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There are several known results that reveal the connection between the colourings of a graph
and its orientations. However it seems that there are only the tip of the iceberg. In these notes,
we present some of the most important links between these two notions. On the way, we will
present some nice proof techniques.

1 Definitions and basic concepts
All graphs considered is these notes are simple, that is they have no loops nor multiple edges.
We rely on [15] for classical notation and concepts.

In the remaining of this section, we recall some useful definitions and well-known theorems.

1.1 Graphs and digraphs
For a graph G, we denote by v(G) its number of vertices and by e(G) its number of edges. For a
digraph D, we denote by v(G) its number of vertices and by a(G) its number of arcs.

If G is a (directed) graph, then the (directed) subgraph induced by a set S of vertices is
denoted G〈S〉.

A graph or digraph is empty if it has no edges or no arcs, respectively.
If (x,y) is an arc, we write x→ y. More generally, if x→ y for all x ∈ X , y ∈Y , then we write

X → Y . We abbreviate {x}→ Y in x→ Y .
A source is a vertex of indegree 0, and a sink a vertex of outdegree 0.
A digraph is eulerian if d+(v) = d−(v) for every vertex v.
The average degree of a graph G is Ad(G) := 1

v(G) ∑v∈V (G) d(v) = 2e(G)
v(G) . The maximum

average degree of G is Mad(G) := max{Ad(H) |H is a subgraph of G}.

We denote by UG(D) the underlying (multi)graph of D, that is, the (multi)graph we obtain
by replacing each arc by an edge. The digraph D is connected (resp. k-connected) if UG(D) is a
connected (resp. k-connected) graph. It is strongly connected, or strong, if for any two vertices
u,v, there is a directed (u,v)-path in D.
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A handle decomposition of D is a sequence H1, . . . ,Hr such that:
i) H1 is a directed cycle of D.
ii) For every i = 2, . . . ,r, Hi is a handle, that is, a directed path of D (with possibly the same

endvertices) starting and ending in V (H1∪·· ·∪Hi−1) but with no inner vertex in this set.
iii) D = H1∪·· ·∪Hr.
An Hi which is an arc is a trivial handle. It is well-known that every strong digraph admits a

handle decomposition and that the number r of handles is invariant for all handle decompositions
of D (indeed, r = a(D)− v(D)+1).

1.2 Orientations
An orientation of a graph G is a digraph obtained from G by replacing each edge by just one
of the two possible arcs with the same ends. In other words, an orientation of G is a digraph D
whose underlying graph is G. In particular, an orientation of a (simple) graph has no opposite
arcs, (so no directed 2-cycles). An orientation of a graph is called an oriented graph. Similarly,
an orientation of a path, cycle, or tree, is a called an oriented path, oriented cycle, or oriented
tree, respectively.

An antidirected graph is an oriented graph in which every vertex is either a source or a sink.
Notice that an antidirected graph is thus necessarily bipartite. A rooted tree T (x) is a tree T with
a specified vertex x, called the root of T . An orientation of a rooted tree in which every vertex but
the root has indegree 1 (resp. outdegree 1) is called an out-arborescence (resp. in-arborescence).
An arborescence is either an out-arborescence or an in-arborescence. An out-forest is a forest of
out-arborescences, that is the disjoint union of out-arborescences.

An orientation of a complete graph is a tournament. An acyclic tournament is transitive.
The following useful lemma was first proved by Hakimi [48]. It also appears independently

in several papers [88, 5, 6]. The proof presented here follows [88] and [6].

Lemma 1.1. A graph G has an orientation D with maximum outdegree at most ∆+ if and only if
Mad(G)/2 6 ∆+.

Proof. Suppose first that G has such an orientation D. Then for any subgraph H of G

e(H) = ∑
v∈V (H)

d+
H (v)6 ∑

v∈V (H)

d+
D (v)6 ∆

+ · v(H)

and hence e(H)/v(H)6 ∆+. Thus Mad(G)/2 6 ∆+.
Suppose now that Mad(G)/2 6 ∆+. Let F be the bipartite graph with bipartition (A,B),

where A = E(G) and B is a union of ∆+ disjoint copies V1, . . . ,V∆+ of V . Each edge uv ∈ E(G)
is joined in F to the ∆+ copies of u and the ∆+ copies of v in B. We claim that F contains a
matching of size |A| = e(G). Indeed, if E ′ ⊂ E is a set of edges of a subgraph H of G whose
vertices are all endpoints of members of E ′, then, in F , E ′ has ∆+ · v(H) neighbours. By the
definition of Mad(G), |E ′|/v(H) 6 Mad(G)/2 6 ∆+. Hence ∆+ · v(H) > |E ′|. Therefore, by
Hall’s Theorem, the desired matching exists. We can now orient each edge of G from the vertex
to which it is matched. This gives an orientation D of G with maximum degree at most ∆+.
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1.3 Vertex colouring and list colouring
A (vertex) colouring of a graph G is a mapping c : V (G)→ S. The elements of S are called
colours; the vertices of one colour form a colour class. If |S|= k, we say that c is a k-colouring
(often we use S = {1, . . . ,k}). A colouring is proper if adjacent vertices have different colours.
A graph is k-colourable if it has a proper k-colouring. The chromatic number χ(G) is the least
k such that G is k-colourable. Obviously, χ(G) exists as assigning distinct colours to vertices
yields a proper v(G)-colouring. An optimal colouring of G is a χ(G)-colouring. A graph G is
k-chromatic if χ(G) = k.

In a proper colouring, each colour class is a stable set. Hence a k-colouring may also be seen
as a partition of the vertex set of G into k disjoint stable sets Si = {v | c(v) = i} for 1 6 i 6 k.
Therefore k-colourable graphs are also called k-partite graphs. Moreover, 2-colourable graphs
are very often called bipartite. A bipartite graph G with colour classes X and Y is denoted
((X ,Y ),E(G)).

Trivially χ(G)> ω(G), where ω(G) denotes the maximum size of a clique in G, because in
any proper colouring the vertices of a clique receive distinct colours. On the other hand, there
are graphs with clique number 2 and arbitrarily large chromatic number as shown by a number
of mathematicians including Descartes (alias Tutte) [24], Kelly and Kelly [59], Zykov [96] or
Mycielski [70].

The girth of a graph is the smallest length of a cycle (or +∞ if the graph is acyclic). A
graph with clique number 2 has girth at least 4. Erdös [31] applied the probabilistic method to
demonstrate the existence of graphs with arbitrarily high girth and chromatic number.

Theorem 1.2 (Erdös [31]). For any two positive integers g and k , there exists a graph G with
girth larger than g and chromatic number larger than k.

Most upper bounds on the chromatic number come from algorithms that produce proper
colourings. The most widespread one is the greedy algorithm. Given a linear order of σ =
v1, . . . ,vn, the greedy colouring proceeds as follows. For i = 1 to n, it assigns to the vertex vi the
smallest colour (colours are positive integers in this case) which is not already used on one of its
neighbours.

In fact, there are two variants of the greedy algorithm. In the ”one-pass” variant, which we
just described, we run through the vertices in order and always assign the smallest available
colour. In the ”many-passes” variant, we run through the vertices assigning colour 1 whenever
possible, then repeat with colour 2 and so on. However, for proper colourings, both methods
yield exactly the same colouring.

For a linear order σ, let γσ(G) be the number of colours used by the greedy algorithm with
respect to σ. Clearly, χ(G)6 γσ(G) for all linear order σ. In fact, χ(G) is the minimum of γσ(G)
over all linear orders σ.

For every vertex vi, let dσ(vi) be the number of neighbours of vi in {v1, . . . ,vi−1}, and set
dσ(G) = max{dσ(v) | v ∈V (G)}. Clearly, γσ(G)6 dσ(G)+1 since at most dσ(vi) colours are
forbidden for vi when the greedy algorithm colours it.

The degeneracy of G, denoted by δ∗(G), is the minimum of dσ(G) over all linear orders
σ. It is folklore that the degeneracy is the minimum integer k such that each of its subgraphs
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has a vertex of degree at most k. In symbols, δ∗(G) = max{δ(H) | H subgraph of G}. Trivially,
δ(G)6 δ∗(G)6 ∆(G). We have

χ(G)6 δ
∗(G)+1 6 ∆(G)+1.

There are graphs G for which χ(G) = ∆(G)+1: for the complete graph on n vertices, we
have χ(Kn) = n = ∆(Kn)+1 and for an odd cycle C, we have χ(C) = 3 = ∆(C)+1. However,
Brooks’Theorem says that these two examples are essentially the only ones.

Theorem 1.3 (Brooks [16]). BROOKS’ THEOREM

Let G be a connected graph. Then χ(G)6 ∆(G) unless G is either a complete graph or an odd
cycle.

The graph G is k-critical if χ(G) = k and χ(G′)< k for every proper subgraph G′ of G. A
critical graph is a graph that is k-critical for some integer k > 1.

The only 1-critical graph is K1, the only 2-critical graph is K2, and the only 3-critical graphs
are the odd cycles.

If v is a vertex of a k-critical graph G, then G− v is (k− 1)-colourable. But no proper
(k−1)-colouring of G− v can be extended into a proper (k−1)-colouring of G. Hence, all the
k−1 colours must appear on the neighbourhood of v, and so dG(v)> k−1. We just proved the
following.

Proposition 1.4. If G is k-critical for some integer k > 1, then δ(G)> k−1.

List colouring is a generalization of vertex colouring in which the set of colours available
at each vertex is restricted. This model was introduced independently by Vizing [94] and
Erdős-Rubin-Taylor [29].

A list-assignment of a graph G is an application L which assigns to each vertex v ∈V (G) a
prescribed list of colours L(v). A list-assignment is a k-list-assignment if each list is of size at
least k. An L-colouring of G is a colouring c such that c(v) ∈ L(v) for all v ∈V (G). A graph G
is L-colourable if there exists a proper L-colouring of G. It is k-choosable if it is L-colourable
for every k-list-assignment L. More generally, for f : V (G)→ N , an f -list-assignment is a
list-assignment L such that |L(v)|> f (v) for all vertex v ∈V (G). A graph G is f -choosable if it
is L-colourable for every f -list-assignment L.

The choice number or list chromatic number of G, denoted by ch(G), is the least k such that
G is k-choosable. Since the lists could be identical, χ(G)6 ch(G).

The greedy algorithm may be modified to search for a proper L-colouring. For i = 1 to n,
it assigns to the vertex vi the smallest colour in L(vi) which is not already used on one of its
neighbours. If all colours of L(vi) are used, then the greedy algorithm fails and stops. If the
greedy algorithm does not fail, then it succeeds. In this case, it returns a proper L-colouring
of G. If |L(vi)| > dσ(vi)+ 1, for 1 6 i 6 n, then the greedy algorithm succeeds. Therefore
ch(G)6 δ∗(G)+1 colours.
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Hence, we have the following sequence of inequalities.

χ(G)6 ch(G)6 δ
∗(G)+1 6 ∆(G)+1. (1)

All these inequalities are tight, because if K is a complete graph χ(K) = ∆(K)+1. One the
other hand, each of them can be very loose. For example, it is not possible to pace an upper
bound on ch(G) in terms of χ(G) because there are bipartite graphs with arbitrarily large choice
number.

Proposition 1.5 (Erdős, Rubin and Taylor [29]). If m =
(2k−1

k

)
, then Km,m is not k-choosable.

Proof. Let (A,B) be the bipartition of Km,m. Let L be a list assignment such that for every k-subset
I of {1,2, . . . ,2k−1} there exists a vertex aI ∈ A and a vertex bI ∈ B such that L(aI) = L(bI) = I.
Consider an L-colouring of Km,m. Let SA be the set of colours used on A and SB be the set of
colours used on B. Then |SA|> k otherwise a vertex aI with I ⊂ {1,2, . . . ,2k−1}\SA would be
assigned no colour. Similarly, |SB|> k. Hence SA∩SB 6=∅, so the colouring is not proper.

Brooks’ Theorem may be extended to list colouring.

Theorem 1.6. BROOKS’ THEOREM (LIST VERSION)
Let G be a connected graph. Then ch(G)6 ∆(G) unless G is either a complete graph or an odd
cycle.

A (proper) vertex colouring of a digraph D is simply a vertex colouring of its underlying
graph G, and its chromatic number χ(D) is defined to be the chromatic number χ(G) of G.

1.4 Edge colouring
An edge-colouring of G is a mapping f : E(G)→ S. The element of S are colours; the edges of
one colour form a colour class. If |S|= k, then f is a k-edge-colouring. An edge-colouring is
proper if incident edges have different colours; that is, if each colour class is a matching. A graph
is k-edge-colourable if it has a proper k-edge-colouring. The chromatic index or edge-chromatic
number χ′(G) of a graph G is the least k such that G is k-edge-colourable.

Edge-colouring may be seen as a vertex colouring of a special class of graphs, namely the
line graphs. The line graph L(G) of a graph G is the graph with vertex set E(G), such that
e f ∈ E(L(G)) whenever e and f share an endvertex in G. Then, χ′(G) = χ(L(G)).

Since edges sharing an endvertex need different colours, χ′(G)> ∆(G). On the other hand,
as an edge is incident to at most 2∆(G)−2 other edges (∆−1 at each endvertex), colouring the
edges greedily uses at most 2∆(G)−1 colours. However, one does not need that many colours,
as it was shown independently by Vizing [93] and Gupta [43].

Theorem 1.7 (Vizing [93], Gupta [43]). If G is a graph, then χ′(G) ∈ {∆(G),∆(G)+1}.

A graph is said to be Class 1 if χ′(G) = ∆(G) and Class 2 if χ′(G) = ∆(G)+1. Holyer [58]
showed that determining whether a graph is Class 1 or Class 2 is NP-complete.

However there are classes of graphs for which we know if they are Class 1 or Class 2.
König [60] proved that every bipartite graph is Class 1.
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Theorem 1.8 (König [60]). Let G be a bipartite graph. Then χ′(G) = ∆(G).

Analogously to list colouring, one can define list edge-colouring. In this variant, lists of
colours are assigned to the edges and we search for proper edge-colouring such that every edge
is coloured with a colour of its list. The list chromatic index ch′(G) of a graph G is the least
integer k such that whenever every edge of G is assigned a list of k colours, G admits a proper
edge-colouring f such that f (e) ∈ L(e) for every edge e. Equivalently, ch′(G) = ch(L(G)),
where L(G) is the line graph of G.

Analogously as for χ′, the greedy algorithm yields that ch′(G)6 2∆(G)−1. In particular,
ch′(G) is bounded in terms of χ′(G). It was suggested independently by many researchers —
including Vizing, Gupta, Albertson, Collins, and Tucker — and it first appeared in print in a
work of Bollobás and Harris [13], that the list chromatic index equals the chromatic index.

Conjecture 1.9. LIST COLOURING CONJECTURE

The chromatic index is equal to the list chromatic index, that is χ′ = ch′.

2 Using orientations for colouring
Each linear order σ = v1, · · · ,vn of the vertices of a graph G induces an acyclic orientation D
of G in which vi dominates v j if and only if i > j. Observe that d+

D (vi) = dσ(vi), 1 6 i 6 n. An
acyclic orientation D of G may be induced by many different linear orders. However, applying
the greedy algorithm according to any of these linear orders always results in the same colouring
of G. This colouring cD, called the greedy colouring with respect to D, is the one having the
property that every vertex of D has the smallest colour not appearing on its outneighbourhood.
Let us denote by γ(D) the number of colours used by cD.

Proposition 2.1. Let D be an acyclic orientation of a graph G. Then

χ(G)6 γ(D)6 ∆
+(D)+1 6 ∆(G)+1.

To be sure to use few colours when greedily colouring with respect to an acyclic orientation,
a natural idea is to consider an orientation with small maximum outdegree. But the minimum of
∆+(D) over all acyclic orientations D of G is clearly the degeneracy of G. Hence, Proposition 2.1
yields χ(G)6 δ∗(G)+1. Similarly, using acyclic orientation, one can prove ch(G)6 δ∗(G)+1.

In this section, we give some necessary conditions for a digraph D to have a proper colouring
with ∆+(D)+1 colours.

2.1 Kernels
Let D be a digraph. A set S of vertices is antidominating if every vertex v in V (D)\S dominates
a vertex in S. An antidominating stable set is a kernel. In other words, a kernel of D is a stable
set S such that S∪N−(S) =V (D).

Let D be an acyclic digraph, and for every positive integer i, let Si be the set of vertices
coloured i in the greedy colouring with respect to D. Observe that S1 is a kernel in D and more
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generally Si is a kernel in D−
⋃i−1

j=1 S j. Hence greedily colouring with respect to D consists in
iteratively colouring the vertices of a kernel of the digraph induced by the non-coloured vertices.
This strategy of assigning a new colour to a kernel can be applied as long as the digraph induced
by the non-coloured vertices has a kernel. This strategy certainly colours all vertices if the
original digraph D is kernel-perfect, that is if every induced subdigraph of D has a kernel. It also
applies to list colouring.

Lemma 2.2 (Bondy, Boppana and Siegel). Every kernel-perfect digraph D is (d+
D +1)-chooosable.

In particular, it is (∆+(D)+1)-choosable.

Proof. We prove the result by induction on the number of vertices. If v(D) = 0, there is nothing
to prove. Now if V (D) is nonempty, let L be a (d+

D +1)-list assignment. We choose a colour
c which appears in some list. Let X be the set of vertices x such that c ∈ L(x). Since D is
kernel-perfect, D〈X〉 has a kernel S. Colour every vertex of S with colour c and delete colour c
in the list of every vertex of X \S, and apply the induction hypothesis on D−S. This is possible
since every vertex of X \ S has lost one colour and at least one inneighbour. Hence D has an
L-colouring.

It is easy to see that every acyclic digraph is kernel-perfect. (See Exercise 2.1.) Hence
Lemma 2.2 implies Proposition 2.1. We cannot expect to improve the upper bound ∆(G)+1
of this proposition by considering acyclic orientations because every acyclic orientation D of a
regular graph G satisfies ∆+(D) = ∆(G). But it is tempting to use more balanced orientations.

To apply Lemma 2.2 non-acyclic orientations are only useful when they can be proven
kernel-perfect. This is not always the case. For instance, if G is a complete graph of order at
least 3, then no non-acyclic orientation is kernel-perfect (Exercise 2.2). However it is sometimes
the case; in particular every orientation of a bipartite graph is kernel-perfect.

Theorem 2.3. Bipartite digraphs are kernel-perfect.

Proof. Because every subgraph of a bipartite digraph is bipartite, it suffices to prove that every
bipartite digraph has a kernel. We prove this by induction on the number of vertices. Let D be a
bipartite digraph. If D is strong, then each part of the bipartition is a kernel. If D is not strong,
consider the kernel K of a terminal strong component of D. The union of K and a kernel of
D\ (K∪N−(K)) is a kernel of D.

Richardson [76] generalized this result by showing that digraphs without directed cycles of
odd length are also kernel-perfect.

Together with Lemma 1.1 and Theorem 2.3, Lemma 2.2 yields the following result of Alon
and Tarsi (See next subsection (2.2) for the original proof.).

Theorem 2.4 (Alon and Tarsi [6]). Every bipartite graph G is (dMad(G)/2e+1)-choosable.

Proof. By Lemma 1.1, G has an orientation D such that ∆+ = dMad(G)/2e and by Theorem 2.3,
D is kernel-perfect. Thus by Lemma 2.2, it is (dMad(G)/2e+1)-choosable.

Remark 2.5. Theorem 2.4 improves ch(G)6 δ∗(G)+1 as Mad(G)6 2δ∗(G).
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Theorem 2.4 is sharp in the following sense.

Proposition 2.6. For every positive integer k, there is a bipartite graph G with Mad(G)/2 6 k
which is not k-choosable.

Proof. Consider the complete bipartite graph Kkk,k with bipartition (A,B) where |A| = kk and
|B|= k.

If H is an induced subgraph of Kkk,k on A′ ∪ B′ with A′ ⊂ A and B′ ⊂ B, then e(H) 6
∑a∈A′ dH(a)6 k |A′|6 kv(H). Thus Mad(Kkk,k)/2 6 k.

Let us now show that Kkk,k is not k-choosable. Set B= {b1, . . . ,bk} and A= {ai1,...,ik | 16 i j 6
k}. Let L be the list assignment defined by L(bi) = {k(i−1)+ j | 1 6 j 6 k} and L(ai1,...,ik) =
{i j +( j− 1)k | 1 6 j 6 k}. Clearly G has no proper L-colouring. Indeed, assume that there
exists such a colouring c. For every 1 6 j 6 k, let i j = c(b j)− ( j−1)k. Then there is no colour
in L(ai1,...,ik) distinct from the colours of its neighbours, a contradiction.

On the other hand, Mad(G)/2 may be much larger than ch(G). For example consider
the complete bipartite graph K2k−1,2k−1 . Easily Mad(K2k−1,2k−1)/2 = 2k−2 and K2k−1,2k−1 is k-
choosable as shown by the following proposition.

Proposition 2.7. ch(K2k−1,2k−1)6 k.

Proof. Let (A,B) be the bipartition of K2k−1,2k−1 . Let L be a k-list assignment of K2k−1,2k−1 . Set
S =

⋃
v∈A∪B L(v). Let (SA,SB) be a random partition of S into two disjoint classes obtained by

assigning colour of S independently either to SA or SB with probability 1/2. A vertex v is called
bad if either v ∈ A and L(v)∩SA = /0 or v ∈ B and L(v)∩SB = /0. The probability for a vertex to
be bad is 2−k so the expected number of bad vertices is 1. However, for the partitions SA = S
and SB = /0 there are 2k−1 > 1 bad vertices. So there is at least one partition (SA,SB) with no bad
vertices. Choosing for each a ∈ A, c(a) ∈ L(a)∩SA and for each b ∈ B, c(b) ∈ L(b)∩SB, we
obtain a proper L-colouring of G.

2.1.1 List edge-colouring bipartite graphs

Using the kernel approach, Galvin [40] proved that the List Colouring Conjecture restricted to
bipartite graphs is true.

Theorem 2.8 (Galvin [40]). Let G be a bipartite graph. Then ch′(G) = χ′(G) = ∆(G).

The key step in Galvin’s proof is to show that line graphs of bipartite graphs can be oriented
in such a way that the maximum outdegree is not too high, and every induced subgraph has a
kernel.

We need some preliminaries. Let G = ((X ,Y ),E) be a bipartite graph. In the line graph
L(G), there is a clique Kv for each vertex v of G, the vertices of Kv corresponding to the edges of
G incident to v. Each edge xy of G gives rise to a vertex of L(G) which lies in exactly two of
these cliques, namely Kx and Ky. We refer to Kv as an X-clique if v ∈ X , and a Y -clique if v ∈ Y .

There is a convenient way of visualizing this line graph L(G). Because each edge of G is a
pair xy, the vertex set of L(G) is a subset of the cartesian product X×Y . Therefore, in a drawing
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G L(G)

Figure 1: A bipartite graph G and a representation of its line graph L(G).

of L(G), we can place its vertices at appropriate lattice points of the m×n grid, where m = |X |
and n = |Y |, the rows of the grid being indexed by X and the columns by Y . Any two vertices
which lie in the same row or column of the grid are adjacent in L(G), and so the sets of vertices
in the same row or column are cliques of L(G), namely its X-cliques and Y -cliques, respectively.
See Figure 1.

Lemma 2.9. Let G = ((X ,Y ),E) be a bipartite graph, and let D be an orientation of its line
graph L(G) in which each X-clique and each Y -clique induces a transitive tournament. Then D
has a kernel.

Proof. By induction on e(G), the case e(G) = 1 being trivial. For v ∈V (G), denote by Tv the
transitive tournament in D corresponding to v, and for x ∈ X , denote by tx the sink of Tx. Set
K := {tx : x ∈ X}. Every vertex of D−K lies in some Tx, and so dominates some vertex of K.
Thus if the vertices of K lie in distinct Y -cliques, then K is a kernel of D.

Suppose, then, that the Y -clique Ty contains two vertices of K. One of these, say tx, is not the
source sy of Ty, so sy→ tx. Set D′ := D− sy. Then D′ is an orientation of the line graph L(G\ e),
where e is the edge of G corresponding to the vertex sy of L(G). Moreover, each clique of D′

induces a transitive tournament. By induction, D′ has a kernel K′. We show that K′ is also a
kernel of D. For this, it suffices to verify that sy dominates some vertex of K′.

If tx ∈ K′, then sy→ tx. On the other hand, if tx /∈ K′, then tx→ v, for some v ∈ K′. Because
tx is the sink of its X-clique, v must lie in the Y -clique Ty \{sy}. But then sy, being the source of
Ty, dominates v. Thus K′ is indeed a kernel of D.

Proof of Theorem 2.8. Let G = ((X ,Y ),E) be a bipartite graph with maximum degree k, and let
c : E(G)→{1,2, . . . ,k} be a k-edge-colouring of G. The colouring c induces a k-colouring of
L(G). We orient each edge of L(G) joining two vertices of an X-clique from lower to higher
colour, and each edge of L(G) joining two vertices of a Y -clique from higher to lower colour as
in Figure 2 (where the colour c(xiy j) of the edge xiy j is indicated inside the corresponfing vertex
of L(G)). By Lemma 2.9, this orientation D is kernel-perfect. Moreover, ∆+(D) = k−1. Thus,
by Lemma 2.2, L(G) is k-choosable, so G is k-edge-choosable.

Slivnik [86] gave a direct alternative proof of Theorem 2.8. It also relies on the same
orientation, but orientations and kernels are hidden.
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Figure 2: Orienting the line graph of a bipartite graph.

2.2 The graph polynomial, orientations and the Combinatorial Nullstel-
lensatz

In this subsection, we define a natural polynomial associated to a graph, indeed so natural that is
called the graph polynomial, and show how some of its coefficients may be expressed in terms
of orientations. Next, we present an algebraic tool related to polynomials and apply it to obtain
results on list colouring.

2.3 The graph polynomial
Let G be a graph with vertex set {v1, . . . ,vn}. The graph polynomial fG of G is defined by
fG(x1, . . . ,xn) := ∏{(xi− x j) | i < j,viv j ∈ E(G)}. This polynomial has been studied by several
researchers, starting already with Petersen [72]. See also [84] and [63] for example. Note that a
colouring c of G is proper if and only if fG(c(v1), . . . ,c(vn)) 6= 0.

The coefficients of the monomials that appear in the standard representation of fG as a linear
combination of monomials can be expressed in terms of the orientations of G. While expanding
the product ∏{x1− x j) | i < j,viv j ∈ E(G)}, to obtain a monomial one has too choose for each
edge viv j of E with i < j either xi or −x j. This corresponds to choosing an orientation D of
every edge viv j (i < j): We orient it from vi to v j if we choose xi and from v j to vi if we choose

−x j. Hence each monomial we obtain is of the form ∏
n
i=1 xd+

D (vi)
i with D an orientation of G.

Furthermore, a monomial is preceded by the sign + if the orientation D is even that is has an even
number of arcs viv j such that i > j. It is preceded by the sign − if the orientation D is odd that is
not even. For non-negative d1, . . .dn let EO(d1, . . .dn) and OO(d1, . . .dn) denote, respectively,
the sets of all even and odd orientations of G in which d+(vi) = di, for 1 6 i 6 n. Then

fG(x1, . . . ,xn) = ∑
d1,...,dn>0

(|EO(d1, . . . ,dn)|− |OO(d1, . . . ,dn)|)
n

∏
i=1

xdi
i . (2)

Let O(d1, . . . ,dn) be the set of orientations D of G such that d+
D (vi) = di, for i ∈ {1, . . . ,n}.
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Let D be a fixed orientation in O(d1, . . . ,dn). For any orientation D′ ∈ O(d1, . . . ,dn), let diff(D′)
be the spanning subdigraph of D with arc set A(D)\A(D′). In other words, the arcs of diff(D′)
are the ones of D that are oriented in the opposite way in D′. Since the outdegree of every
vertex in D′ equals its outdegree in D, we deduce that diff(D′) is an eulerian subdigraph of
D. In addition, diff(D′) is even if and only if either both D and D′ are even or both are odd.
The mapping D′ 7→ diff(D′) is clearly a bijection between O(d1, . . . ,dn) and the set of eulerian
spanning subdigraphs of D. In case D is even, it maps even orientations to even (eulerian)
subdigraphs, and odd orientations to odd subdigraphs. Otherwise, it maps even orientations to
odd subdigraphs, and odd orientations to even subdigraphs. In any case,

||EO(d1, . . . ,dn)|− |OO(d1, . . . ,dn)||= |ee(D)−oe(D)| . (3)

2.3.1 The Combinatorial Nullstellensatz

Let F be an arbitrary field, and let F[x] be the ring of polynomials in one variable. The well-
known Factor Theorem states that a non-null polynomial of degree at most d has at most p roots.
This theorem has been generalized to multivariate polynomials by Alon [7] in the so-called Com-
binatorial Nullstellensatz. This theorem has many useful applications in combinatorics, graph
theory, and additive number theory (see [7]). The short proof we give is due to Michalek [67].

The degree of a multivariate polynomial P, denoted deg(P), is the degree of the polynomial
P(x,x, . . . ,x) in x.

Theorem 2.10 (Combinatorial Nullstellensatz). Let F be an arbitrary field, and let P=P(x1, . . . ,xn)
be a polynomial in F[x1, . . . ,xn]. Suppose that the degree deg(P) of P is ∑

n
i=1 ti, where each ti is

a non-negative integer, and suppose the coefficient of ∏
n
i=1 xti

i in P is non-zero. Then, if S1, . . . ,Sn
are subsets of F with |Si|> ti, there are s1 ∈ S1, . . . ,sn ∈ Sn so that

P(s1, . . . ,sn) 6= 0.

Proof. By induction on the degree of P. If deg(P) = 0 the theorem is trivial, as P is a non-zero
constant. Suppose deg(P)> 0 and P satisfies the assumptions of the theorem but P(~x) = 0 for
every~x ∈ S1×·· ·×Sn. Without loss of generality k1 > 0. We can write s ∈ S1 and write

P = (x1− s)Q+R (4)

where Q∈ F[x1, . . . ,xn] and R∈ F[x2, . . . ,xn]. Since P vanishes on {s}×S2×·· ·×Sn, R vanishes
on S2×·· ·×Sn. Since P and R both vanish on (S1 \{s})×S2×·· ·×Sn, so does Q.

Note that the coefficient of xk1−1
1 xk2

2 · · ·xkn
n in Q is non-zero and that deg(Q) = ∑

n
i=1 ki−1 =

deg(P)− 1. Hence we may apply the induction hypothesis to Q. So Q does not vanish on
(S1 \{s})×S2×·· ·×Sn, a contradiction.

2.3.2 The Alon-Tarsi Method

A digraph is even if it has an even number of arcs, otherwise it is odd. In particular, an empty
digraph is an even digraph. We denote by ee(D) and oe(D) respectively the set of even and odd
eulerian spanning subdigraphs of a digraph D.
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Theorem 2.11 (Alon and Tarsi [6]). Let D be a digraph. If ee(D) 6= oe(D), then D is (d+
D +1)-

choosable. In particular, D is (∆+(D)+1)-choosable.

Proof. Let G be the underlying graph of D. For 1 6 i 6 n, set di = d+
D (vi).

Hence if ee(D) 6= oe(D) the coefficient of Πn
i=1xdi

i in fG is non-zero. So by the Combinatorial
Nullstellensatz for any list-assignment L such that |L(vi)|> di +1, there are s1 . . . ,sn such that
fG(s1, . . . ,sn) 6= 0. Hence the colouring defined by c(Vi) = si for i ∈ {1, . . . ,n} is a proper
L-colouring.

Observe that an acyclic digraph has no eulerian spanning subdigraph except the empty one.
Therefore Theorem 2.11 also implies that χ(D)6 ∆+(D)+1 for every acyclic digraph and so
χ(G)6 δ∗(G)+1 for any graph G.

Theorem 2.4 also easily derives from Theorem 2.11.

Alternative proof of Theorem 2.4. Set ∆+ = dMad(G)/2e. By Lemma 1.1, there is an orienta-
tion D of G in which the maximum outdegree is at most ∆+. Since D contains no odd directed
cycles (and in fact no odd cycles at all), oe(D) = 0 and ee(D) > 1 because the empty span-
ning subgraph is an even eulerian one. Hence ee(D) 6= oe(D) and the result follows from
Theorem 2.11.

Häggkvist and Janssen [45] used the Alon-Tarsi method to show that the List Colouring
Conjecture holds for complete graphs with an odd number of vertices, and that ch′(G) 6
∆(G)+O(∆(G)2/3

√
log∆(G).

Another interesting application of Theorem 2.11 has been obtained by Fleischner and Stieb-
itz [34], solving a problem raised by Du, Hsu and Hwang [25], as well as a strengthening of it
suggested by Erdős.

Theorem 2.12 (Fleischner and Stiebitz [34]). Let G be a graph on 3n vertices, whose edge set
is the disjoint union of a hamiltonian cycle and n pairwise vertex-disjoint triangles. Then the
choice number and the chromatic number of G are both 3.

The proof is based on a subtle parity argument that shows that, if D is the digraph obtained
from G by directing the hamiltonian cycle as well as each of the triangles cyclically, then
ee(D)− eo(D)≡ 2(mod4). The result thus follows from Theorem 2.11.

Sachs [80] gave an elementary proof of the fact that the chromatic number of a ‘cycle-
plus-triangles’ graph is 3-colourable. Fleischner and Sabidussi [35] considered the problem of
3-colourability of those 4-regular hamiltonian graphs whose edge set is the disjoint union of a
hamiltonian cycle and pairwise vertex-disjoint non-selfcrossing cycles of constant length > 4.
They showed that this problem is NP-complete.

In this section, we applied the kernel method and the Alon-Tarsi method to prove Theorem 2.4.
However, each technique allows to establish results that cannot be proved by the other. For
example, Theorem 2.8 proved by the kernel method cannot be proved by the Alon-Tarsi method.
See Exercise 2.5.
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On the other hand, Theorem 2.12 cannot be proved via kernels, since the ‘cycle-plus-triangles’
graphs are not kernel-perfect. Furthermore, contrary to the kernel method, the Alon-Tarsi method
has been applied to different polynomials in order to establish results on various kinds of
colourings. See for example Exercice 2.8.

2.4 Exercises
Exercise 2.1. Show that every acyclic digraph has a kernel. Deduce that every acyclic digraph is
kernel-perfect and bi-kernel perfect.

Exercise 2.2. Show that a tournament is kernel-perfect if and only if it is acyclic.

Exercise 2.3. Show that every even cycle is 2-choosable in two ways:

1) using Theorem 2.2;

2) using Theorem 2.11.

Exercise 2.4.
A (directed) graph G is (a : b)-choosable if for any a-list assignment L of G, there exist sets

C(v), v ∈V (G), of size b such that C(u)∩C(v) = /0 for every edge uv ∈ E(G).

1) Let D be a digraph, k a positive integer and L a (kd++ k)-list assignment of D. Show that
if D contains no odd directed cycle, then there exist subsets C(v)⊂ L(v), where |C(v)|= k
for all v ∈V (D) , and C(u)∩C(v) = /0 for every arc uv ∈ A(D).

2) Deduce that an even cycle is (2k : k)-choosable, for every k > 1.

3) Show that if a connected graph G is not a complete graph nor an odd cycle, then ch:k(G)6
k∆(G) for every k > 1.

4) Show that every d-degenerate graph is (kd + k : k)-choosable for every k > 1.

Exercise 2.5. Show that if D is an orientation of L(K3,3) such that ∆+(D) 6 2, then ee(D) =
eo(D).

Exercise 2.6. Let G be an interval graph.

1) Show that G has an acyclic orientation D with ∆+(D) = ω(G)−1.

2) Deduce that ch(G) = χ(G) = ω(G). (D. R. Woodall [95])

Exercise 2.7. The aim of this exercise is to show Brooks’ Theorem for list colouring (The-
orem 1.6) using the Alon-Tarsi method (Theorem 2.11). Let G be a connected graph with
maximum degree ∆.

1) Assume that a vertex x has degree less than ∆.

13



a) Show that G has an acyclic orientation D such that d+
D (v)6 ∆−1 for every vertex v.

b) Deduce from Theorem 2.11 that χ(G)6 ∆(G).

2) Assume now that G is ∆-regular.

a) Show that G contains an even cycle C with at most one chord.

b) Show that G has an orientation D such that D−C is acyclic, C→ D−C and C is
oriented in a cyclic way.

c) Deduce from Theorem 2.11 that χ(G)6 ∆(G). (Hladký, Král’ and Schauz [57])

Exercise 2.8. Let p and q be two positive integers with p> q. A (p,q)-colouring of a graph G is a
colouring f of the vertices of G with colours {0,1, . . . , p−1} such that q 6 | f (u)− f (v)|6 p−q
for all uv ∈ E(G). A list assignment L is a t-(p,q)-list-assignment if L(v)⊆ {0, . . . , p−1} and
|L(v)|> tq for each vertex v ∈V . The graph G is (p,q)-L-colourable if there exists a (p,q)-L-
colouring c, i.e. c is both a (p,q)-colouring and an L-colouring. For any real number t > 1, the
graph G is t-(p,q)-choosable if it is (p,q)-L-colourable for every t-(p,q)-list-assignment L. Last,
G is circularly t-choosable if it is t-(p,q)-choosable for any p,q. The circular list chromatic
number or circular choice number of G is

cch(G) := inf{t > 1 : G is circularly t-choosable}.

The aim of this exercise is to prove cch(C2n) = 2 for any n > 2, a result due to Norine [71].

1) Show that cch(G)> 2 for every non-empty graph G.

2) Considering the polynomial of C[x1, . . . ,xn]

P(x1,x2, . . . ,x2n) =
2n

∏
j=1

q−1

∏
k=−q+1

(x j− exp(2πik/p)x j+1)

where i denotes the square root of −1, prove that C2n is circularly 2-choosable.

Exercise 2.9. Let G = (V,E) be a graph and let f be a function assigning to eahc v ∈V a set of
f (v) integers in {0, . . . ,d(v)}. An f -factor of G is a subgraph of G in which d(v) ∈ f (v) for all
v ∈V .

Considering the polynomial over R in the variables xe, e ∈ E,

∏
v∈V

∏
c∈ f (v)c

(
∑
e3v

xe− c

)

where f (v)c = {0, . . . ,d(v)}\ f (v), show that if | f (v)|> dd(v)/2e for every v ∈V , then G has
an f -factor. (Shirazi and Verstraëte [85])
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Exercise 2.10. Let p be a prime and G = (V,E) a graph with average degree bigger than 2p−2
and maximum degree at most 2p−1.

For every vertex v and edge e, let av,e = 1 if v is incident to e and av,e = 0 otherwise.
Considering the polynomial over GF(p) in the variables xe, e ∈ E,

∏
v∈V

1−

(
∑
e∈E

av,exe

)p−1
−∏

e∈E
(1− xe)

show that G contains a p-regular subgraph. (N. Alon, S. Friedland and G. Kalai [4])

3 Properties of k-chromatic digraphs
Recall that a (proper) colouring of a digraph D is simply a colouring of its underlying graph G,
and its chromatic number χ(D) is defined to be the chromatic number χ(G) of G. Why, then,
consider colourings of digraphs? It turns out that the chromatic number of a digraph provides
interesting information about its subdigraphs.

3.1 Gallai–Roy Theorem and related results
One of the most well known connections between orientations and colourings is the so called
Gallai–Roy Theorem. But in fact in the 1960s it was published in four different languages by
four different authors: Gallai [38] in English, Hasse [50] in German, Roy [79] in French and
Vitaver [92] in Russian.

Theorem 3.1 (Gallai [38] –Hasse [50] – Roy [79] – Vitaver [92]). GALLAI–ROY THEOREM

The order of the longest path of a digraph D is at least χ(D).

There are many proofs of this theorem. The proof we give here is due to El-Sahili and
Kouider [28]. It is based on some order on spanning out-forests, which will be useful later.
Another proof, using the concept of median order which will be studied later, is outlined in
Exercise 3.10.

Let F be a spanning out-forest of D. The level of x is the number of vertices of a longest
directed path of F ending at x. For instance, the level 1 vertices are the roots of the out-
arborescences of F . We denote by Fi the set of vertices with level i in F . A vertex y is a
descendant of x in F if there is a directed path from x to y in F .

If there is an arc xy in D from Fi to Fj, with i > j, and x is not a descendant of y, then the
out-forest F ′ obtained by adding xy and removing the arc of F with head y (if such exists that
is if j > 1) is called an elementary improvement of F . An out-forest F ′ is an improvement of
F if it can be obtained from an out-forest F by a sequence of elementary improvements. The
key-observation is that if F ′ is an improvement of F then the level of every vertex in F ′ is at least
its level in F . Moreover, at least one vertex of F has its level in F ′ strictly greater than its level
in F . Thus, one cannot perform infinitely many improvements. A spanning out-forest F is final
if there is no elementary improvement of F .
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The following proposition follows immediately from the definition of final spanning out-
forest:

Proposition 3.2 (El-Sahili and Kouider [28]). Let D be a digraph and F a final spanning out-
forest of D. If a vertex x ∈ Fi dominates in D a vertex y ∈ Fj for j 6 i, then x is a descendant of y
in F. In particular, every level of F is a stable set in D.

Proof of Theorem 3.1. Consider a final spanning out-forest of a k-chromatic digraph D. Since
every level is a stable set by Proposition 3.2, there are at least k levels. Hence D contains a
directed path of order at least k.

The chromatic number of a graph may then be defined in terms of the lengths of a longest
path in its orientations. Let λ(D) denote the length of a longest directed path in the digraph D.

Corollary 3.3. For any graph G,

χ(G) = min{λ(D) |D orientation of G} .

Proof. As χ(G) = χ(D), by Theorem 3.1, χ(G) = min{λ(D) |D orientation of G}.
Let (S1, . . . ,Sχ(G)) be a partition of V (G) into stable sets that corresponds to a proper χ(G)-

colouring of G. For any (i, j) ∈ {1, . . . ,χ(G)}2 with i < j, orient all the edges between Si and S j
form Si to S j. Doing so we obtain an orientation of G in which every directed path has at most
χ(G) vertices.

Remark 3.4. The above proof shows that min{λ(D) | D orientation of G} is always attained by
an acyclic orientation. But it may be attained by other orientations.

Not only is there an upper bound for the chromatic number of a graph G in terms of the
length of a longest path in an orientation D of G, an upper bound can be given with the aid of
orientations and the cycles of G. Let D be an acyclic orientation of a graph G that is not a forest.
For each cycle C of G, there are then a(C) edges of C oriented in one direction and b(C) edges
oriented in the opposite direction for some positive integers a(C) and b(C) with a(C)> b(C).
Let

r(D) := max
{

a(C)

b(C)

∣∣∣∣C is a cycle of G
}
.

The following theorem due to Minty [68] relates the chromatic number χ(G) to r(D) for some
acyclic orientation D of G.

Theorem 3.5 (Minty [68]). Let G be a graph that is not a forest. Then χ(G)6 k for some integer
k > 2 if and only if there exists some acyclic orientation D of G such that r(D)6 k−1.

The existence of an acyclic orientation D such that r(D)6 k−1 is easy (Exercise 3.3). The
converse is more difficult.

Corollary 3.6. Let G be a graph that is not a forest. Then

χ(G) = min{1+ dr(D)e | D orientation of G}.
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3.1.1 Rédei’s Theorem

Because a tournament of order n has chromatic number n, the Gallai–Roy Theorem is a general-
ization of the well-known Rédei’s Theorem.

Theorem 3.7 (Rédei [74]). RÉDEI’S THEOREM

Every tournament contains a hamiltonian directed path.

This theorem has many easy and elementary proofs. See Exercise 3.1. An interesting
generalization is a theorem of Rédei [74] on the parity of the number of hamiltonian directed
paths; it was from this result that it was originally deduced.

Theorem 3.8 (Rédei [74]). Every tournament contains an odd number of hamiltonian directed
paths.

The proof of Theorem 3.8 is established by means of a proof technique known as Inclusion-
Exclusion Principle or Möbius Inversion Formula, an inversion formula with applications through-
out mathematics. We present here a simple version which suffices for our purpose. We refer the
interested reader to Chapter 21 of Handbook of Combinatorics [41].

Lemma 3.9. MÖBIUS INVERSION FORMULA

Let T be a finite set and f : 2T → R a real-valued function defined on the subsets of T . Define
the function g : 2T → R by g(X) = ∑Y |X⊆Y⊆T f (Y ). Then

f (X) = ∑
Y |X⊆Y⊆T

(−1)|Y |−|X |g(Y ).

Proof. By the Binomial Theorem,

∑
XY |⊆Y⊆Z

(−1)|Y |−|X | =
|Z|

∑
k=|X |

(
|Z|− |X |
k−|X |

)
(−1)k−|X | = (1−1)|Z|−|X |

which is equal to 0 if X ⊆ Z, and to 1 if X = Z. Therefore,

f (X) = ∑
Z|X⊆Z⊆T

f (Z) ∑
Y |X⊆Y⊆Z

(−1)|Y |−|X |

= ∑
Y |X⊆Y⊆T

(−1)|Y |−|X | ∑
Z|Y⊆Z⊆T

f (Z) = ∑
Y |X⊆Y⊆T

(−1)|Y |−|X |g(X)

Proof of Theorem 3.8. Let T be a tournament with vertex set V (T ) = {1,2, . . . ,n}. For any
permutation σ of V (T ), let Aσ = A(T )∩{σ(i)σ(i+ 1) | 1 6 i 6 n− 1}. Then Aσ induces a
subdigraph of T each of whose components is a directed path.
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For any subset X of A(T ), let us define f (X) = |{σ ∈ Sn | X = Aσ}| and g(X) = |{σ ∈
Sn | X ⊂ Aσ}|. Then g(X) = ∑

Y |X⊆Y⊆A(T )
f (Y ), so by the Möbius Inversion Formula

f (X) = ∑
Y |X⊆Y⊆A(T )

(−1)|Y |−|X |g(Y ).

Observe that g(Y ) = r! if and only if the spanning subdigraph of D with arc-set Y is the disjoint
union of r directed paths. Thus g(Y ) is odd if and only if Y induces a hamiltonian directed path
of D. Hence, defining h(X) = |{H ∈ H | X ⊂ A(H)}| with H the set of hamiltonian directed
paths of D, we obtain

f (X)≡ ∑
{H∈H | X⊂A(H)}

(−1)n−1−|X | ≡ h(X) (mod 2).

The theorem is true for transitive tournaments as there is a unique hamiltonian directed path.
Since any tournament of order n may be obtained from the transitive tournament on n vertices by
reversing the orientation of appropriate arcs, it suffices to prove that the parity of the number of
hamiltonian directed paths h(T ) is unaltered by the reversal of any one arc a.

Let T ′ be the tournament obtained from T by reversing a. Then h(T ′) = h(T )+ f ({a})−
h({a}). Since f ({a})≡ h({a}) (mod 2), we have h(T ′)≡ h(T ) (mod 2).

3.1.2 Relation to Gallai-Milgram Theorem

Gallai–Roy Theorem (3.1) bears a striking formal resemblance with another celebrated result,
namely Gallai–Milgram Theorem. By interchanging the roles of stable sets and directed paths,
one theorem is transformed into the other: directed paths become stable sets, and vertex colour-
ings (which are partitions into stable sets) become path partitions, where by path partition, we
mean a covering of the vertex set of a digraph by disjoint directed paths. A path partition with
the fewest paths is called an optimal path partition. The number of directed paths in an optimal
path partition of a digraph D is denoted by π(D). Recall that α(D) is the stability number of D.

Theorem 3.10 (Gallai and Milgram [39]). GALLAI–MILGRAM THEOREM

Every digraph D has a path partition in at most α(D) paths, that is π(D)6 α(D).

[39] actually proved a somewhat stronger theorem. A directed path P and a stable set S are
said to be orthogonal if they have exactly one common vertex. By extension, a path partition P
and stable set S are orthogonal if each path in P is orthogonal to S.

Theorem 3.11 (Gallai and Milgram [39]). Let P be an optimal path partition of a digraph D.
Then there is a stable set S in D which is orthogonal to P .

Note that the Gallai–Milgram Theorem is an immediate consequence of Theorem 3.11
because π = |P |6 |S|6 α. Theorem 3.11 is established by means of a nice inductive argument.
See Exercise 3.4.
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A possible common generalization of the Gallai–Roy and Gallai–Milgram theorems was
proposed by Linial [65]. A partial k-colouring C of a digraph D is optimal if the number of
coloured vertices, ∑C∈C |C|, is as large as possible. Let P be a k-optimal path partition and C an
optimal k-colouring of a digraph D. Define

πk(D) := ∑
P∈P

min{v(P),k} and αk(D) := ∑
C∈C
|C| .

In particular, π1 = π, the number of directed paths in an optimal path partition of D, and α1 = α.
Linial’s Conjecture asserts that πk 6 αk for all digraphs D and all positive integers k.

Conjecture 3.12 (Linial [65]). For every positive integer k and every digraph D, πk(D)6 αk(D).

A stronger conjecture than Linial’s one was proposed by Berge [9]. See Exercise 3.5.
Let k be a positive integer. A path partition P is k-optimal if it minimizes the function

∑{min{v(P),k} : P∈ P}, and a partial k-colouring of a graph or digraph is a family of k disjoint
stable sets. In particular, a 1-optimal path partition is one that is optimal, and a partial 1-colouring
is simply a stable set.

The concept of orthogonality of paths and stable sets is extended as follows. A path partition
P and partial k-colouring C are orthogonal if every directed path P ∈ P meets min{v(P),k}
different colour classes of C . We can now state the conjecture proposed by Berge.

Conjecture 3.13 (Berge [9]). PATH PARTITION CONJECTURE

Let D be a digraph, k a positive integer, and P a k-optimal path partition of D. Then there is a
partial k-colouring of D which is orthogonal to P .

The Path Partition Conjecture has been proved for k = 1 by Linial [64] and for k = 2 by
Berger and Hartman [10]. It has also been established for acyclic digraphs, by Aharoni et al. [3]
and Cameron [19], and for digraphs containing no directed path with more than k vertices,
by Berge [9]. We refer the reader to the survey by Hartman [49] for a full discussion of this
conjecture and of related questions.

Gallai–Roy Theorem (3.1) would be implied by the following conjecture and an immediate
induction.

Conjecture 3.14 (Laborde, Payan and Xuong [62], 1982). Every digraph has a stable set meeting
every longest directed path.

For digraphs with stability number 1, i. e. tournaments, the conjecture is true because they
have a hamiltonian directed path. Thus the removal of any vertex decreases the length of a
longest directed path. Havet [52] verified Conjecture 3.14 for digraph with stability number
2 using a result of Chen and Manalastas [22] asserting that every every strong digraph with
stability number 2 has a hamiltonian directed path.

Analogously, Gallai-Milgram Theorem 3.10 would be implied by the fact that every digraph
has a directed path meeting all maximum stable sets. However, using a clever probabilistic
argument, Fox and Sudakov [37] showed that, as conjectured by Hahn and Jackson [47], it is
false in the following strong sense. For each positive integer k, there is a digraph D with stability
number k such that deleting the vertices of any k−1 directed paths in D leaves a digraph with
stability number k.
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3.2 Unavoidable and universal digraphs
A digraph is k-universal if it is contained in every k-chromatic digraph and simply universal
if there exists some k such that it is k-universal. Similarly, a digraph is k-unavoidable if it is
contained in every tournament of order k and simply unavoidable if there exists some k such that
it is k-unavoidable. Trivially, if a digraph is k-universal, then it is k-unavoidable.

Gallai–Roy Theorem (resp. Redei’s Theorem) states that the directed path of order k is
k-universal (resp. k-unavoidable). A natural question is which digraphs are k-universal (resp.
k-unavoidable)? Dually, for each digraph D one can wonder if it is universal (resp. unavoidable)
and, if yes, what is the minimum integer univ(D) (resp. unvd(D)) such that D is univ(D)-
universal (resp. unvd(D)-unavoidable).

3.2.1 Unavoidable digraphs

Because the transitive tournaments are acyclic, every digraph containing a directed cycle is not
unavoidable. On the other hand, every acyclic digraph of order k is 2k−1-unavoidable.

Theorem 3.15. Every acyclic digraph of order k is 2k−1-unavoidable.

Proof. As every acyclic digraph of order k is a subdigraph of the transitive tournament T Tk, it
suffices to prove the result for T Tk.

We prove it by induction on k, the result holding trivially if k = 1. Let k > 1 and let T be
a tournament of order 2k. In T there is a vertex v of outdegree at least 2k−1. By the induction
hypothesis, T 〈N+(v)〉 has a transitive subtournament T ′ of order k−1. Thus T 〈V (T ′)∪{v}〉 is
a transitive tournament of order k.

The above result is almost tight for transitive tournaments as shown by the following result
due to Erdős and Moser [33].

Theorem 3.16 (Erdős and Moser [33]). There exists a tournament on 2(k−1)/2 vertices which
contains no T Tk.

Proof. The proof is probabilistic and uses the First Moment Method. Set n = 2(k−1)/2 and let T
be a random tournament on n vertices.

For ordered k-tuple (v1, . . . ,vk) the probability that T 〈{v1, . . . ,vk}〉 is a transitive tournament

with hamiltonian directed path (v1,v2, . . . ,vk) is
(1

2

)(k
2). Hence the expected number of transitive

subtournaments of order k is

n!
(n− k)!

(
1
2

)(k
2)
< nk

(
1
2

)(k
2)
6 1

because n 6 2(k−1)/2. Hence by the First Moment Principle, there exists a tournament of order n
with less than 1 i.e. no transitive subtournament of order k.
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More generally, for every acyclic digraph D with k vertices and m arcs one shows that
unvd(D) > 2

m
k . See Exercice 3.8. This gives a meaningful lower bound for digraphs with

sufficiently many arcs, namely at least k logk arcs.
For transitive tournaments, Erdős and Moser [33] ask for the value of unvd(T Tk).

Problem 3.17. Erdős and Moser [33] What is unvd(T Tk)?

Clearly, unvd(T T1) = 1, unvd(T T2) = 2 and unvd(T T3) = 4. Also unvd(T T4) = 8 because
the Paley tournament (depicted on Figure 3) contains no T T4. Moreover Reid and Parker [75]
showed that unvd(T T5) = 14 and unvd(T T6) = 28 and Sanchez-Flores [83] showed unvd(T T7)6
54. A similar induction as in the proof of Theorem 3.15 yields that unvd(T Tk)6 54×2k−7 if
k > 7. In addition, for 1 6 k 6 6 it has been shown [75, 82] that there is a unique tournament of
order unvd(T Tk)−1 that contains no T Tk.

3.2.2 Universal digraphs

Since there exist k-chromatic graphs with arbitrarily large girth (Theorem 1.2), universal digraphs
must be oriented trees. Conversely, Burr [17] proved that every oriented tree is universal. In
fact, he showed that every oriented tree of order k is (k−1)2-universal. We will no show a slight
improvement of this result due to Addario-Berry et al. [2].

Theorem 3.18 (Addario-Berry et al. [2]). Every oriented tree on k vertices is (k2/2− k/2+1)-
universal.

The proof relies on the notion of kernel and its dual notion antikernel. A set S is antidominat-
ing if every vertex v in V (D)\S dominates a vertex in S. A dominating stable set is called an
antikernel. In other words, an antikernel of D is a stable set S such that S∪N+(S) =V (D). If ev-
ery induced subdigraph of D has a kernel and an antikernel, then D is said to be bikernel-perfect.
Several classes of bikernel-perfect digraphs are known: symmetric digraphs, acyclic digraphs
are bikernel-perfect.

The following lemma shows that one can find large trees in highly chromatic bikernel-perfect
digraphs.

Lemma 3.19 (Addario-Berry et al. [2]). Every oriented tree of order k is contained in every
k-chromatic bikernel-perfect digraph.

Proof. Let us prove the result by induction on k, the result being trivially true if k = 1.
Let T be an oriented tree of order k and D be a k-chromatic bikernel-perfect digraph. Let v

be a leaf of T and w its unique neighbour in T . By directional symmetry, we may assume that
v→ w. Since D is bikernel-perfect, T has a kernel S. The digraph D−S has chromatic number
at least (k−1), so by induction it contains a copy T ′ of T − v. Now by definition of kernel, the
vertex w′ in T ′ corresponding to w is dominated by a vertex v′ of S. Hence D contains T .

Proof of Theorem 3.18. Let f (k) = (k2/2− k/2+1). We have f (k) = f (k−1)+ k−1. Let us
prove the result by induction on k. The result holding trivially when k = 1.
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Suppose now that k > 1. Let D be an f (k)-chromatic digraph and T be an oriented tree of
order k. Let A be a maximal acyclic induced subdigraph of D. If χ(A)> k, then by Theorem 3.19,
A contains T , so D contains T . If χ(A)6 k−1, then χ(D−A)> f (k)− (k−1) = f (k−1). Let
v be a leaf of T . The digraph D−A contains T − v. Now, by maximality of A, for every vertex x
of D−A, there are vertices y and z of A such that xy and zx are arcs. So we can extend T − v to
T by adding a vertex in A.

Since every oriented tree is universal, it is natural to ask for the value of univ(T ) for every
oriented tree T . Furthermore, what is

univ(k) = max{univ(T ) | T oriented tree of order k} ?

Theorem 3.18 yields univ(k)6 k2/2− k/2+1. However this bound is believed to be far from
tight. Burr [17] conjectured that univ(k) = 2k−2.

Conjecture 3.20 (Burr [17]). Every oriented tree with k > 1 vertices is (2k−2)-universal.

This conjecture is tight. In a regular tournament R of order 2k−3 all vertices have outdegree
k−2. Hence R does not contain the outstar S+k , the oriented tree of order k consisting of a vertex
dominating all the others. Hence S+k is not (2k−3)-unavoidable, and so not (2k−3)-universal.

In view of Lemma 3.19, an approach to improve the upper bound on univ(k) would be
to prove that every digraph with not too big chromatic number contains a bikernel-perfect
k-chromatic digraph.

Problem 3.21 (Addario-Berry et al. [2]). What is the minimum integer g(k) such that every
g(k)-chromatic digraphs has an acyclic k-chromatic digraph?

Proposition 3.22. Every k2-chromatic digraph contains a k-chromatic acyclic subdigraph.

Proof. Let D be a k2-chromatic digraph. Let v1,v2, . . . ,vn be any linear order of the vertices of D.
Let D1 and D2 be the digraphs with vertex set V (D) and arc sets A(D1) = {viv j ∈ A(D), i < j}
and A(D2) = {viv j ∈ A(D), i > j}. Clearly, D1 and D2 are acyclic and χ(D1)×χ(D2)> χ(D).
Hence either D1 or D2 has chromatic number at least k.

3.3 Oriented trees in k-chromatic digraphs
3.3.1 Oriented trees in tournaments

Conjecture 3.23 (Sumner, 1972). Every oriented tree with k > 1 vertices is (2k−2)-unavoidable.

The first linear bound was given by Häggkvist and Thomason [46]. Refining an idea of
Havet and Thomassé [55], El Sahili [27] proved that every oriented tree of order k (k > 2) is
(3k−3)-unavoidable. Recently, Kühn, Mycroft and Osthus [61] proved that Sumner’s conjecture
is true for all sufficiently large k. Their complicated proof makes use of the directed version of
the Regularity Lemma.
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We now present the method used by Havet and Thomassé [55]. It is based on the concept
of median order. A median order of a digraph D is a linear order v1,v2, . . . ,vn of its vertex set
such that |{(vi,v j) : i < j}| (the number of arcs directed from left to right) is as large as possible.
In the case of a tournament, such an order can be viewed as a ranking of the players which
minimizes the number of upsets (matches won by the lower-ranked player). As we shall see,
median orders of tournaments reveal a number of interesting structural properties.
Let us first note two basic properties of median orders of tournaments (Exercise 3.9). Let T
be a tournament and v1,v2, . . . ,vn a median order of T . Then, for any two indices i, j with
1 6 i < j 6 n:

(M1) the interval vi,vi+1, . . . ,v j is a median order of the induced subtournament T 〈{vi,vi+1, . . . ,v j}〉,

(M2) vertex vi dominates at least half of the vertices vi+1,vi+2, . . . ,v j, and vertex v j is dominated
by at least half of the vertices vi,vi+1, . . . ,v j−1.

In particular, each vertex vi, 16 i< n, dominates its successor vi+1. The sequence (v1,v2, . . . ,vn)
is thus a hamiltonian directed path, providing an alternative proof of Rédei’s Theorem (3.7).

Theorem 3.24 (Havet and Thomassé [55]). Every tournament of order 2k−2 contains every
arborescence of order k.

Proof. By directional duality, it suffices to prove for out-arborescences.
Let v1,v2, . . . ,v2k−2 be a median order of a tournament T on 2k−2 vertices, and let A be an

out-arborescence on k vertices. Consider the intervals v1,v2, . . . ,vi, 1 6 i 6 2k−2. We show, by
induction on k, that there is a copy of A in T whose vertex set includes at least half the vertices
of any such interval.

This is clearly true for k = 1. Suppose, then, that k > 2. Delete a leaf y of A to obtain an out-
arborescence A′ on k−1 vertices, and set T ′ := T −{v2k−3,v2k−2}. By (M1), v1,v2, . . . ,v2k−4 is
a median order of the tournament T ′, so there is a copy of A′ in T ′ whose vertex set includes at
least half the vertices of any interval v1,v2, . . . ,vi, 1 6 i 6 2k−4. Let x be the predecessor of
y in A. Suppose that x is located at vertex vi of T ′. In T , by (M2), vi dominates at least half of
the vertices vi+1,vi+2, . . . ,v2k−2, thus at least k−1− i/2 of these vertices. On the other hand,
A′ includes at least (i− 1)/2 of the vertices v1,v2, . . . ,vi−1, thus at most k− 1− (i+ 1)/2 of
the vertices vi+1,vi+2, . . . ,v2k−2. It follows that, in T , there is an outneighbour v j of vi, where
i+1 6 j 6 2k−2, which is not in A′. Locating y at v j, and adding the vertex y and arc (x,y) to
A′, we now have a copy of A in T . It is readily checked that this copy of A satisfies the required
additional property.

The same method can be easily adapted to prove that every oriented tree of order k is (4k−4)-
unavoidable. (Exercise 3.11). El Sahili [27] used it in a clever way to show that every oriented
tree of order k is (3k−3)-unavoidable. (Exercise 3.12).

Havet and Thomassé (see [54]) made a conjecture implying Sumner’s one.

Conjecture 3.25 (Havet and Thomassé, 1996). Every oriented tree with k vertices and ` leaves
is (k+ `−1)-unavoidable.
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As an evidence to Conjecture 3.25 Häggkvist and Thomason [46] proved that oriented tree
with k vertices and ` leaves is (k+2512`3

). Havet [51] proved that a large family of oriented trees
verify the conjecture. For `= 2, Conjecture 3.25 follows from a result of Thomason [89] stating
that every oriented path of order k is (k+1)-unavoidable (See [56] for a short inductive proof.).
Ceroi and Havet [21] proved the case `= 3.

Thomason’s result cannot be improved since the antidirected paths of order 3, 5, and 7
are not contained in the 3-cycle C3, the regular tournament on 5 vertices R5, and the Paley
tournament on 7 vertices P7, respectively. See Figure 3. These pairs (P,T ) of antidirected path
and tounament of the same order, such that T does not contain P are known as Grünbaum’s
exceptions. Havet and Thomassé [56] proved that they are the only ones, thus answering a

C3 R5 P7

Figure 3: The tournaments of Grünbaum’s exceptions

conjecture of Roesenfeld [77].

Theorem 3.26 (Havet and Thomassé [56]). Let T and P be a tournament and an oriented path
of the same order. Then T contains P unless (P,T ) is one of Grünbaum’s exceptions.

A similar phenomenon appears when `= 3. Ceroi and Havet [21] actually proved that every
oriented tree of of order k with three leaves is (k+1)-unavoidable except the outstar S+3 and its
converse S−3 .

3.3.2 Universality of oriented paths

It might be possible that Conjecture 3.25 extends to universality.

Conjecture 3.27. Every oriented tree with k vertices and ` leaves is (k+ `−1)-universal.

This conjecture would imply Burr’s Conjecture. However, very little is known about this
conjecture. Regarding oriented paths, it suggests that every oriented path of order k is (k+1)-
universal. In fact, Bondy conjectured that except a finite number of exceptions, they should be
k-universal.
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Conjecture 3.28 (Bondy). For sufficiently large k, every oriented path of order k is k-universal.

El-Sahili proved [26] that every path of order 4 is 4-universal and that the antidirected path
of order 5 is 5-universal. The only generic results so far regards paths with two blocks. The
blocks of a path are its maximal directed subpaths.

Theorem 3.29 (Addario-Berry, Havet and Thomassé [1]). If k > 4, then every oriented k-path
with two blocks is k-universal.

Remark 3.30. The condition k > 4 in this theorem is necessary, as the 3-cycle C3 does not
contain the antidirected path of order 3.

The proof of Theorem 3.29 uses the concept of final spanning out-forest and the notion
of good directed cycle. We now show a slightly weaker statement than Theorem 3.29 which
emphasizes the use of final spanning forests. Good directed cycles are defined and used to prove
the restriction of Theorem 3.29 to strong digraphs in Subsection 3.4.2.

Theorem 3.31 (El-Sahili and Kouider [28]). Every oriented k-path with two blocks is (k+1)-
universal.

By directional symmetry we may consider that an oriented path with two blocks is an oriented
path of order k1 + k2 + 1 starting with k1 forward arcs and followed by k2 backward arcs for
some k1 > 1 and k2 > 1. Let us denote such a path by P(k1,k2). We shall prove that P(k1,k2) is
(k1 + k2 +1)-universal.

To do so, we need the following lemma.

Lemma 3.32 (El-Sahili and Kouider [28]). Let F be a final spanning out-forest of a digraph D.
We assume that there is an arc vw from Fi to Fj. Then

(i) If k1 6 i < j− k2, then D contains a P(k1,k2).

(ii) If k1 < j 6 i− k2, then D contains a P(k1,k2).

Proof. (i) Let Pk2 be the directed path of F which starts at Fj−k2 and ends at w and Pk1−1 be the
directed path in F starting at Fi−(k1−1) and ending at v. Then Pk1−1∪ vw∪Pk2 is a P(k1,k2).

(ii) Let Pk2−1 be the directed path in F which starts at Fi−k2+1 and ends at v. Let Pk1 be the
directed path in F starting at Fj−k1 and ending at w. Then Pk1 ∪Pk2−1∪ vw is a P(k1,k2).

Proof of Theorem 3.31. Let F be a final spanning out-forest of D. Colour the levels F1, . . . ,Fk1 of
F with colours 1, . . . ,k1. Then colour the level Fi, where i > k1, with colour j ∈ {k1 +1, . . . ,k1 +
k2 +1} such that j ≡ i mod k2 +1. Since this is not a proper colouring, there exists an arc which
satisfies the hypothesis of Lemma 3.32.
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3.3.3 Antidirected trees in digraphs

An interesting special case is the one of antidirected trees. Burr [18] proved that every antidirected
tree of order k is contained in every digraph D with at least 4(k−1)v(D) arcs.

Theorem 3.33 (Burr [18]). Let D be a digraph. If a(D)> (4k−8)v(D), then D contains every
antidirected tree of order k.

Proof. Let D be a digraph of order n with more than (4k−8)n. Let (X ,Y ) be a bipartition of
D that maximizes the number of arcs between X and Y . It is well-known that there are at least
a(D)/2 such arcs. Without loss of generality, there are more arcs from X to Y than arcs from Y
to X . Hence, there are more than (k−2)n arcs from X to Y . Now remove iteratively from X all
the vertices with outdegree at most k−2 and from Y all the vertices with indegree at most k−2.
This process terminates on a non-empty bipartite digraph with bipartition (X ′,Y ′) in which every
vertex of X ′ has outdegree at least k−1 and every vertex of Y ′ has indegree at least k−1. This
certainly contains every antidirected tree of order k.

Remark 3.34. The condition of the tree to be antidirected is essential in Theorem 3.33. Indeed
a bipartite digraph D with bipartition (X ,Y ) and all arcs from X to Y only contains antidirected
tree while it can have up to v(D)2/4 arcs.

Theorem 3.33 implies trivially that every antidirected tree of order k is (8k−7)-universal.
Indeed every (8k−7)-critical digraph D has minimum degree at least 8k−8 by Proposition 1.4
and thus has at least 4(k− 1)v(D) arcs. This result has been improved by Addario-Berry et
al. [2].They proved that every antidirected tree of order k is (5k− 17

2 )-universal.
Since every antidirected tree of order k is contained in every digraph D with at least 4(k−

1)v(D) arcs, one may ask what is the smallest function αk such that every digraph D with more
than αkv(D) arcs contains every antidirected tree of order k. The above assertion shows that
αk 6 4k−4. Addario-Berry et al. [2] conjectured that αk = k−2.

Conjecture 3.35 (Addario-Berry et al. [2]). Let D be a digraph. If a(D)> (k−2)v(D), then D
contains every antidirected tree of order k.

Note that this conjecture would be tight, since the oriented tree of order k with a vertex
dominating the k−1 others is not contained in any digraph in which every vertex has outdegree
k− 2. It is also tight since the complete symmetric digraph on k− 1 vertices ~Kk−1 has (k−
2)(k−1) arcs but does trivially not contain any oriented tree of order k.

Conjecture 3.35 would imply Burr’s conjecture (Conjecture 3.20) for antidirected trees.
Indeed every (2k−2)-critical digraph D has minimum degree at least 2k−3 and thus has at least
2k−3

2 v(D)> (k−2)v(D) arcs. Note that since a critical digraph is an oriented graph, it suffices
to prove Conjecture 3.35 for oriented graphs to prove Burr’s conjecture.

On the opposite, the well-known Erdős-Sós conjecture, reported in a paper of Erdős [30], is
equivalent to Conjecture 3.35 for symmetric digraphs.

Conjecture 3.36 (Erdős and Sós, 1963). Let G be a graph. If e(G) > 1
2(k− 2)v(G), then G

contains every tree of order k .
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Indeed, consider a graph G and its corresponding symmetric digraph D (the digraph obtained
from G by replacing each edge uv by the two arcs uv and vu). G has more than 1

2(k−2)v(G)

edges if and only if a(D) > (k− 2)v(D). Let T be a tree and ~T one of its (two) antidirected
orientations. It is simple matter to check that G contains T if and only if D contains ~T .

The Erdős-Sós conjecture has been proved in particular cases: when the graph has no C4
in [81]; and for trees with diameter at most four [66]. Ajtai-Komlos-Simonovits-Szemeredi
announced that they showed that the conjecture holds for all sufficiently large k, using the
Regularity Lemma, but the paper is not written yet.

3.4 Oriented cycles digraphs
3.4.1 Oriented cycles in tournaments

By Theorem 1.2, the oriented cycles are not universal. Moreover non-strong tournaments have
clearly no hamiltonian directed cycles. Camion [20] showed all other tournaments do.

Theorem 3.37 (Camion [20]). Every strong tournament has a hamiltonian directed cycle.

Moon [69] strengthened this theorem by showing that every strong tournament is vertex
pancyclic: each vertex lies in a directed cycle of every length ` (3 6 `6 v(T )).

Theorem 3.38 (Moon [69]). Every strong tournament T is vertex-pancyclic.

Proof. Let T be a strong tournament and v1 a vertex of T . Let us prove by induction on k > 3
that v1 is in a directed cycle of length k.

There is an arc v2v3 with v2 ∈ N+(v1) and v3 ∈ N−(v1) otherwise N−(v1)→ N+(v1)∪{v1}
would be a reduction of T . Hence v1v2v3 is a directed 3-cycle..

Suppose now that v1 is in a directed p-cycle C = (v1,v2, . . . ,v,v1). We shall prove that if
p < v(T ) then v1 is in a directed (p+1)-cycle. Let S = V (D)\V (C). Suppose that there is a
vertex x of S that dominates a vertex of C and is dominated by a vertex of C. Then there is an arc
uv ∈ A(C) such that u→ x and x→ v. Thus xv∪C[v,u],∪ux is a directed (p+1)-cycle. Suppose
now that there is no such vertex. Then for every vertex in S either x→C or C→ x. Let S+ (resp.
S−) be the set of vertices x of S such that C→ x (resp. x→C). As T is strong there is an arc xy
with x ∈ S+ and y ∈ S−. Hence (v1,x,y,v3, . . . ,vp,v1) is a directed (p+1)-cycle.

As we did for paths, one can seek arbitrary orientations of cycles. The existence of
Grünbaum’s exceptions implies the existence of tournaments that do not contain certain hamilto-
nian cycles. Indeed the tournament of Grünbaum’s exceptions (see Figure 3) do not contain the
cycle obtained from a hamiltonian antidirected path by adding an edge from its terminal vertex
to its initial vertex. Moreover, the tournaments of order n ∈ {4,6,8} that have a subtournament
on n−1 vertices isomorphic to one of Grünbaum’s tournaments do not contain a hamiltonian
antidirected cycle.

However, similarly to oriented paths Rosenfeld [78] conjectured that there is an integer N > 8
such that every tournament of order n > N contains every non-directed cycle of order n. This
was settled by Thomason [89] for tournaments of order n > 2128. While Thomason made no
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attempt to sharpen this bound, he indicated that it should be true for tournaments of order at least
9.

Conjecture 3.39 (Rosenfeld–Thomason). Every tournament of order n > 9 contains every
non-directed cycle of order n.

Havet [53] improved Thomason’s results by showing that this conjecture is true for n > 68.
The proof in based on different lemma which ensures the existence of a directed cycle in
a tournament if it has a long block or not compared to its connectivity. In particular, the
Conjecture 3.39 is true if the tournament is either reducible (see Exercice 3.17), or 8-strong [53].
It also true if the tournament is either 5-strong and of order at least 43 or 4-strong and of order at
least 65.

Better results are also known for particular types of directed cycles. Conjecture 3.39 has
been proved for cycles with a block of length n−1 by Grünbaum [42], for antidirected cycles
(in which consecutives arcs have opposite senses) by Thomassen [90] (n > 50), Rosenfeld [78]
(n > 28) and Petrović [73] (n > 16), and for cycles with just two blocks by Benhocine and
Wojda [8].

3.4.2 Long directed cycles in digraphs

Furthermore, acyclic digraphs do not contain any directed cycles. However, Bondy showed that
under the hypothesis of strong connectivity every digraph contains a long directed cycle.

Theorem 3.40 (Bondy [14]). Every strong digraph D has a directed cycle of length at least
χ(D).

In order to prove this theorem, we need the notion of cyclic order. Let D = (V,A) be a
digraph. By a cyclic order of D we mean a cyclic order O = (v1,v2, . . . ,vn,v1) of its vertex set V .
Given such an order O, each directed cycle of D can be thought of as winding around O a certain
number of times. In order to make this notion precise, we define the length of an arc (vi,v j) of D
(with respect to O) to be j− i if i < j and n+ j− i if i > j. Informally, the length of an arc is
just the length of the segment of O ‘jumped’ by the arc. If C is a directed cycle of D, the sum
of the lengths of its arcs is a certain multiple of n. This multiple is called the index of C (with
respect to O), and denoted iO(C). A directed cycle of index 1 is called a simple cycle. If every
arc lies in such a cycle, the cyclic order is coherent.

Bessy and Thomassé [11] proved that every strong digraph has a coherent cyclic order. They
then used such a cyclic order to prove Gallai’s conjecture that every strong digraph D is spanned
by the union of α(D) directed cycles. Camion’s Theorem (3.37) derives also easily from the
existence of a coherent cyclic order (See Exercise 3.18.). We shall now prove a slighty more
general result in order to prove Theorem 3.40.

Lemma 3.41 (Bessy and Thomassé [11]). Let D be a strong digraph. For every directed cycle C,
there is coherent cyclic order of D for which C is simple.
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Proof. Consider a cyclic order O with respect to which C is simple that minimizes the total index
of D, that is the sum of the indices over all directed cycles of D. Suppose for a contradiction that
O is not coherent. Then there is an arc a which is in no simple directed cycles. Without loss of
generality, O = (v1,v2, . . . ,vn,v1) and a = vkv1 for some k. Assume moreover that O has been
chosen in order to minimize k. Let ` be the largest integer (smaller than k) such that there exists a
directed (v1,v`)-path with all vertices in {v1, . . . ,vk−1}. Necessarily, v` has no outneighbours in
{v`+1, . . . ,vk}. If ` 6= 1, then by the minimality of k, vk has no inneighbours in {v`+1, . . . ,vk}. In
particular, the cyclic order (v1, . . . ,v`−1,v`+1, . . . ,vk,v`,vk+1, . . . ,vn) has the same total index as
O and contradicts the minimality of k. Thus `= 1, and by the minimality of k, there is no inneigh-
bour of v1 in {v2, . . . ,vk−1}. Now consider the cyclic order O′ = (v2, . . . ,vk,v1,vk+1, . . . ,vn).
Every directed cycle C of D satisfies iO′(C)6 iO(C), and the inequality is strict if a is an arc of
C. This contradicts the minimality of the total index with respect O.

Proof of Theorem 3.40. Let C = (u1, . . . ,uk) be a longest directed cycle in D. By Lemma 3.41,
there is a coherent cyclic order O = (v1, . . . ,vn,v1) of D in which C is simple. Without loss
of generality, there exists 1 6 i1 < i2 < · · · < ik = n such that u j = vi j for all 1 6 j 6 k. For
1 6 j 6 k, let us define I j = vi j−1 +1, . . . ,vi j . An arc vlvp is bad (with respect to O) if l < p and
l and p belong to the same I j.

We assume that O has been chosen so that the number of bad arcs is minimized. We shall
prove that there is no bad arcs. Since O is coherent, this will imply that every I j is a stable set,
and so χ(D)6 k = v(C).

Suppose for a contradiction that there is a bad arc xy. Without loss of generality, we may
assume that x,y ∈ I1. Let D′ be the subdigraph of D whose arc set is the set of bad arcs and arcs
uv such that u ∈ I j and v ∈ I j+1 for some 1 6 j 6 k (in this proof all indices j are modulo k).
Observe that D′ contains C. Moreover, there is a directed (y,x)-path, for such a directed path
would be of length at least k and such its union with (x,y) would give a directed cycle longer
than C. Hence, in D′, either there is no directed (C,x)-path, or there is no directed (y,C)-path.
By directional symmetry, we may assume that the later case holds. Let Y be the set of vertices
z such that there exists a directed (y,z)-path in D′. Set K j = I j ∩Y and L j = I j \Y , both with
the ordering induced by O. By construction, for all 1 6 j, the last vertex of L j is u j and there
is no arc from K j to L j+1. Moreover, because O is coherent, there is no arc from L j+1 to K j.
Now the cyclic order O′ = KkL1K1L2K2 . . .Kk−1Lk is coherent and C is simple with respect to it.
Moreover every bad arc with respect to O′ is also bad with respect to O. But the arc xy is not bad
with respect to O′. This contradicts that O minimizes the number of bad arcs.

We now prove a generalization of Bondy’s theorem.
Let k be a positive integer and D be a digraph. A directed directed cycle C of D is called

k-good if v(C)> k and χ(D〈V (C)〉)6 k. Note that Bondy’s Theorem states that every strong
digraph D has a χ(D)-good directed cycle and that a shortest directed cycle is induced and thus
is 3-good.

Theorem 3.42 (Addario-Berry, Havet and Thomassé [1]). Let D be a strong digraph and k be in
{3, . . . ,χ(D)}. Then D has a k-good directed cycle.
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Proof. By Theorem 3.40, there exists a directed cycle with length at least χ(D), implying the
theorem for the value k = χ(D). Suppose 3 6 k < χ(D), in particular χ(D) > 3. Let us now
consider a shortest directed cycle C with length at least k. We claim that C is k-good. Suppose for
contradiction that χ(D〈V (C)〉)> k+1. We may assume by induction on the number of vertices
that D = D〈V (C)〉. Furthermore, if D contains a directed 2-cycle, we can remove one of its arcs,
in such a way that χ(D) and the directed cycle C are unchanged. Thus, we can assume that D
has no directed 2-cycle, has a hamiltonian directed cycle C of length at least k, has chromatic
number greater than k, and that every directed cycle of length at least k is hamiltonian. Our goal
is to reach a contradiction.

We claim that every vertex u has indegree at most k−2 in D. Indeed, if v1, . . . ,vk−1 were
inneighbours of u, listed in such a way that v1, . . . ,vk−1,u appear in this order along C, the
directed cycle obtained by shortcutting C through the arc vk−2u would have length at least k
since the outneighbour of u in C is not an inneighbour of u. This contradicts the minimality of C.
The same argument gives that every vertex has outdegree at most k−2 in D.

Let us then consider H1, . . . ,Hr, a handle decomposition of D with minimum number of
trivial handles. Free to enumerate first the nontrivial handles, we can assume that H1, . . . ,Hp are
not trivial and Hp+1, . . . ,Hr are arcs. Let D′ := H1∪ ·· ·∪Hp. Clearly D′ is a strong spanning
subgraph of D. Observe that since χ(D)> 3, D is not an induced directed cycle, so in particular
p > 1.

We denote by x1, . . . ,xq the handle Hp minus its endvertices.
If q = 1, the digraph D′− x1 is strong, and therefore D− x1 is also strongly connected.

Moreover its chromatic number is at least k. Thus by Bondy’s theorem, there exists a directed
cycle of length at least k in D− x1. This directed cycle is not hamiltonian in D, a contradiction.

If q = 2, note that x2 is the unique outneighbour of x1 in D, otherwise we would make two
non-trivial handles out of Hp, contradicting the maximality of the number of non-trivial handles.
Similarly, x1 is the unique inneighbour of x2. Since the outdegree and the indegree of every
vertex is at most k−2, both x1 and x2 have degree at most k−1 in the underlying graph of D.
Since χ(D)> k, it follows that χ(D−{x1,x2})> k. Since D−{x1,x2} is strong, it contains, by
Bondy’s theorem, a directed cycle with length at least k, contradicting the minimality of C.

Hence, we may assume q > 2. For every i = 1, . . . ,q−1, by the maximality of p, the unique
arc in D leaving {x1, . . . ,xi} is xixi+1 (otherwise we would make two non-trivial handles out
of Hp). Similarly, for every j = 2, . . . ,q, the unique arc in D entering {x j, . . . ,xq} is x j−1x j. In
particular, as for q = 2, x1 has outdegree 1 in D and xq has indegree 1 in D.

Another consequence is that the underlying graph of D\{x1,xq} has two connected com-
ponents D1 := D \ {x1,x2, . . . ,xq} and D2 := {x2, . . . ,xq−1}. Since the degrees of x1 and xq
in the underlying graph of D are at most k− 1 and D is at least (k+ 1)-chromatic, it follows
that χ(D1) or χ(D2) is at least (k+ 1)-chromatic. Each vertex has indegree at most k− 2 in
D and d+

D2
(xi) 6 1 for 2 6 i 6 q− 1, so ∆(D2) 6 k− 1 and χ(D2) 6 k. Hence D1 is at least

(k+1)-chromatic and strong. Thus by Bondy’s Theorem, D1 contains a directed cycle of length
at least k but shorter than C. This is a contradiction.

The existence of good directed cycles directly gives the existence of paths with two blocks in
strong digraphs.
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Lemma 3.43 (Addario-Berry, Havet and Thomassé [1]). Let k1 + k2 = k− 1 and D be a k-
chromatic strong digraph. If D contains a (k2 + 1)-good directed cycle then D contains a
P(k1,k2).

Proof. Suppose C is a (k2 +1)-good directed cycle. Since χ(D〈V (C)〉)6 k2 +1, the chromatic
number of the (strong) contracted digraph D/C is at least k1 +1. Thus by Bondy’s Theorem,
D/C has a directed cycle of length at least k1 +1, and in particular the vertex C is the end of a
path P of length k1 in D/C. Finally P∪C contains a P(k1,k2).

Corollary 3.44 (Addario-Berry, Havet and Thomassé [1]). Let k1 + k2 = k−1 > 3 and D be a
k-chromatic strong digraph. Then D contains a P(k1,k2).

Proof. Since P(k1,k2) and P(k2,k1) are isomorphic, we may assume that k2 > 2. By Lemma 3.42,
D has an (k2 +1)-good directed cycle, and thus contains a P(k1,k2) according to Lemma 3.43.

A natural question is to ask for oriented cycles with two blocks instead of paths. As pointed
out by Gyárfás and Thomassen, this does not extend to k-chromatic digraphs. Consider for this
the following inductive construction: Let D1 be the singleton digraph. Then, Di+1 is constructed
starting with i disjoint copies C1, . . . ,Ci of Di and adding, for every set X of i vertices, one in
each Ci, a vertex dominated exactly by X . By construction, the chromatic number of Di is exactly
i and there are no oriented cycle with two blocks.

However the digraphs Di are not strong and it is easy to see that every strong digraph which
is not a directed cycle contains two vertices x and y linked by two independent directed paths (i.
e. having only x and y in common). We do not know if the strong connectivity condition ensures
the existence of two vertices linked by two “long” independent paths.

Problem 3.45 (Addario-Berry, Havet and Thomassé [1]). Let D be a k-chromatic strong digraph
(k > 4) and k1, k2 be positive integers such that k1 + k2 = k.
Does there exist two vertices of D which are linked by two independent directed paths P1 and P2
of length at least k1 and k2 respectively?
In other words, does there exists an oriented cycle with two blocks such that one block has length
at least k1 and the other one length at least k2?

This problem may be seen as an extension of Bondy’s theorem which proves this statement
for directed cycles (k2 = 0).

3.5 Exercises
Exercise 3.1. Give an elementaty proof that every tournament has a hamiltonian directed path.

Exercise 3.2. ERDŐS–SZEKERES THEOREM
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1) Let D be a digraph with χ(D) > kl + 1, and let f be a real-valued function defined on
V (D). Show that D contains either a directed path (u0,u1, . . . ,uk) with f (u0)6 f (u1)6
· · ·6 f (uk) or a directed path (v0,v1, . . . ,vl) with f (v0)> f (v1)> · · ·> f (vl).

(Chvátal and Komlós [23])

2) Deduce that any sequence of kl +1 distinct integers contains either an increasing subse-
quence of k+1 terms or a decreasing sequence of l +1 terms.

(Erdős and Szekeres [32])

Exercise 3.3. Let G be a graph that is not a forest and with chromatic number at most k for some
integer k > 2. Show an acyclic orientation D of G such that r(D)6 k−1.

Exercise 3.4. For a path partition P , we denote the sets of initial and terminal vertices of its
constituent paths by i(P ) and t(P ), respectively.

1) Show by induction on v(D), that if P is a path partition of a digraph D such that no stable
set of D is orthogonal to P , then there is a path partition Q of D such that |Q |= |P |−1,
i(Q )⊂ i(P ), and t(Q )⊂ t(P ).

2) Deduce Theorem (3.11)

Exercise 3.5. Deduce Linial’s Conjecture (3.12) from Berge’s Path Partition Conjecture (3.13).

Exercise 3.6.

1) Show that a bipartite graph with average degree 2k or more contains a path of length
2k+1.

(A. Gyarfás and J. Lehel [44])

2) Deduce that every antidirected path of length k is 4k-universal.

Exercise 3.7. 1) Find a tournament on five vertices which contains no antidirected cycle.

2) Show that every 8-chromatic digraph contains an antidirected cycle.

(D. Grant, F. Jaeger, and C. Payan)

Exercise 3.8. Let D be an (acyclic) oriented graph with n vertices and m arcs. Show that there
exists a tournament of order 2

m
n that contains no D.

Exercise 3.9. Verify the properties (M1) and (M2) of median orders of tournaments.

Exercise 3.10. Let D be a digraph and let v1, . . . ,vn be a median order D. Let D′ be the spanning
subdigraph of D with arc set {viv j ∈ A(D) | i < j}.

1) We colour D by assigning to vertex v the colour c(v), where c(v) is the number of vertices
of a longest increasing directed path in D′ starting at v. Show that this colouring is proper.

2) Deduce Gallai–Roy Theorem.
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Exercise 3.11. Show that every oriented tree on k > 2 vertices is (4k−4)-unavoidable.
(F. Havet and S. Thomassé [55])

Exercise 3.12. Let A be a rooted oriented tree. If the root is a source, we say that A is well-rooted.
A (x,y) of A is a forward arc if x is in the oriented path between the root to y in A, and a backward
arc otherwise. We denote the subdigraph of A induced by its backward arcs by B(A), the number
of backward arcs by b(A) and the number of components of B(A) by c(A).

1) Show that every well-rooted tree A is (v(A)+2b(A)−2c(A))-unavoidable.

2) Deduce that every oriented tree on k > 2 vertices is (3k−3)-unavoidable.

(A. El Sahili [27])

Exercise 3.13. Let v1,v2, . . . ,vn be a median order of a tournament T on an even number of
vertices. Show that (v1,v2, . . . ,vn,v1) is a hamiltonian directed cycle of T . (S. Thomassé)

Exercise 3.14. A king in a tournament is a vertex v from which every vertex is reachable by a
directed path of length at most two. Show that every tournament T has a king by proceeding as
follows.

Let v1,v2, . . . ,vn be a median order of T .

1) Suppose that v j dominates vi, where i < j. Show that there is an index k with i < k < j
such that vi dominates vk and vk dominates v j.

2) Deduce that v1 is a king in T . (F. Havet and S. Thomassé [55])

Exercise 3.15. A second outneighbour of a vertex v in a digraph is a vertex whose distance
from v is exactly two. Show that every tournament T has a vertex with at least as many second
outneighbours as (first) outneighbours, by proceeding as follows.

Let v1,v2, . . . ,vn be a median order of a tournament T . Colour the outneighbours of vn red,
both vn and those of its inneighbours which dominate every red vertex preceding them in the
median order black, and the remaining inneighbours of vn blue. (Note that every vertex of T is
thereby coloured, because T is a tournament.)

1) Show that every blue vertex is a second outneighbour of vn.

2) Consider the intervals of the median order into which it is subdivided by the black vertices.
Using property (M2), show that each such interval includes at least as many blue vertices
as red vertices.

3) Deduce that vn has at least as many second outneighbours as outneighbours.

(F. Havet and S. Thomassé [55])

(P. D. Seymour has conjectured that every oriented graph has a vertex with at least as many
second outneighbours as outneighbours.)
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Exercise 3.16. Let T be a tournament of order n and let P = (x1, . . . ,xn) be an oriented path.
We denote by p(P,T ) the number of distinct P that T contains. Let k be the largest integer such
that xk+1→ xk (with k = 0 if P is the converse of a directed path). Let P̃ be the oriented path
obtained from P by reversing the arc xk+1xk and set Q = (x1, . . . ,xk) and R = (xk+1, . . . ,xn).

1) Let B be the sets of bipartition (A,B) of V (T ) such that |A|= k and |B|= n−k. Show that

p(P,T )+ p(P̃,T ) = ∑
(A,B)∈B

p(Q,T 〈A〉) · p(R,T 〈B〉).

2) If n is non-negative integer, we define U(n) as the set of integers i such that n = ∑i∈U(n) 2i.
If m and n are integers, we say that m� n if U(m)⊆U(n).
Show that p(P,T )+ p(P̃,T )≡

(n
k

)
·L ( mod 2 ) with L the number of �-linearly ordered

subsets of {i < k | xi+1xi and i� k}.

3) Knowing a result of Lucas stating that
(n

k

)
is odd if and only if k � n, prove by induction

on n and k that the parity of p(P,T ) equals the the number of �-linearly ordered subsets
of {i < n | xi+1xi and i� n}.

4) Deduce that if n = 2p, then T contains an odd number of paths isomorphic to P.

(R. Forcade [36])

Exercise 3.17. Let n > 9. Show that every non-directed cycle of order n is contained in every
non-strong tournament of order n.

Exercise 3.18. Deduce Camion’s Theorem (3.37) from Lemma 3.41.
(S. Bessy and S. Thomassé [11])

4 The chromatic polynomial and acyclic orientations
Originally, the chromatic polynomial was introduced by Birkhoff [12] to attack the Four colour
conjecture. As such, it was defined for planar graphs, but was extended to all graphs about
twenty years later. Since then, the chromatic polynomial has been a core topic of algebraic graph
theory. Further, it exhibited links with other areas, including knot theory. It was generalized by
Tutte [91], to what is now called the Tutte polynomial, which proved to be an important and
fundamental object generalizing several graph polynomials, with applications in, e.g., topology,
statistical physics and probability theory.

Essentially, the idea of Birkhoff was to count the number different colourings of a graph to
obtain more insight on its chromatic number. Two colourings of a graph G are considered to be
distinct if at least one vertex is assigned different colours in the two colourings. Let PG(k) be the
number of distinct proper k-colourings of G.

In particular, PG(k)> 0 if and only if G is k-colourable. For instance, if G is a triangle then
PG(2) = 0 while PG(4) = 24.
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The chromatic polynomial is defined as the unique interpolating polynomial of degree v(G)
through the points (k,PG(k)) for k = 0,1, ...,v(G).

If G is the complete graph on n vertices, then PG(k) = k(k−1)(k−2) · · ·(k−n+1). On the
contrary, if G is the empty graph on n vertices, then PG(k) = kn, as every vertex can be assigned
each of the k colours, independently of the other choices.

There is a simple recursion formula for PG. Consider a graph G, and let u and v be two non-
adjacent vertices of G. The set of all k-colourings of G can be partitioned into two subsets: the
set Cs of those colourings c with c(u) = c(v), and its complement Cd . Note that every colouring
in Cd is also a colouring of G∪uv. Conversely, every colouring of G∪uv (using k colours) is a
colouring of G that belongs to Cd . Similarly, colourings in Cs one-to-one correspond to colourings
of the graph G/{u,v} (which is obtained from G by identifying u and v). Consequently, we infer
that PG(k) = PG∪uv(k)+PG/{u,v}(k) for every pair {u,v} of non-adjacent vertices of G. In other
words, for every integer k, every graph G and every edge e of G,

PG(k) = PG\e(k)−PG/e(k) . (5)

By the definition, the value of the chromatic polynomial PG(x) at a positive integer k is the
number of proper k-colourings of G. Surprisingly, evaluations of the chromatic polynomial at
certain other special value of x have interesting interpretation. An example is the following
theorem of Stanley [87], which is another link between the orientations and the colourings of a
graph.

Theorem 4.1 (Stanley [87]). For every graph G, the number of acyclic orientations of G is
(−1)v(G)PG(−1).

Proof. For a graph G, let O(G) be the set of all acyclic orientations of G, and set o(G) = |O(G)|.
We prove that o(G) = (−1)v(G)PG(−1) by induction on e(G). The statement is true for the
empty graph on n vertices: such a graph has exactly one acyclic orientation, and its chromatic
polynomial is Xn.

Suppose now that the conclusion holds for graphs with less than e(G) edges. First, note that
every acyclic orientation of G yields an acyclic orientation of G\ e. Conversely, notice that an
acyclic orientation of G\ e cannot contain both a directed (u,v)-path and a directed (v,u)-path.

Let O2 ⊆O(G\ e) be the set of those acyclic orientations of G\ e with neither a path from
u to v, nor a path from v to u. Set O1 = O(G \ e) \O2. Thus, every orientation in Oi can be
extended in exacly i ways into an acyclic orientation of G. As a result, |O(G)|= |O1|+2 · |O2|.

By the induction hypothesis, o(G\ e) = (−1)v(G)PG\e.
Now, observe that every acyclic orientation of G/e yields an acyclic orientation of G\ e that

belongs to O2, and, conversely, an acyclic orientation a of G \ e yields an acyclic orientation
of G/e if and only if a ∈ O2. Consequently, using the induction hypothesis, it follows that
|O2|= o(G/e) = (−1)v(G)−1PG/e(−1). The conclusion follows.
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[23] V. Chvátal and J. Komlos. Some combinatorial theorems on monotonicity. Canad. Math.
Bull., 14(2):151–157, 1971.

[24] B. Descartes. A three colour problem. Eureka, 21, 1947.

[25] D. Z. Du, D. F. Hsu, and F. K. Hwang. The Hamiltonian property of consecutive-d digraphs.
Math. Comput. Modelling, 17(11):61–63, 1993. Graph-theoretic models in computer
science, II (Las Cruces, NM, 1988–1990).

[26] A. El Sahili. Paths with two blocks in k-chromatic digraphs. Discrete Math., 287(1-3):151–
153, 2004.

[27] A. El Sahili. Trees in tournaments. J. Combin. Theory Ser. B, 92(1):183–187, 2004.

[28] A. El Sahili and M. Kouider. About paths with two blocks. J. Graph Theory, 55(3):221–226,
2007.

[29] P. Erdős, A. L. Rubin, and H. Taylor. Choosability in graphs. In Proceedings of the West
Coast Conference on Combinatorics, Graph Theory and Computing (Humboldt State Univ.,
Arcata, Calif., 1979), Congress. Numer., XXVI, pages 125–157, Winnipeg, Man., 1980.
Utilitas Math.
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[31] P. Erdős. Graph theory and probability. Canad. J. Math., 11:34–38, 1959.
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