The Chain Graph Sandwich Problem

Sulamita Klein

IM/COPPE - Universidade Federal do Rio de Janeiro, Brazil

```
Joint work with:
Simone Dantas (UFF, Brazil);
Celina de Figueiredo (UFRJ, Brazil);
Martin Golumbic (U. Haifa, Israel);
Frederic Maffray (L. G-Scop, France).
```

CAPES / COFECUB Academic cooperation agreement between Brazil and France

1997-2000 Luiz Satoru / Claudia L. – Frederic Maffrey

2001-2005 Celina de Figueiredo – Frederic Maffrey

2008-2011 Sulamita Klein – Zoltan Szigeti 2014

Graph Sandwich Problem

GRAPH SANDWICH PROBLEM FOR PROPERTY Π

Instance: $G^1 = (V, E^1)$ and $G^2 = (V, E^2)$, $E^1 \subseteq E^2$

Question: Is there a graph G = (V, E) such that $E^1 \subseteq E \subseteq E^2$

that satisfies property Π ?

Graph Sandwich Problem

GRAPH SANDWICH PROBLEM FOR PROPERTY Π

Instance: $G^1 = (V, E^1)$ and $G^2 = (V, E^2)$, $E^1 \subseteq E^2$

Question: Is there a graph G = (V, E) such that $E^1 \subseteq E \subseteq E^2$

that satisfies property Π ?

E¹ mandatory edges, E² \ E¹ optional edges, E² forbdiden edges

Graph Sandwich Problem

GRAPH SANDWICH PROBLEM FOR PROPERTY Π

Instance: $G^1 = (V, E^1)$ and $G^2 = (V, E^2)$, $E^1 \subseteq E^2$

Question: Is there a graph G = (V, E) such that $E^1 \subseteq E \subseteq E^2$

that satisfies property Π ?

E¹ mandatory edges, E² \ E¹ optional edges, E² forbdiden edges

"Graph Sandwich Problems"

M. C. Golumbic, H. Kaplan, R. Shamir – J Algorithms 1995

Generalized recognition problem

Sandwich problem generalizes graph recognition problem with respect to a property Π .

Generalized recognition problem

Sandwich problem generalizes graph recognition problem with respect to a property Π .

A recognition problem has one graph as input.

A sandwich problem has two graphs as input.

Generalized recognition problem

Sandwich problem generalizes graph recognition problem with respect to a property Π .

A recognition problem has one graph as input.

A sandwich problem has two graphs as input.

In a sandwich problem, we look for a third graph, whose edge set lies between the edge sets of two given graphs. This third graph is required to satisfy a property Π .

Observations:

If the **recognition problem** for a class of graphs is **NP-complete**, then its corresponding **sandwich problem** is also **NP-complete**.

Observations:

If the **recognition problem** for a class of graphs is **NP-complete**, then its corresponding **sandwich problem** is also **NP-complete**.

If the property Π is **hereditary**, then there exists a sandwich graph for (V, E^1, E^2) with the property Π , if and only if $G^1 = (V, E^1)$ has the property Π .

Observations:

If the **recognition problem** for a class of graphs is **NP-complete**, then its corresponding **sandwich problem** is also **NP-complete**.

If the property Π is **hereditary**, then there exists a sandwich graph for (V, E^1, E^2) with the property Π , if and only if $G^1 = (V, E^1)$ has the property Π .

If the property Π is **ancestral**, then there exists a **sandwich graph** for (V, E^1, E^2) with the property Π , if and only if $G^2 = (V, E^2)$ has the property Π .

Solved classes of graphs

Graph Sandwich Problems in **P**:

Tree

Bipartite

Split graphs

Cographs

Threshold

(k,l)-graphs, k+l<3

P4-sparse graphs

(M. C. Golumbic, H. Kaplan, R. Shamir, 1995)

(Dantas, de Figueiredo, Faria, 2004)

(Dantas, K., Mello, Morgana 2008)

Solved classes of graphs

Graph Sandwich Problems in **P**:

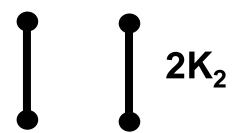
```
Tree
Bipartite
Split graphs
Cographs
Threshold
(k,l)-graphs, k+l<3
(Dantas, de Figueiredo, Faria, 2004)
P4-sparse graphs
(M. C. Golumbic, H. Kaplan, R. Shamir, 1995)
(Dantas, de Figueiredo, Faria, 2004)
(Dantas, K., Mello, Morgana 2008)
```

Graph Sandwich Problems that are **NP-complete**:

```
Comparability graphs
Permutation graphs
Chordal graphs
Interval graphs
Proper interval graphs
Undirected Path
Directed Path
Directed Path
Strongly chordal (de Figueiredo, Faria, 2004)
Chordal bipartite (Sritharan, 2008)
```

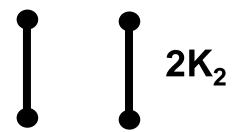
Chain Graphs

A chain graph is a 2K₂-free bipartite graph. (Yannakaks 1981)



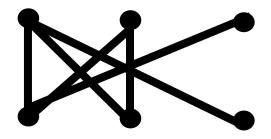
Chain Graphs

A chain graph is a 2K₂-free bipartite graph. (Yannakaks 1981)



Chain graphs are also known as difference graphs.

(Hammer, Peled and Sun 1990)



Chain Graphs x Threshold Graphs

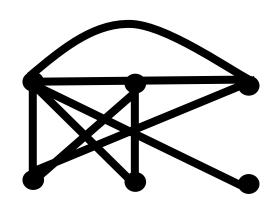
A graph is a threshold graph if its vertex set can be partitioned into a clique **K** and an independent set **S** such that any two vertices in **S** have inclusionwise comparable neighbourhoods.

(Chvátal and Hammer 1977)

Chain Graphs x Threshold Graphs

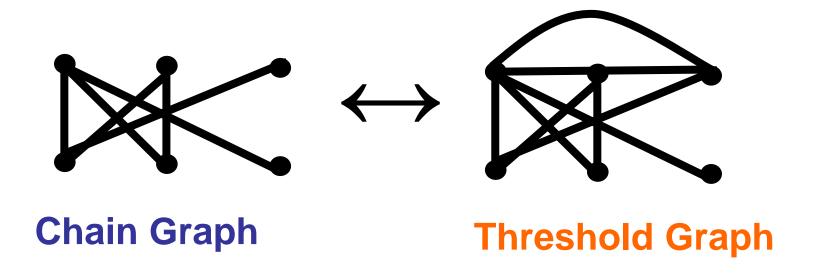
A graph is a threshold graph if its vertex set can be partitioned into a clique **K** and an independent set **S** such that any two vertices in **S** have inclusionwise comparable neighbourhoods.

(Chvátal and Hammer 1977)



Threshold Graph

Chain Graphs x Threshold Graphs



Theorem: (Golumbic, Kaplan, Shamir, 1995) The threshold sandwich graph problem is polynomial.

Partitioned Chain Probe Graph Problem

PARTITIONED CHAIN PROBE GRAPH PROBLEM

Instance: G = (V, E) and a probe partition V=(N,P), where N is an independent set.

Question: Is there a set $E' \subseteq NxN$ such that H=(V, EUE') is a chain graph?

Partitioned Chain Probe Graph Problem

PARTITIONED CHAIN PROBE GRAPH PROBLEM

Instance: G = (V, E) and a probe partition V=(N,P), where N is an independent set.

Question: Is there a set $E' \subseteq NxN$ such that H=(V, EUE') is a chain graph?

The partitioned chain probe graph problem assumes that the independent set N is fixed and given in advance, and is a special case of the chain sandwich problem where $E^2 \setminus E^1 = NxN$

Partitioned Chain Probe Graph Problem

PARTITIONED CHAIN PROBE GRAPH PROBLEM

Instance: G = (V, E) and a probe partition V=(N,P), where N is an independent set.

Question: Is there a set $E' \subseteq NxN$ such that H=(V, EUE') is a chain graph?

The partitioned chain probe graph problem assumes that the independent set N is fixed and given in advance, and is a special case of the chain sandwich problem where $E^2 \setminus E^1 = NxN$

Theorem (Golumbic, Maffray, Morel 2009) (Van Bang 2010): The **partitioned chain probe graph problem** is polynomial.

Chain Graph Characterization

Theorem (Mahadev and Peled 1995)

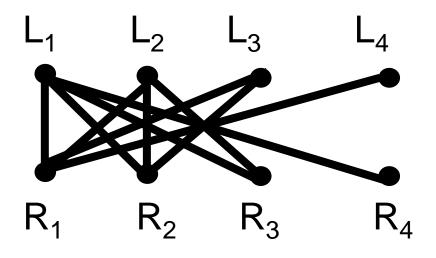
Let G = ((L,R),E) be a bipartite graph, and let Z be the set of isolated vertices in G. Then G is a **chain graph** if and only if either $Z = L \cup R$ or there exist an integer $h \ge 1$ such that $L \setminus Z$ and $R \setminus Z$ can be partitioned into non empty-sets L_1, \ldots, L_h and R_1, \ldots, R_h respectively in such way that two vertices $x \in L_i$ and $y \in L_j$ are adjacent if and only if $i+j \le h+1$.

Chain Graph Characterization

j	1	2	3	4
1	2	3	4	5
2	3	4	5	6
3	4	5	6	7
4	5	6	7	8

Chain Graph Characterization

j	1	2	3	4
1	2	3	4	5
2	3	4	5	6
3	4	5	6	7
4	5	6	7	8



Chain Graph Sandwich

CHAIN GRAPH SANDWICH

Instance: $G^1 = (V, E^1)$ and $G^2 = (V, E^2)$, $E^1 \subseteq E^2$

Question: Is there a graph G = (V, E) such that $E^1 \subseteq E \subseteq E^2$

and G is chain graph?

Chain Graph Sandwich

CHAIN GRAPH SANDWICH

Instance: $G^1 = (V, E^1)$ and $G^2 = (V, E^2)$, $E^1 \subseteq E^2$

Question: Is there a graph G = (V, E) such that $E^1 \subseteq E \subseteq E^2$

and G is chain graph?

Theorem: The **chain graph sandwich problem** is NP-Complete, even when restricted to the class of instances (**V**, **E**¹, **E**²) where **E**¹ is a matching.

The problem is in NP, as we can exhibit a graph which is a solution of the problem and check in polynomial time that it is a chain graph.

The problem is in NP, as we can exhibit a graph which is a solution of the problem and check in polynomial time that it is a chain graph.

We will show that the problem is NP-complete by showing a reduction from the NP-complete problem:

The problem is in NP, as we can exhibit a graph which is a solution of the problem and check in polynomial time that it is a chain graph.

We will show that the problem is NP-complete by showing a reduction from the NP-complete problem:

NOT-ALL-EQUAL MONOTONE 3-SATISFIABILITY (NAE MONO 3-SAT) **Instance:** A Boolean function f in conjunctive normal form, given as the conjunction of clauses $C_1, ..., C_m$ over a set $\{x_1,...,x_n\}$ of variables, where each clause has three literals and no negative literals.

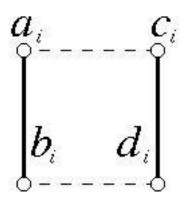
The problem is in NP, as we can exhibit a graph which is a solution of the problem and check in polynomial time that it is a chain graph.

We will show that the problem is NP-complete by showing a reduction from the NP-complete problem:

NOT-ALL-EQUAL MONOTONE 3-SATISFIABILITY (NAE MONO 3-SAT) **Instance:** A Boolean function f in conjunctive normal form, given as the conjunction of clauses $C_1, ..., C_m$ over a set $\{x_1,...,x_n\}$ of variables, where each clause has three literals and no negative literals.

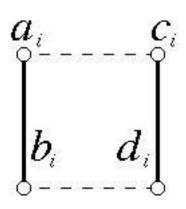
Question: Is there a truth assignment of the variables $x_1,...,x_n$ such that each clause of f has at least one true literal and at least one false literal?

Construction of an instance of Chain Graph Sandwich

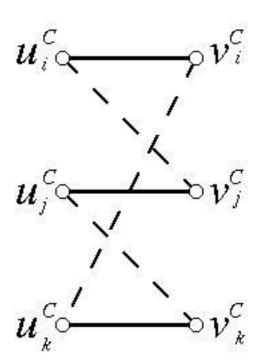


Truth Setting
Component
(Variable Gadget)

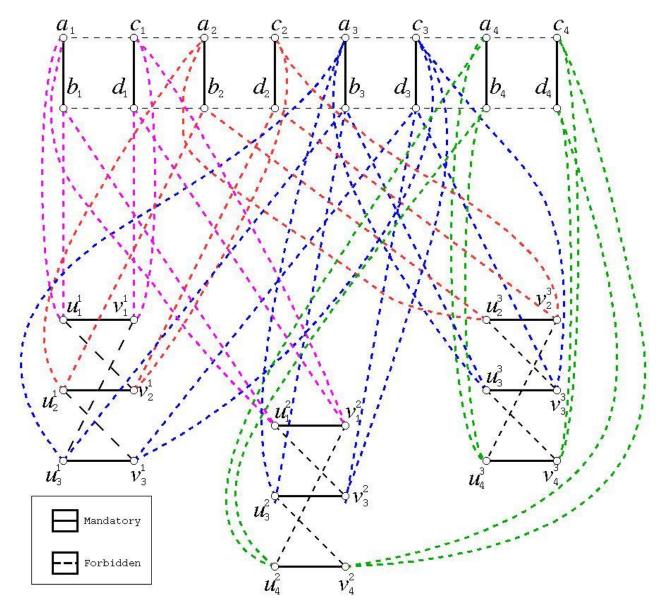
Construction of an instance of Chain Graph Sandwich



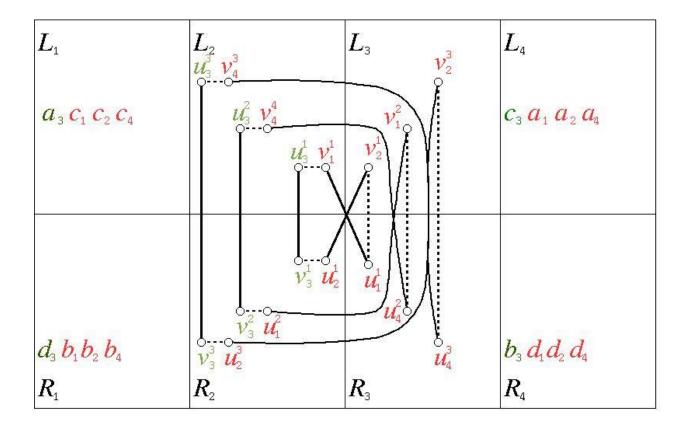
Truth Setting
Component
(Variable Gadget)

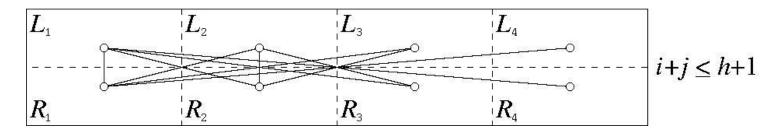


Satisfaction Testing (Clause Gadget)



 (G^1,G^2) chain sandwich instance obtained from the 3SAT NAE-mono instance: $I=(U,C)=(\{x_1,\ x_2,\ x_3,\ x_4\},\{(x_1,\ x_2,\ x_3),\ (x_1,\ x_3,\ x_4),\ (x_2,\ x_3,\ x_4)\}).$





Chain sandwich graph G for instance (G^1, G^2) , obtained from the NAE-mono satisfiable truth assignment $x_1 = x_2 = x_4 = F$, and $x_3 = T$.

Final Observations

We have proven that the CHAIN GRAPH SANDWICH PROBLEM is NP-complete.

Final Observations

We have proven that the **CHAIN GRAPH SANDWICH PROBLEM** is NP-complete.

The reason behind this high computational complexity lies in the observation that the bipartition of the vertices in any potencial chain sandwich graph solution is not fixed in advance.

Final Observations

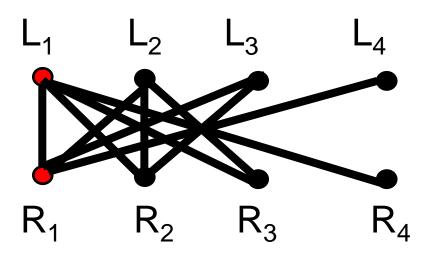
We have proven that the **CHAIN GRAPH SANDWICH PROBLEM** is NP-complete.

The reason behind this high computational complexity lies in the observation that the bipartition of the vertices in any potencial chain sandwich graph solution is not fixed in advance.

When **G**¹ has only one non-trivial connected component, or, more generally, if the bipartition is fixed the **chain graph sandwich problem** can be solved in linear time, as implied by (Golumbic 2009).

Another characterization of chain graphs

Theorem: (Mahadev and Peled 1995)
A bipartite graph is a chain graph if and only if
every induced subgraph has at most one non-trivial component
H=((L,R), F), and H has a vertex x in L universal to R and a
vertex y in R universal to L.



Algorithm

- Test the non-trivial component of G¹ to see that it is bipartite.
 If it is not bipartite there is no chain sandwich solution.
 If it is bipartite, then fix this bipartition-arbitrarily place the isolated vertices on any side.
- 2) Initialize $X \leftarrow V = E \leftarrow E^1$
- 3) Repeatedly, either remove an isolated vertex z from (X, E_X^1) $X \leftarrow X - \{z\}$

or remove a vertex x universal to all vertices on the other side of the bipartition in (X, E_X^2) and add to E all of these edges incident on x:

$$X \leftarrow X - \{x\}$$
 $E \leftarrow EU\{x,y \mid y \in N_x(x)\}$

4) If the graph can be reduced to the empty graph, them there is a chain graph solution, namely, the final value of G=(V,E); otherwise, there is not.

GT-2004 Conference in memory of Claude Berge

ICGT-2005 International Colloquium in Graph Theory

ICGT-2018 International Colloquium in Graph Theory

ICGT-2018 International Colloquium in Graph Theory

