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XP and FPT

Problem P of size n with a parameter k:

P ∈ XP =⇒ P can be solved in O
(
nf (k)

)
.

P ∈ FPT =⇒ P can be solved in O (f (k) · nc).

Examples

O
(
n
2k
)

Poly time for �xed k.

O
(
2k · n2

)
Poly exponent independent of k.
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(Undirected) Grid Theorem

FPT Time

k × k grid

minor

decomposition

width ≤ f (k)

Grid Theorem

N. Robertson and P. Seymour.
Graph minors V. Excluding a planar graph.
Journal of Combinatorial Theory, Series B, 1986.
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(Undirected) Grid Theorem

FPT Time

k × k grid

minor

decomposition

width ≤ f (k)

Applications

Key ingredient in proof of Wagner's Conjecture.

Base of Bidimensionality Theory

Basis for several other structure theorems
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(Undirected) Grid Theorem

FPT Time

k × k grid

minor

decomposition

width ≤ f (k)

Conjecture: Directed version

Conjectured independently by

Reed (1999)

Johnson, Robertson, Seymour and Thomas (2001)
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Directed Grid Theorem

XP Time

decomposition

width ≤ f (k)

order k

cylindrical grid minor

Proof - 20 years later

K. Kawarabayashi and S. Kreutzer.
The Directed Grid Theorem
STOC'15
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Directed Grid Theorem

XP Time

decomposition

width ≤ f (k)

order k

cylindrical grid minor

Our result

XP → FPT
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Understanding the Directed Grid Theorem

XP Time

decomposition

width ≤ f (k)

Order k haven
dtw ≥ k certi�cate

Big haven ⇒ Big bramble.

Big bramble ⇒ Well linked long path. (High cost)

Well linked long path ⇒ Cylindrical Grid. (FPT)

Objective 1: FPT haven algorithm

Objective 2: Handle brambles and build well linked path

T. Johnson, N. Robertson, P. Seymour and R. Thomas.
Directed tree-width
J. Comb. Theory, Ser. B, 2001
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Problem P : XP part of JRST haven algorithm

G

Given |T | ≤ 2k − 1.

Find Z ⊆ V (G ):

|Z | ≤ k − 1; and
|C ∩ T | ≤ k − 1 for strong
components of G \ Z .

Enumerate all
(

n

k−1
)
subsets of

V (G ).

O(nk)

Any negative ⇒ haven

All positive ⇒ decomposition
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Similar problem P ′

|T | ≤ 2k − 1.

Partition T1, . . . ,Tr of T with |Ti | ≤ k − 1.

�nd Z ⊆ V (G ) such that:

1 |Z | ≤ k − 1; and
2 G \ Z has no Ti to Tj path for i < j

Reduces to

R. Erbacher, T. Jaeger, N. Talele and J. Teutsch
Directed Multicut with Linearly Ordered Terminals
CoRR abs/1407.7498, 2014
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P and P ′

G

Z

T

T1

≤ k − 1

T2

≤ k − 1

T3

≤ k − 1

Lemma

P positive ⇔ P ′ positive for some partition T1, . . . ,Tr of T \ Z

Partitions of T is f (k) (|T | ≤ 2k − 1)

P is FPT

FPT Haven Algorithm (Objective 1)
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Understanding brambles

De�nition (Brambles on digraphs)

Family of strongly connected subgraphs B = {B1, . . . ,B`}

if {B,B ′} ⊆ B then either

1 V (B) ∩ V (B ′) 6= ∅ or
2 edges from B to B ′ and B ′ to B.

B B ′
B B ′

hitting set of B = set of vertices touching every B ∈ B.
order of B = minimum size of hitting set

Problem 1

Find compact brambles
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Solving Problem 1

G

Z

T

|T | ≤ 2k − 1.

(Negative instance)
No Z ⊆ V (G ) satis�es:

|Z | ≤ k − 1; and
|C ∩ T | ≤ k − 1 for strong
component of G \ Z .

Bramble over set T

BT = {B ⊆ G | B is induced, strongly connected and |V (B) ∩ T | ≥ k}.

B is a bramble.

of order k

Skip havens

Description: T
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Objective 2: Key ingredients?

Hitting set path

Poly time: Find a path P(BT ) which is a hitting set of BT .

Key ingredient 1

Poly time: Is Z a hitting set of BT ?

If not, �nd disjoint B ∈ BT .

Well-linked set

FPT time: If BT has order k
2

4
+ k, �nd a well-linked set in P(BT ) of size

k.

Key ingredient 2

BT (X ,Y ) = {B ∈ BT | B intersects X and disjoint from Y }

FPT time: order(BT (X ,Y )) ≥ k ′?
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Using key ingredients

Find a path P which is hitting set of BT

Start with B ∈ BT and P = v ∈ B

If P does not hit B ′ ∈ BT , improve P (Key ingredient 1)
Iterate until hitting set

B B ′
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Key ingredient algorithms

Key ingredient 1

Poly time: Is Z a hitting set of BT ?

EASY: Does G \ Z contain a strong component intersecting k
vertices of T?

Key ingredient 2

FPT time: order(BT (X ,Y )) ≥ k ′?

Sadly, not so easy...

BT (X ,Y ) = {B ∈ BT | B disjoint from X ∪ Y }
order(BT (X ,Y )) + order(BT (X ,Y )) ≥ order(BT (Y ))

order(BT (Y )) can be solved with techniques similar to P in G \ Y
BT (X ,Y ) = BT (X ∪ Y )
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Open

Find directed grid or decomposition in FPT time.

Decomposition is supposed to be a tool.

Most interesting problems are W[1]-hard on graphs of bounded
directed tree width.

Is there an interesting problem can be shown FPT using this?
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Thank you.
Questions?

V. Campos , R. Lopes , A. K. Maia , I. Sau Adapting the Directed Grid Theorem into an FPT Algorithm


