence of operations starting from a (triangle, 4-hole)-free graph with at least 3 vertices and no clique cutset is (cap, 4-hole)-free and has no clique cutset.

A **minor** of a graph G is obtained from a subgraph of G by contracting edges. One way to think of a K_{t+1} minor is:

One way to think of a K_{t+1} minor is: t+1 pairwise vertex-disjoint connected subgraphs

One way to think of a K_{t+1} minor is: t+1 pairwise vertex-disjoint connected subgraphs which are pairwise adjacent

One way to think of a K_{t+1} minor is: t+1 pairwise vertex-disjoint connected subgraphs which are pairwise adjacent

Hadwiger's Conjecture (1943) For every integer $t \ge 0$, every graph with no K_{t+1} minor is t-colourable.

HC holds for $t \le 5$ and remains open for $t \ge 6$:

- No K_2 -minor \rightarrow edgeless \rightarrow 1-colourable
- No K_3 -minor \rightarrow no cycles \rightarrow 2-colourable
- Hadwiger proved the conjecture for t = 3. No K₄-minor \rightarrow series-parallel \rightarrow \exists a vertex of degree $\leq 2 \rightarrow 3$ -colourable
- For t=4, it is equivalent to the Four Colour Theorem (Wagner 1937)
- Robertson, Seymour and Thomas (1993) proved it for t=5, using the 4CT. A contraction-critical 6-chromatic graph G other than K_6 has a vertex x such that G\x is planar, and is thus 4-colourable. So G is 5-colourable.

Hadwiger's Conjecture (1943) For every integer $t \ge 0$, every graph with no K_{t+1} minor is t-colourable.

HC holds for hereditary classes χ -bounded by function f(x)=x+1

(that is, for each graph G in the class, $\chi(G) \le \omega(G)+1$)

- perfect graphs
- line-graphs of (simple) graphs [by Vizing's Theorem]
- (theta, wheel)-free graphs $[\chi(G) \le \max\{3, \omega(G)\}]$ Radovanović, Trotignon, Vušković
- unichord-free graphs $[\chi(G) \le \max\{3, \omega(G)\}]$ Trotignon, Vušković
- (diamond, even hole)-free graphs
 [always have a vertex that is simplicial or of degree 2] Kloks, Müller, Vušković
- (triangle, theta)-free graphs [are 3-colourable]
- (triangle, induced subdivision of K₄)-free graphs [are 3-colourable]

Chudnovsky, Liu, Schaudt, Spirkl, Trotignon, Vušković

Kloks, Mūller, Vušković Radovanović, Vušković

Hadwiger's Conjecture (1943)

For every integer $t \ge 0$, every graph with no K_{t+1} minor is t-colourable.

HC holds for:

- quasi-line graphs Chudnovsky, Fradkin (2008) which include proper circular-arc graphs (circular interval graphs)
- graphs without a hole with size between 4 and $2\alpha(G)$ X. Song, B. Thomas (2016)
- (C₄, C₅, P₇)-free graphs
- (pan, even hole)-free graphs
- (cap, even hole)-free graphs

Via structural result of KC, Huang, Penev, Sivaraman (2017+)

Via structural result of KC, Chaplick, Hoàng (2018)

KC, Vušković

Hadwiger's Conjecture (1943)

For every integer $t \ge 0$, every graph with no K_{t+1} minor is t-colourable.

HC holds for:

- quasi-line graphs Chudnovsky, Fradkin (2008) which include proper circular-arc graphs (circular interval graphs)
- graphs without a hole with size between 4 and $2\alpha(G)$ X. Song, B. Thomas (2016)
- (C_4, C_5, P_7) -free graphs
- (pan, even hole)-free graphs
- (cap, even hole)-free graphs

If a (C_4, C_5, P_7) -free graph has no induced C_7 , then it is perfect. Otherwise, it either has a clique-cutset or is a clique or has at most one nontrivial anticomponent which is a proper circular-arc graph

KC, Vušković

Via structural result of KC, Huang, Penev, Sivaraman (2017+)

Via structural result of KC, Chaplick, Hoàng (2018)

Hadwiger's Conjecture (1943)

For every integer $t \ge 0$, every graph with no K_{t+1} minor is t-colourable.

HC holds for:

- quasi-line graphs Chudnovsky, Fradkin (2008) which include proper circular-arc graphs (circular interval graphs)
- graphs without a hole with size between 4 and $2\alpha(G)$ X. Song, B. Thomas (2016)
- (C_4, C_5, P_7) -free graphs Via structural result of KC, Huang, Penev, Sivaraman (2017+)

Via structural result of KC, Chaplick, Hoàng (2018)

KC, Vušković

- (pan, even hole)-free graphs
- (cap, even hole)-free graphs

A (pan, even hole)-free graph either has a clique-cutset or is a clique or has at most one non-trivial anticomponent which is a unit circular-arc graph

Theorem: Hadwiger's Conjecture holds for (cap, even hole)-free graphs

KC + Vušković (2018+)

Proof is based on:

(1) **Recall: Theorem** KC, Huang, Da Silva, Vušković (2018)

Let G be a (cap, 4-hole)-free graph that contains a hole and has no clique cutset.

Let \mathbf{F} be any maximal induced subgraph of G with at least 3 vertices that is triangle-free and and has no clique cutset.

Then G is obtained from F by blowing vertices of F into cliques and then adding a universal clique.

Further, any graph obtained by this sequence of operations starting from a (triangle, 4-hole)-free graph with at least 3 vertices and no clique cutset is (cap, 4-hole)-free and has no clique cutset.

(2) Lemma Conforti, Cornuéjols, Kapoor, Vušković (2000) Every (triangle, even hole)-free graph has a vertex of degree at most 2.

