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Joint work with Frédéric

Graph-parameter functions

G = (V ,E) is perfect if, for all S ⊆ V : α(G[S]) = θ(G[S])
(stability number of G[S] = clique cover number of G[S]).

Idea: look at the function αG : 2V 7→ R : S → α(G[S]).

Similarly for θG. (G is perfect if αG = θG, viewed as functions.)

Identify 2V with {0,1}n (n = |V |): then αG is a real-valued function of 0-1
variables (pseudo-Boolean function):

αG(x1, . . . , xn) = α(G[S]), S is indexed by (x1, . . . , xn).

αG has a unique representation as a multilinear polynomial in 0-1
variables.

What does this polynomial look like??
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Joint work with Frédéric

Graph-parameter functions

Some examples:

If G = Kn, then αG = θG = 1− (1− x1)(1− x2) . . . (1− xn)

If G = 2K2, then αG = θG = x1 + x2 + x3 + x4 − x1x3 − x2x4

If G = P4, then
αG = θG = x1 +x2 +x3 +x4−x1x2−x2x3−x3x4 +x1x2x3 +x2x3x4−x1x2x3x4

If G = C4, then αG = θG = x1 + x2 + x3 + x4 − x1x2 − x2x3 − x3x4 −
x1x4 + x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 − 2x1x2x3x4

Theorem (BCDHM 1990)

The polynomial expression of the stability function of G has all its coefficients
equal to 0, - 1, or + 1 if and only if G is triangulated. Moreover, when this is
the case, the coefficients alternate in sign between odd and even degree
terms.
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Joint work with Frédéric

Extensions?

Nice, but anecdotic result?

Generalization: the hypergraph H = {123,124,34} has
αH = x1 + x2 + x3 + x4 − x3x4 − x1x2x3 − x1x2x4 + x1x2x3x4.

Anything special about it? What hypergraphs have all coefficients equal
to 0, - 1, or + 1 ?
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Nonlinear 0-1 optimization

Definitions

Pseudo-Boolean functions

A pseudo-Boolean function is a mapping f : {0,1}n → R, that is, a real-valued
function of 0− 1 variables.

Multilinear polynomials

Every pseudo-Boolean function can be represented – in a unique way – as a
multilinear polynomial in its variables, of the form

f (x1, . . . , xn) =
∑
S∈S

aS

∏
k∈S

xk +
n∑

i=1

aixi

where S = {S ∈ 2[n] | aS 6= 0, |S| ≥ 2}.

Example:

f = 4− 9x1 − 5x2 − 2x3 + 13x1x2 + 13x1x3 + 6x2x3x4 − 13x1x2x3x4
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Nonlinear 0-1 optimization

Co-occurrence hypergraph

Co-occurrence hypergraph

When

f (x1, . . . , xn) =
∑
S∈S

aS

∏
k∈S

xk +
n∑

i=1

aixi ,

Hf = ([n],S) is the co-occurrence hypergraph associated with f .

Example:

If f = 4− 9x1 − 5x2 − 2x3 + 13x1x2 + 13x1x3 + 6x2x3x4 − 13x1x2x3x4, then
S = {12,13,234,1234}.
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Nonlinear 0-1 optimization

Multilinear optimization in binary variables

We are frequently interested in:

(MOB) min
x∈{0,1}n

∑
S∈S

aS

∏
k∈S

xk +
n∑

i=1

aixi

Multilinear optimization is NP-hard, even if f is quadratic

Approaches:

Direct resolution methods
Linearization: extensive literature in integer programming.
Quadratization: more recent approach.
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Standard linearization

Standard linearization (SL)

(MOB) min
x∈{0,1}n

∑
S∈S

aS

∏
k∈S

xk +
n∑

i=1

aixi ,

1. Substitute monomials

min
∑
S∈S

aSyS +
n∑

i=1

aixi

s.t. yS =
∏
k∈S

xk , ∀S ∈ S

yS ∈ {0,1}, ∀S ∈ S
xk ∈ {0,1} ∀k = 1, . . . ,n
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2. Linearize constraints
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xk ∈ {0,1} ∀k = 1, . . . ,n

3. Linear relaxation

min
∑
S∈S

aSyS +
n∑

i=1

aixi

s.t. yS ≤ xk , ∀k ∈ S,∀S ∈ S

yS ≥
∑
k∈S

xk − (|S| − 1), ∀S ∈ S

0 ≤ yS ≤ 1, ∀S ∈ S
0 ≤ xk ≤ 1 ∀k = 1, . . . ,n
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Standard linearization

Linear relaxation

A natural question: does the standard linearization polytope

PSL = {(x , y) ∈ [0,1]n+|S| | yS ≤ xk ∀k ∈ S, yS ≥
∑
k∈S

xk − (|S| − 1) ∀S ∈ S}

have fractional vertices?

For a function containing a single nonlinear monomial: No.

For two or more nonlinear terms, Yes! PSL is in general very weak!!!

So, when is PSL integral?
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Standard linearization

Co-occurrence hypergraph

Recall: co-occurrence hypergraph

When

f (x1, . . . , xn) =
∑
S∈S

aS

∏
k∈S

xk +
n∑

i=1

aixi ,

Hf = ([n],S) is the co-occurrence hypergraph associated with f .

Definition: Berge cycles

For a hypergraph H = (V ,S), a Berge cycle of length p is a sequence

(i1,S1, i2,S2, . . . , ip,Sp, i1),

where

1 i1, i2, . . . , ip are pairwise distinct vertices of V ,

2 S1,S2, . . . ,Sp are pairwise distinct edges of S,

3 ij , ij+1 ∈ Sj for j = 1, . . .p − 1, and i1, ip ∈ Sp.
19 / 37



Standard linearization

Perfect standard linearization

(E. Rodríguez-Heck, Ch. Buchheim, Y. Crama, 2016)

PSL is integral if and only if Hf has no Berge cycles.

Proof:

⇐ If Hf is Berge-acyclic then the constraint matrix of PSL is balanced, a
property that guarantees integrality.

⇒ If Hf has a cycle, then construct an objective function that reaches its
optimum at a fractional vertex of PSL.
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Standard linearization

Perfect standard linearization

(E. Rodríguez-Heck, Ch. Buchheim, Y. Crama, 2016)

PSL is integral if and only if Hf has no Berge cycles.

Generalizes a result of Padberg (1989) for quadratic functions.

Closely related to a result of Crama (1988,1993) for an “irredundant”
relaxation of PSL.

Independently obtained by Del Pia and Khajavirad (2016).
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Standard linearization

Multilinear optimization in binary variables

(MOB) min
x∈{0,1}n

∑
S∈S

aS

∏
k∈S

xk +
n∑

i=1

aixi

Multilinear optimization is NP-hard, even if f is quadratic.

Approaches:

Direct resolution methods
Linearization: extensive literature in integer programming.
Quadratization: more recent approach.

Idea: can we reduce MOB to the (unconstrained) quadratic case
rather than to the (constrained) linear case?
Yes, in many ways!
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Quadratization

Quadratization

Observations

Say g(x , y), (x , y) ∈ {0,1}n+m, is a quadratic function.

Then, for all x ∈ {0,1}n,

f (x) := min{g(x , y) | y ∈ {0,1}m}

is a pseudo-Boolean function.

f (x) may be quadratic, or not.

min{f (x) | x ∈ {0,1}n} = min{g(x , y) | (x , y) ∈ {0,1}n+m}.
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Quadratization

Quadratization

Quadratization

The quadratic function g(x , y), (x , y) ∈ {0,1}n+m is an m-quadratization of
the pseudo-Boolean function f (x), x ∈ {0,1}n, if

f (x) = min{g(x , y) | y ∈ {0,1}m} for all x ∈ {0,1}n.

The y -variables are called auxiliary variables.

min{f (x) | x ∈ {0,1}n} = min{g(x , y) | (x , y) ∈ {0,1}n+m}.

Does every function f have a quadratization?
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Quadratization

Existence

Existence of quadratizations (Rosenberg 1975)

Given the multilinear expression of a pseudo-Boolean function
f (x), x ∈ {0,1}n, one can find in polynomial time a quadratization g(x , y) of
f (x).

Idea: in each term
∏

i∈A xi of f , with {1,2} ⊆ A, replace the product x1x2
by a new variable y ;

Introduce a penalty term to force y = x1x2 in every minimizer of the
transformed expression;

t(x , y) =

(∏
i∈A\{1,2} xi

)
y + M(x1x2 − 2x1y − 2x2y + 3y).

Potential drawbacks: introduces many auxiliary variables, big M.
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Quadratization

Questions arising...

Many quadratization procedures proposed in recent years. Which ones
are “best”? Small number of variables, of positive terms, good properties
with respect to persistencies, submodularity?

Easier question: What if f is a single monomial?

How many variables are needed in a quadratization?

etc.

Refs: Boros and Gruber (2011); Buchheim and Rinaldi (2007); Fix, Gruber,
Boros and Zabih (2011): Freedman and Drineas (2005); Ishikawa (2011);
Kolmogorov and Zabih (2004); Ramalingam et al. (2011); Rosenberg (1975);
Rother et al. (2009); Živný, Cohen and Jeavons (2009); etc.
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Quadratization

Outline

Focus of our recent work:

lower and upper bounds on size of quadratizations

the case of symmetric functions

M. Anthony, E. Boros, Y. Crama and M. Gruber, Quadratization of symmetric
pseudo-Boolean functions, Discrete Applied Mathematics 203 (2016) 1–12.

M. Anthony, E. Boros, Y. Crama and M. Gruber, Quadratic reformulations of
nonlinear binary optimization problems Mathematical Programming 162
(2017) 115-144.

E. Boros, Y. Crama and E. Rodrìguez-Heck, Compact quadratizations for
pseudo-Boolean functions, Working paper, 2018.
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Quadratization Upper bounds

General question

How many auxiliary variables are needed in general?

Upper bound based on termwise quadratizations:

Observation

Every term of the form a
∏n

i=1 xi can be quadratized using n − 2 auxiliary
variables (Rosenberg 1975), and even

⌊ n−1
2

⌋
auxiliary variables (Ishikawa

2011).

So:

Ishikawa (2011)

For every n-variable pBf, one can find in polynomial time a quadratization
involving

⌊ n−1
2

⌋
2n auxiliary variables.

Best known bound, until recently.
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Quadratization Upper bounds

Upper bound

Upper bound based on termwise quadratizations:

Ishikawa (2011)

For every n-variable pBf, one can find in polynomial time a quadratization
involving at most

⌊ n−1
2

⌋
2n auxiliary variables.

We prove:

Theorem: upper bound (Math. Prog. (2017))

For every n-variable pBf, one can find in polynomial time a quadratization
involving at most O(2n/2) auxiliary variables.
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Quadratization Upper bounds

Pairwise cover
Based on a construction using small pairwise covers:

Pairwise cover

A hypergraph H is a pairwise cover of {1, . . . ,n} if, for every S ⊆ {1, . . . ,n}
with |S| ≥ 3, there are sets A,B ∈ H such that |A| < |S|, |B| < |S| and
A ∪ B = S.

We can prove:

Theorem: From pairwise cover to quadratization

If there exists a pairwise cover of {1, . . . ,n} of size m, then every
pseudo-Boolean function has an m-quadratization.

Idea of the proof: write
∏

i∈S xi = (
∏

j∈A xj )(
∏

k∈B xk ); substitute yA for∏
j∈A xj and yB for

∏
k∈B xk ;

Introduce a penalty term to force the correct values of yA and yB in every
minimizer of the transformed expression.
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Quadratization Upper bounds

Pairwise covers

Thus:

Theorem: From pairwise cover to quadratization

If there exists a pairwise cover of {1, . . . ,n} of size m, then every
pseudo-Boolean function has an m-quadratization.

But... there are pairwise covers with size O(2n/2).

Pairwise covers are (almost) identical to so-called 2-bases investigated
by Erdös, Füredi and Katona (2006), Frein, Lévêque and Sebö (2008),
Ellis and Sudakov (2011).

P(even) = all subsets of even integers in {1, . . . ,n}.

P(odd) = all subsets of odd integers in {1, . . . ,n}.

H = P(even) ∪ P(odd) is a “small” pairwise cover with size O(2n/2).
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Quadratization Lower bounds
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Quadratization Lower bounds

Lower bound

Any good lower bound on the number of auxiliary variables?

Theorem: lower bound (Math. Prog. (2017))

There are pseudo-Boolean functions of n variables for which every
quadratization must involve at least Ω(2n/2) auxiliary variables.

This lower bound matches the O(2n/2) upper bound.

Non constructive proof based on dimensionality argument: if too few
auxiliary variables, then we cannot generate the whole vector space of
pseudo-Boolean functions.
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Conclusions

Conclusions

Many fruitful connections between functions of Boolean variables,
graphs and hypergraphs.

Many intriguing questions and conjectures.

See also

BOOLEAN FUNCTIONS
Theory, Algorithms, and Applications

Yves CRAMA and Peter L. HAMMER
Cambridge University Press, 2011
710 pages

with contributions by C. Benzaken, E. Boros,
N. Brauner, M.C. Golumbic, V. Gurvich,
L. Hellerstein, T. Ibaraki, A. Kogan,
K. Makino, B. Simeone
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