- V. Campos, C. Linhares Sales, F. Maffray, A. Silva. b-chromatic number of cacti. LAGOS 2009.
- V. Campos, A. Gyárfás, F. Havet, C. Linhares Sales, F. Maffray. New bounds on the Grundy number of products of graphs. Journal of Graph Theory 2012.

Adapting the Directed Grid Theorem into an FPT Algorithm

V. Campos¹ R. Lopes¹ A. K. Maia¹ I. Sau²

¹ ParGO Group, Universidade Federal do Ceará, Brazil ²CNRS, LIRMM, Université de Montpellier, France

A Tribute to Frédéric Maffray, Grenoble September, 2019

(1月) (1日) (日)

I nar

Problem \mathcal{P} of size n with a parameter k:

• $\mathcal{P} \in XP \implies \mathcal{P}$ can be solved in $O(n^{f(k)})$.

Examples

V. Campos , R. Lopes , A. K. Maia , I. Sau Adapting the Directed Grid Theorem into an FPT Algorithm

Problem \mathcal{P} of size n with a parameter k:

• $\mathcal{P} \in XP \implies \mathcal{P}$ can be solved in $O(n^{f(k)})$.

Problem \mathcal{P} of size n with a parameter k:

• $\mathcal{P} \in XP \implies \mathcal{P}$ can be solved in $O(n^{f(k)})$.

Examples $O(n^{2k})$ Poly time for fixed k.

Problem \mathcal{P} of size *n* with a parameter *k*:

- $\mathcal{P} \in XP \implies \mathcal{P}$ can be solved in $O(n^{f(k)})$.
- $\mathcal{P} \in FPT \implies \mathcal{P}$ can be solved in $O(f(k) \cdot n^c)$.

Problem \mathcal{P} of size *n* with a parameter *k*:

- $\mathcal{P} \in XP \implies \mathcal{P}$ can be solved in $O(n^{f(k)})$.
- $\mathcal{P} \in FPT \implies \mathcal{P}$ can be solved in $O(f(k) \cdot n^c)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シスペ

Problem \mathcal{P} of size n with a parameter k:

- $\mathcal{P} \in XP \implies \mathcal{P}$ can be solved in $O(n^{f(k)})$.
- $\mathcal{P} \in FPT \implies \mathcal{P}$ can be solved in $O(f(k) \cdot n^c)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シスペ

Grid Theorem

N. Robertson and P. Seymour. Graph minors V. Excluding a planar graph. Journal of Combinatorial Theory, Series B, 1986.

Applications

• Key ingredient in proof of Wagner's Conjecture.

nac

Applications

- Key ingredient in proof of Wagner's Conjecture.
- Base of Bidimensionality Theory

Applications

- Key ingredient in proof of Wagner's Conjecture.
- Base of Bidimensionality Theory
- Basis for several other structure theorems

Conjecture: Directed version

Conjectured independently by

- Reed (1999)
- Johnson, Robertson, Seymour and Thomas (2001)

Directed Grid Theorem

Proof - 20 years later

K. Kawarabayashi and S. Kreutzer. The Directed Grid Theorem STOC'15

V. Campos , R. Lopes , A. K. Maia , I. Sau Adapting the Directed Grid Theorem into an FPT Algorithm

nac

Directed Grid Theorem

 T. Johnson, N. Robertson, P. Seymour and R. Thomas. Directed tree-width
J. Comb. Theory, Ser. B, 2001

V. Campos , R. Lopes , A. K. Maia , I. Sau Adapting the Directed Grid Theorem into an FPT Algorithm

SQA

• Big haven \Rightarrow Big bramble. (Existential)

nar

H 10

• Big haven \Rightarrow Big bramble. (Existential)

Kawarabayashi and Kreutzer. The Directed Grid Theorem STOC'15

V. Campos , R. Lopes , A. K. Maia , I. Sau

Adapting the Directed Grid Theorem into an FPT Algorithm

nar

- Big haven \Rightarrow Big bramble.
- Big bramble \Rightarrow Well linked long path. (High cost)

K. Kawarabayashi and S. Kreutzer. The Directed Grid Theorem STOC'15

V. Campos , R. Lopes , A. K. Maia , I. Sau Adapting the Directed Grid Theorem into an FPT Algorithm

nar

- Big haven \Rightarrow Big bramble.
- Big bramble \Rightarrow Well linked long path. (High cost)
- Well linked long path \Rightarrow Cylindrical Grid. (FPT)

K. Kawarabayashi and S. Kreutzer. The Directed Grid Theorem STOC'15

- Big haven \Rightarrow Big bramble.
- Big bramble \Rightarrow Well linked long path. (High cost)
- Well linked long path \Rightarrow Cylindrical Grid. (FPT)
- Objective 1: FPT haven algorithm

- Big haven \Rightarrow Big bramble.
- Big bramble \Rightarrow Well linked long path. (High cost)
- Well linked long path \Rightarrow Cylindrical Grid. (FPT)
- Objective 1: FPT haven algorithm
- Objective 2: Handle brambles and build well linked path

 $\exists \mapsto$

3

-

DQC

• Given $|T| \leq 2k - 1$.

5900

Э

-

• Given $|\mathcal{T}| \leq 2k - 1$.

990

B → B

• Find $Z \subseteq V(G)$:

- Given $|T| \leq 2k 1$.
- Find $Z \subseteq V(G)$:
 - $|Z| \le k 1$; and

990

B → B

-

• Given $|T| \leq 2k - 1$.

• Find
$$Z \subseteq V(G)$$
:

- $|Z| \le k 1$; and
- $|C \cap T| \le k 1$ for strong components of $G \setminus Z$.

500

ㅋ ㅋ

-

- Given $|T| \leq 2k 1$.
- Find $Z \subseteq V(G)$:
 - $|Z| \leq k-1$; and
 - $|C \cap T| \le k 1$ for strong components of $G \setminus Z$.

不是下 不是下

500

3

• Enumerate all $\binom{n}{k-1}$ subsets of V(G).

- Given $|\mathcal{T}| \leq 2k 1$.
- Find $Z \subseteq V(G)$:
 - $|Z| \leq k-1$; and
 - $|C \cap T| \le k 1$ for strong components of $G \setminus Z$.

化压力 化压力

500

3

- Enumerate all $\binom{n}{k-1}$ subsets of V(G).
- $O(n^k)$

• Any negative \Rightarrow haven

- Given $|\mathcal{T}| \leq 2k 1$.
- Find $Z \subseteq V(G)$:
 - $|Z| \leq k-1$; and
 - $|C \cap T| \le k 1$ for strong components of $G \setminus Z$.

→ □ ► < □ ►</p>

500

3

- Enumerate all $\binom{n}{k-1}$ subsets of V(G).
- $O(n^k)$

- Any negative \Rightarrow haven
- All positive \Rightarrow decomposition

- Given $|T| \leq 2k 1$.
- Find $Z \subseteq V(G)$:
 - $|Z| \leq k-1$; and
 - $|C \cap T| \le k 1$ for strong components of $G \setminus Z$.

A B M A B M

3

- Enumerate all $\binom{n}{k-1}$ subsets of V(G).
- $O(n^k)$

• $|T| \leq 2k-1$.

V. Campos , R. Lopes , A. K. Maia , I. Sau Adapting the Directed Grid Theorem into an FPT Algorithm

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ シック

- $|T| \le 2k 1$.
- Partition T_1, \ldots, T_r of T with $|T_i| \le k-1$.

◆ロ ▶ ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ● の Q ()

- $|T| \leq 2k-1$.
- Partition T_1, \ldots, T_r of T with $|T_i| \leq k-1$.
- find $Z \subseteq V(G)$ such that:

◆ロ ▶ ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ● の Q ()

- $|T| \leq 2k-1$.
- Partition T_1, \ldots, T_r of T with $|T_i| \le k-1$.
- find $Z \subseteq V(G)$ such that:

1 $|Z| \le k - 1$; and

◆ロ ▶ ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ● の Q ()

- $|T| \le 2k 1$.
- Partition T_1, \ldots, T_r of T with $|T_i| \le k-1$.
- find $Z \subseteq V(G)$ such that:
 - **1** $|Z| \le k 1$; and
 - **2** $G \setminus Z$ has no T_i to T_j path for i < j

SQA

-

ヨト イヨト
Similar problem \mathcal{P}'

- $|T| \leq 2k-1$.
- Partition T_1, \ldots, T_r of T with $|T_i| \le k-1$.
- find $Z \subseteq V(G)$ such that:
 - **1** $|Z| \leq k 1$; and
 - **2** $G \setminus Z$ has no T_i to T_j path for i < j

Reduces to

R. Erbacher, T. Jaeger, N. Talele and J. Teutsch Directed Multicut with Linearly Ordered Terminals CoRR abs/1407.7498, 2014

- E - N

Lemma

 \mathcal{P} positive $\Leftrightarrow \mathcal{P}'$ positive for some partition T_1, \ldots, T_r of $T \setminus Z$

V. Campos , R. Lopes , A. K. Maia , I. Sau Adapting the Directed Grid Theorem into an FPT Algorithm

< ∃ >

< < >> < <</>

996

Lemma

 $\mathcal P$ positive $\Leftrightarrow \mathcal P'$ positive for some partition T_1,\ldots,T_r of $T\setminus Z$

• Partitions of T is f(k) $(|T| \le 2k - 1)$

SQC.

3

프 문 문 프 문

Lemma

 $\mathcal P$ positive $\Leftrightarrow \mathcal P'$ positive for some partition T_1,\ldots,T_r of $T\setminus Z$

- Partitions of T is f(k) $(|T| \le 2k 1)$
- \mathcal{P} is FPT

500

3.5

ㅋ ㅋ

Lemma

 \mathcal{P} positive $\Leftrightarrow \mathcal{P}'$ positive for some partition T_1, \ldots, T_r of $T \setminus Z$

- Partitions of T is f(k) $(|T| \le 2k 1)$
- \mathcal{P} is FPT
- FPT Haven Algorithm (Objective 1)

V. Campos , R. Lopes , A. K. Maia , I. Sau Adapting the Directed Grid Theorem into an FPT Algorithm

SQA

-

Definition (Brambles on digraphs)

• Family of strongly connected subgraphs $\mathcal{B} = \{B_1, \dots, B_\ell\}$

V. Campos , R. Lopes , A. K. Maia , I. Sau Adapting the Directed Grid Theorem into an FPT Algorithm

・ 同 ト ・ ヨ ト ・ ヨ ト

SQA

Definition (Brambles on digraphs)

- Family of strongly connected subgraphs $\mathcal{B} = \{B_1, \dots, B_\ell\}$
- if $\{B, B'\} \subseteq \mathcal{B}$ then either

イロト イヨト イヨト

= nar

Definition (Brambles on digraphs)

- Family of strongly connected subgraphs $\mathcal{B} = \{B_1, \dots, B_\ell\}$
- if $\{B, B'\} \subseteq \mathcal{B}$ then either
 - $V(B) \cap V(B') \neq \emptyset$ or

< 47 ►

(*) *) *) *)

500

Definition (Brambles on digraphs) • Family of strongly connected subgraphs $\mathcal{B} = \{B_1, \dots, B_\ell\}$ • if $\{B, B'\} \subseteq \mathcal{B}$ then either • $V(B) \cap V(B') \neq \emptyset$ or • edges from B to B' and B' to B.

SQA

ヨート

• hitting set of \mathcal{B} = set of vertices touching every $B \in \mathcal{B}$.

V. Campos , R. Lopes , A. K. Maia , I. Sau Adapting the Directed Grid Theorem into an FPT Algorithm

12 D

• hitting set of \mathcal{B} = set of vertices touching every $B \in \mathcal{B}$.

• order of \mathcal{B} = minimum size of hitting set

医下口 医下

-

- hitting set of \mathcal{B} = set of vertices touching every $B \in \mathcal{B}$.
- order of \mathcal{B} = minimum size of hitting set

Problem 1

Find compact brambles

V. Campos, R. Lopes, A. K. Maia, I. Sau

< ロ > < 同 > < 回 > < 回 > Adapting the Directed Grid Theorem into an FPT Algorithm

• $|T| \le 2k - 1$.

(Negative instance) No Z ⊆ V(G) satisfies:

- $|Z| \le k 1$; and
- $|C \cap T| \le k 1$ for strong component of $G \setminus Z$.

500

3

V. Campos , R. Lopes , A. K. Maia , I. Sau Adapting the Directed Grid Theorem into an FPT Algorithm

- $|T| \leq 2k-1$.
- (Negative instance) No Z ⊆ V(G) satisfies:
 - $|Z| \leq k-1$; and
 - $|C \cap T| \le k 1$ for strong component of $G \setminus Z$.

< ∃⇒

-

- $|T| \leq 2k-1$.
- (Negative instance) No Z ⊆ V(G) satisfies:
 - $|Z| \leq k-1$; and
 - $|C \cap T| \le k 1$ for strong component of $G \setminus Z$.

不是下 不是下

-

• \mathcal{B} is a bramble.

- $|T| \leq 2k-1$.
- (Negative instance) No Z ⊆ V(G) satisfies:
 - $|Z| \leq k-1$; and
 - $|C \cap T| \le k 1$ for strong component of $G \setminus Z$.

化压力 化压力

-

Bramble over set T $\mathcal{B}_T = \{B \subseteq G \mid B \text{ is induced, strongly connected and } |V(B) \cap T| \ge k\}.$

- B is a bramble.
- of order *k*

- $|T| \leq 2k-1$.
- (Negative instance) No Z ⊆ V(G) satisfies:
 - $|Z| \leq k-1$; and
 - $|C \cap T| \le k 1$ for strong component of $G \setminus Z$.

化压力 化压力

-

Bramble over set T $\mathcal{B}_T = \{B \subseteq G \mid B \text{ is induced, strongly connected and } |V(B) \cap T| \ge k\}.$

- ${\cal B}$ is a bramble.
- of order k
- Skip havens

- $|T| \leq 2k-1$.
- (Negative instance) No Z ⊆ V(G) satisfies:
 - $|Z| \leq k-1$; and
 - $|C \cap T| \le k 1$ for strong component of $G \setminus Z$.

化压力 化压力

-

Bramble over set T $\mathcal{B}_T = \{B \subseteq G \mid B \text{ is induced, strongly connected and } |V(B) \cap T| \ge k\}.$

- ${\cal B}$ is a bramble.
- of order k
- Skip havens
- Description: T

Objective 2: Key ingredients?

Hitting set path

Poly time: Find a path $P(B_T)$ which is a hitting set of B_T .

V. Campos , R. Lopes , A. K. Maia , I. Sau Adapting the Directed Grid Theorem into an FPT Algorithm

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

< 17 ▶

SQA

Poly time: Find a path $P(B_T)$ which is a hitting set of B_T .

Well-linked set

FPT time: If \mathcal{B}_T has order $\frac{k^2}{4} + k$, find a well-linked set in $P(\mathcal{B}_T)$ of size k.

Poly time: Find a path $P(B_T)$ which is a hitting set of B_T .

Key ingredient 1

Poly time: Is Z a hitting set of \mathcal{B}_T ?

Well-linked set

FPT time: If \mathcal{B}_T has order $\frac{k^2}{4} + k$, find a well-linked set in $P(\mathcal{B}_T)$ of size k.

Poly time: Find a path $P(B_T)$ which is a hitting set of B_T .

Key ingredient 1

Poly time: Is Z a hitting set of \mathcal{B}_T ? If not, find disjoint $B \in \mathcal{B}_T$.

Well-linked set

FPT time: If \mathcal{B}_T has order $\frac{k^2}{4} + k$, find a well-linked set in $P(\mathcal{B}_T)$ of size k.

化原因 化原因

Poly time: Find a path $P(B_T)$ which is a hitting set of B_T .

Key ingredient 1

Poly time: Is Z a hitting set of \mathcal{B}_T ? If not, find disjoint $B \in \mathcal{B}_T$.

Well-linked set

FPT time: If \mathcal{B}_T has order $\frac{k^2}{4} + k$, find a well-linked set in $P(\mathcal{B}_T)$ of size k.

Key ingredient 2

 $\mathcal{B}_T(X,\overline{Y}) = \{B \in \mathcal{B}_T \mid B \text{ intersects } X \text{ and disjoint from } Y\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シスペ

Poly time: Find a path $P(B_T)$ which is a hitting set of B_T .

Key ingredient 1

Poly time: Is Z a hitting set of \mathcal{B}_T ? If not, find disjoint $B \in \mathcal{B}_T$.

Well-linked set

FPT time: If \mathcal{B}_T has order $\frac{k^2}{4} + k$, find a well-linked set in $P(\mathcal{B}_T)$ of size k.

Key ingredient 2

 $\mathcal{B}_{\mathcal{T}}(X,\overline{Y}) = \{B \in \mathcal{B}_{\mathcal{T}} \mid B \text{ intersects } X \text{ and disjoint from } Y\}$ FPT time: order $(\mathcal{B}_{\mathcal{T}}(X,\overline{Y})) \ge k'$?

SOR

• Find a path P which is hitting set of $\mathcal{B}_{\mathcal{T}}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○ ○

• Find a path P which is hitting set of $\mathcal{B}_{\mathcal{T}}$

• Start with $B \in \mathcal{B}_T$ and $P = v \in B$

< < >> < <</>

() <) <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <

996

• Find a path P which is hitting set of \mathcal{B}_T

- Start with $B \in \mathcal{B}_{\mathcal{T}}$ and $P = v \in B$
- If P does not hit $B' \in \mathcal{B}_T$, improve P (Key ingredient 1)

590

B → B

• Find a path P which is hitting set of \mathcal{B}_T

- Start with $B \in \mathcal{B}_T$ and $P = v \in B$
- If P does not hit $B' \in \mathcal{B}_T$, improve P (Key ingredient 1)

590

글 눈 글

• Find a path P which is hitting set of \mathcal{B}_T

- Start with $B \in \mathcal{B}_T$ and $P = v \in B$
- If P does not hit $B' \in \mathcal{B}_T$, improve P (Key ingredient 1)
- Iterate until hitting set

nac

글 눈 글

Key ingredient 1

Poly time: Is Z a hitting set of \mathcal{B}_T ?

V. Campos , R. Lopes , A. K. Maia , I. Sau Adapting the Directed Grid Theorem into an FPT Algorithm

→ ∃ → → ∃ →

< 61 ►

990

Э

Key ingredient 1

Poly time: Is Z a hitting set of \mathcal{B}_T ?

• EASY: Does $G \setminus Z$ contain a strong component intersecting k vertices of T?

< 17 ▶

() <) <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <

SQA

Key ingredient 1

Poly time: Is Z a hitting set of \mathcal{B}_T ?

• EASY: Does $G \setminus Z$ contain a strong component intersecting k vertices of T?

Key ingredient 2

FPT time: order $(\mathcal{B}_T(X, \overline{Y})) \ge k'$?

12 D

Key ingredient 1

Poly time: Is Z a hitting set of \mathcal{B}_T ?

• EASY: Does $G \setminus Z$ contain a strong component intersecting k vertices of T?

Key ingredient 2

FPT time: order $(\mathcal{B}_T(X, \overline{Y})) \ge k'$?

• Sadly, not so easy...

-

Key ingredient 1

Poly time: Is Z a hitting set of \mathcal{B}_T ?

• EASY: Does $G \setminus Z$ contain a strong component intersecting k vertices of T?

Key ingredient 2

FPT time: order $(\mathcal{B}_T(X,\overline{Y})) \ge k'$?

- Sadly, not so easy...
- $\mathcal{B}_T(\overline{X},\overline{Y}) = \{B \in \mathcal{B}_T \mid B \text{ disjoint from } X \cup Y\}$

• E • • E •

Key ingredient 1

Poly time: Is Z a hitting set of \mathcal{B}_T ?

• EASY: Does $G \setminus Z$ contain a strong component intersecting k vertices of T?

Key ingredient 2

FPT time: order $(\mathcal{B}_{\mathcal{T}}(X,\overline{Y})) \geq k'$?

- Sadly, not so easy...
- $\mathcal{B}_T(\overline{X},\overline{Y}) = \{B \in \mathcal{B}_T \mid B \text{ disjoint from } X \cup Y\}$
- $\operatorname{order}(\mathcal{B}_{\mathcal{T}}(X,\overline{Y})) + \operatorname{order}(\mathcal{B}_{\mathcal{T}}(\overline{X},\overline{Y})) \geq \operatorname{order}(\mathcal{B}_{\mathcal{T}}(\overline{Y}))$

- 4 回 ト 4 戸 ト - 4 戸 ト

I nac

Key ingredient 1

Poly time: Is Z a hitting set of \mathcal{B}_T ?

• EASY: Does $G \setminus Z$ contain a strong component intersecting k vertices of T?

Key ingredient 2

FPT time: order $(\mathcal{B}_{\mathcal{T}}(X,\overline{Y})) \geq k'$?

- Sadly, not so easy...
- $\mathcal{B}_T(\overline{X}, \overline{Y}) = \{B \in \mathcal{B}_T \mid B \text{ disjoint from } X \cup Y\}$
- $\operatorname{order}(\mathcal{B}_{\mathcal{T}}(X,\overline{Y})) + \operatorname{order}(\mathcal{B}_{\mathcal{T}}(\overline{X},\overline{Y})) \geq \operatorname{order}(\mathcal{B}_{\mathcal{T}}(\overline{Y}))$
- order $(\mathcal{B}_{\mathcal{T}}(\overline{Y}))$ can be solved with techniques similar to \mathcal{P} in $G \setminus Y$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆ ○ ◆
Key ingredient algorithms

Key ingredient 1

Poly time: Is Z a hitting set of \mathcal{B}_T ?

• EASY: Does $G \setminus Z$ contain a strong component intersecting k vertices of T?

Key ingredient 2

FPT time: order $(\mathcal{B}_{\mathcal{T}}(X,\overline{Y})) \geq k'$?

- Sadly, not so easy...
- $\mathcal{B}_T(\overline{X},\overline{Y}) = \{B \in \mathcal{B}_T \mid B \text{ disjoint from } X \cup Y\}$
- $\operatorname{order}(\mathcal{B}_{\mathcal{T}}(X,\overline{Y})) + \operatorname{order}(\mathcal{B}_{\mathcal{T}}(\overline{X},\overline{Y})) \geq \operatorname{order}(\mathcal{B}_{\mathcal{T}}(\overline{Y}))$
- order $({\mathcal B}_{\mathcal T}(\overline{Y}))$ can be solved with techniques similar to ${\mathcal P}$ in $G\setminus Y$
- $\mathcal{B}_T(\overline{X},\overline{Y}) = \mathcal{B}_T(\overline{X\cup Y})$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆ ○ ◆

• Find directed grid or decomposition in FPT time.

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

- Find directed grid or decomposition in FPT time.
- Decomposition is supposed to be a tool.

◆ロ ▶ ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ● の Q ()

- Find directed grid or decomposition in FPT time.
- Decomposition is supposed to be a tool.
- Most interesting problems are W[1]-hard on graphs of bounded directed tree width.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = ● ● ●

- Find directed grid or decomposition in FPT time.
- Decomposition is supposed to be a tool.
- Most interesting problems are W[1]-hard on graphs of bounded directed tree width.
- Is there an interesting problem can be shown FPT using this?

Thank you. Questions?

V. Campos , R. Lopes , A. K. Maia , I. Sau Adapting the Directed Grid Theorem into an FPT Algorithm

- 4 同 ト 4 ヨ ト 4 ヨ ト

990

3