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List-coloring claw-free perfect graphs

A graph G is perfect if every induced subgraph H of G satisfies χ(H) = ω(H).
Definition

A graph G is claw-free if it does not contain any induced subgraph isomorphic
to K1,3 (the claw).

Definition
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List-coloring claw-free perfect graphs

Given a graph G and a set L(v) of colors for each vertex v , we say that
G is L-colorable if we can find a coloring c such that c(v) ∈ L(v) for all
v ∈ V (G).

Definition
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List-coloring claw-free perfect graphs

Given an integer k, a graph G is k-choosable if it L-colorable for every
assignment L that satisfies |L(v)| = k for all v ∈ V (G).

Definition

The choice number, or list-chromatic number χ`(G) of G is the smallest
k such that G is k-choosable.

Definition

For every graph G , χ`(L(G)) = χ(L(G)).
Conjecture Vizing 1975

For every claw-free graph G , χ`(G) = χ(G).
Conjecture Gravier, Maffray 1997
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List-coloring claw-free perfect graphs

For every claw-free graph G , χ`(G) = χ(G).
Conjecture

We are interested in the case where G is perfect.

Let G be a claw-free perfect graph ω(G) ≤ 4. Then χ`(G) = χ(G).
Theorem

We achieved that thanks to a decomposition theorem of Chátal and Sbihi and a
structural theorem of Maffray and Reed.
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List-coloring claw-free perfect graphs

Every claw-free perfect graph either has a clique-cutset, or is a peculiar
graph, or is an elementary graph.

Theorem Chvátal, Sbihi 1988
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List-coloring claw-free perfect graphs

Peculiar graphs

Q3

B1 A2

A1 B2

B3 A3

Q2 Q1

at least one non-edge

complete adjacency

clique
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List-coloring claw-free perfect graphs

Let G be a peculiar graph with ω(G) ≤ 4 (unique in this case). Then,
χ`(G) = χ(G).

Lemma

• If some pair of non-adjacent vertices u, v share a color, let
α = c(u) = c(v) and we can easily color G − {u, v} without using α.

• If no such pair exists, we can find a coloring by Hall’s theorem (we have
enough color to directly color G).

Proof
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List-coloring claw-free perfect graphs

A graph G is elementary if and only if it is an augmentation of a the line-graph
H of a bipartite multigraph B.

Theorem
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List-coloring claw-free perfect graphs

Let G be an elementary graph with ω(G) ≤ 4. Then χ`(G) = χ(G).
Lemma

By induction on h, the number of augmented flat edges :
• If h = 0, use Gavlin’s theorem (LCC is true for line-graphs of bipartite
multigraphs).

• If h > 0, we use a gadget.

Proof
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List-coloring claw-free perfect graphs

Proof of the main theorem

The graph G is decomposed by clique cutset into:
• peculiar graphs

3

• elementary graphs.

3

We still need to glue back all pieces!
Within the list-coloring context, clique cutsets are not as convenient as for the

classical coloring.
We still manage to deal with them by using Galvin’s theorem.
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Coloring (P6, bull)-free graphs

Deciding wether a graph is k-colorable is NP-complete for each k ≥ 3.
Theorem Garey, Johnson, Stockmeyer 1974

As it is well known, the k-coloring problem is polynomial for perfect graphs.

But let us take a look at other graph classes.
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Coloring (P6, bull)-free graphs

For any fixed k, g ≥ 3, the k-coloring problem is NP-complete in the class of
graphs with girth at least g .

Theorem Kamiński, Lozin 2007

girth : length of the shortest cycle.

For any fixed k ≥ 3, the k-coloring problem is NP-complete in the class of
H-free graphs where H contains a claw.

Theorem Holyer 1981

By combining these two theorems, we have the following :

For any fixed k ≥ 3 and H a forbidden induced subgraph that is not a
collection of paths, deciding whether a H-free graph is k-colorable is NP-
complete.

Corollary
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Coloring (P6, bull)-free graphs

What was known?
k-coloring of P`-free graphs.

`\k ≤ 2 3 4 ≥ 5

≤ 4 P P P P
5 P P P P

6 P P ? NPC

7 P P NPC NPC
≥ 8 P ? NPC NPC

· · ·

...

There exists a polynomial time algorithm for the 4-coloring problem for P6-free
graphs.

Theorem Chudnovsky, Spirkl, Zhong 2018
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Coloring (P6, bull)-free graphs

There is polynomial time algorithm that determines whether a (P6, bull)-free
graph is 4-colorable, and if it is, produces a 4-coloring.

Theorem Maffray, Pastor
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Coloring (P6, bull)-free graphs

A homogeneous set is a set S ⊆ V (G) such that every vertex in V (G) \ S
is either complete to S or anti-complete to S.

Definition

Quasi-prime graph A graph G is quasi-prime if every non-trivial homogeneous
set of G is a clique.

Definition
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Coloring (P6, bull)-free graphs

It is sufficient to produce a 4-coloring for any (P6, bull)-free graph G that
satisfies the following properties :

1. G is K5-free and double-wheel-free.
2. G and G are connected.
3. G is quasi-prime.

Lemma

16/24



Coloring (P6, bull)-free graphs

It is sufficient to produce a 4-coloring for any (P6, bull)-free graph G that
satisfies the following properties :

1. G is K5-free and double-wheel-free.
2. G and G are connected.
3. G is quasi-prime.

Lemma

double-wheel

16/24



Coloring (P6, bull)-free graphs

Proof of G and G connected.

If G is not connected.
Keep the maximum over all χ(Gi ).

If G is not connected.
Test 3-colorability of each co-components with known algorithms.

Refine to test whether they are 1-, 2- or 3-colorable.
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Coloring (P6, bull)-free graphs

Let G be a quasi-prime bull-free graph that contains no K5 and no double-
wheel. Then at least one of the following holds :

1. G is gem-free.
2. G contains a magnet.
3. G contains the special graph.

Lemma
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Coloring (P6, bull)-free graphs

Let G be a (P6, bull, gem)-free graph, then G is either :

1. Perfect.
2. Of bounded clique-width.

Lemma

1. Algorithm for bull-free perfect graphs.
2. Courcelle’s theorem.
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Coloring (P6, bull)-free graphs

A subgraph F of G is a magnet if every vertex of G \ F has two neighbours
u, v ∈ V (F ) such that uv ∈ E(F ).

Definition
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Coloring (P6, bull)-free graphs

A subgraph F of G is a magnet if every vertex of G \ F has two neighbours
u, v ∈ V (F ) such that uv ∈ E(F ).

Definition

List of size 2

2-list-coloring problem
is polynomial!
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Coloring (P6, bull)-free graphs

V1

V2 V3

V4V5

W

XZ1
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Coloring (P6, bull)-free graphs

V1

V2 V3

V4V5

W

XZ1

2-list-coloring
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Coloring (P6, bull)-free graphs

There is a polynomial time algorithm that determines whether a (P6, bull)-free
graphs is 4-colorable, and if it is, produces a 4-coloring.

Theorem Maffray, Pastor

For any fixed k, there is a polynomial algorithm that determines if a (P6, bull,
gem)-free graph is k-colorable and if it is, produces a k-coloring.

Theorem Maffray, Pastor
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Conclusion

• At the beginning of my PhD, I realised I knew close to nothing, and he
knew A LOT.
• During my PhD thesis, I participated in 6 (3 with only the two of us) papers
where Frédéric was also a co-author.
• These 3 years of PhD were a walk in the park thanks to him.

Thank you for your attention.
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