
7. The regularity lemma for digraphs

Given a digraph G and a vertex x ∈ V (G), the indegree d−G(x) of x in G is the number

of edges of G incident to x that are oriented towards x. Similarly the outdegree d+G(x)
of x in G is the number of edges of G incident to x that are oriented away from x.
The minimum indegree δ−(G) of G is the minimum value of d−G(x) over all x ∈ V (G).

Similarly the minimum outdegree δ+(G) of G is the minimum value of d+G(x) over all
x ∈ V (G). The minimum semidegree δ0(G) of G is the minimum of δ−(G) and δ+(G).

Given disjoint vertex sets A and B in a digraph G, we write (A,B)G for the oriented
bipartite subgraph of G whose vertex classes are A and B and whose edges are all the
edges from A to B in G. We say (A,B)G is ε-regular and has density d if the underlying
(undirected) bipartite graph of (A,B)G is ε-regular and has density d. (Note that the
ordering of the pair (A,B) is important here.) We say G is (ε, d)-super-regular if it is
ε-regular and δ+(a) ≥ d|B| for all a ∈ A and d−(b) ≥ d|B| for all b ∈ B.

These definitions generalize naturally to non-bipartite (di-)graphs. In particular, we

say that a digraph G on n vertices is ε-regular if there is a d so that e(X,Y )
|X||Y | = d ± ε

for all (not necessarily disjoint) subsets X,Y of V (G) of size at least εn. Here e(X,Y )
denotes the number of edges of G from X to Y . We say (A,B)G is (ε, d)-super-regular
if it is ε-regular and δ0(G) ≥ dn.

The Diregularity lemma is a variant of the Regularity lemma for digraphs (due to
Alon and Shapira [1]). Its proof is similar to the undirected version. We will use the
degree form of the Diregularity lemma which is derived from the standard version in
the same manner as the undirected degree form.

Lemma 7.1 (Degree form of the Diregularity lemma). For every ε ∈ (0, 1) and every
integer M ′ there are integers M and n0 such that if G is a digraph on n ≥ n0 vertices
and d ∈ [0, 1] is any real number, then there is a partition of the vertex set of G into
V0, V1, . . . , Vk and a spanning subdigraph G′ of G such that the following holds:

• M ′ ≤ k ≤M ,
• |V0| ≤ εn,
• |V1| = · · · = |Vk| =: m,
• d+G′(x) > d+G(x)− (d+ ε)n for all vertices x ∈ V (G),

• d−G′(x) > d−G(x)− (d+ ε)n for all vertices x ∈ V (G),
• for all i = 1, . . . , k the digraph G′[Vi] is empty,
• for all 1 ≤ i, j ≤ k with i 6= j the pair (Vi, Vj)G′ is ε-regular and has density
either 0 or density at least d.

We call V1, . . . , Vk clusters, V0 the exceptional set and the vertices in V0 exceptional
vertices. We refer to G′ as the pure digraph. The last condition of the lemma says
that all pairs of clusters are ε-regular in both directions (but possibly with different
densities). The reduced digraph R of G with parameters ε, d and M ′ is the digraph
whose vertices are V1, . . . , Vk and in which ViVj is an edge precisely when (Vi, Vj)G′ is
ε-regular and has density at least d.

8. Cycles of given length in oriented graphs

A digraph is an oriented graph if it is an orientation of a simple graph. A central
problem in digraph theory is the Caccetta-Häggkvist conjecture [2]:
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Conjecture 8.1. An oriented graph on n vertices with minimum outdegree d contains
a cycle of length at most dn/de.

A special case of Conjecture 8.1 that has attracted much interest is when d = dn/3e.
The following bound towards this case is due to Shen [8].

Theorem 8.2. If G is any oriented graph on n vertices with δ+(G) ≥ 0.355n then G
contains a directed triangle.

We consider the natural and related question of which minimum semidegree forces
cycles of length exactly ` ≥ 4 in an oriented graph. We will often refer to cycles of
length ` as `-cycles. We conjecture that the correct bounds are those given by the
obvious extremal example: when we seek an `-cycle, the extremal example is probably
the blow-up of a k-cycle, where k ≥ 3 is the smallest integer which is not a divisor of `.

Conjecture 8.3 ([3]). Let ` ≥ 4 be a positive integer and let k be the smallest integer
that is greater than 2 and does not divide `. Then there exists an integer n0 = n0(`)
such that every oriented graph G on n ≥ n0 vertices with minimum semidegree δ0(G) ≥
bn/kc+ 1 contains an `-cycle.

It is easy to see that the only values of k that can appear in Conjecture 8.3 are of
the form k = ps with k ≥ 3, where p ≥ 2 is a prime and s a positive integer. The
following result implies that Conjecture 8.3 is approximately true when k = 4 and ` is
sufficiently large. More general results were obtained in [3, 6]

Theorem 8.4 ([3]). Let ` ≥ 42 be a positive integer and let k be the smallest integer
that is greater than 2 and does not divide `. If k = 4 then for every ε > 0 there exists
an integer n0 = n0(`, ε) such that every oriented graph G on n ≥ n0 vertices with
δ0(G) ≥ n/k + εn contains an `-cycle.

Before we begin the proof of this theorem we state the following useful fact.

Fact 8.5. If G is an oriented graph on n vertices then the maximum size of an inde-
pendent set is at most n− 2δ0(G). �

We will prove Theorem 8.4 using the following two lemmas. The first lemma implies
that if we allow ourselves a linear ‘error term’ in the degree conditions then instead of
finding an `-cycle, it suffices to look for a closed walk of length `.

Lemma 8.6. Let ` ≥ 2 be an integer. Suppose that c > 0 and there exists an integer n0
such that every oriented graph H on n ≥ n0 vertices with δ0(H) ≥ cn contains a closed
walk W of length `. Then for each ε > 0 there exists n1 = n1(ε, `, n0) such that if G is
an oriented graph on n ≥ n1 vertices with δ0(G) ≥ (c+ ε)n then G contains an `-cycle.

The proof of Lemma 8.6 is a standard application of the Regularity lemma for
digraphs.

Sketch of proof of Lemma 8.6. Apply the degree form of the directed Regularity
lemma to G to obtain a partition of V (G) into clusters and a reduced digraph R′. So
the vertices of R′ are the clusters and there is a directed edge from A to B in R′ if
the bipartite subdigraph of G consisting of the edges from A to B is ε′-regular and
has density at least d, where ε′ � d � ε. One can show that R′ almost inherits the
minimum semidegree ofG, i.e. δ0(R′) ≥ (c+ε/2)|R′|. However, R′ need not be oriented.
But for every double edge of R′ one can delete one of the two edges randomly (with
suitable probability) in order to obtain an oriented spanning subgraph R of R′ which



3

still satisfies δ0(R) ≥ c|R| (see [4, Lemma 8] for a proof). Applying our assumption
with H := R gives a closed walk of length ` in R. Since n1 is large compared to `, this
also holds for size of the clusters. So we can apply the Key lemma to find an `-cycle
in G. �

Lemma 8.7. Let G be an oriented graph on n vertices. If δ0(G) ≥ n/4 then either
the diameter of G is at most 6 or G contains a 3-cycle.

Proof. Consider x ∈ V (G) and define X1 := N+(x) and Xi+1 := N+(Xi) ∪ Xi

for i ≥ 1. If there exists an i with δ+(G[Xi]) > 3|Xi|/8 then G[Xi] contains a 3-
cycle by Theorem 8.2. So assume not. Then there exists a vertex xi ∈ Xi with
|N+(xi) ∩Xi| ≤ 3|Xi|/8. Hence

|Xi+1| ≥ |Xi|+ (δ0(G)− 3|Xi|/8) ≥ 5|Xi|/8 + n/4.

In particular |X2| ≥ 13n/32 and |X3| ≥ 65n/256 + n/4 = 129n/256 > n/2. Similarly,
for any vertex y 6= x we have that |{v ∈ V (G) : dist(v, y) ≤ 3}| > n/2, and thus there
exists an x-y path of length at most 6, which completes the proof. �

Proof of Theorem 8.4. By Lemma 8.6 it suffices to show that every sufficiently
large oriented graph H with δ0(H) ≥ |H|/4+1 contains a closed walk of length `. If H
has a 3-cycle then it contains such a walk since 3 divides ` by definition of k. Thus
we may assume that H has no 3-cycle. Fact 8.5 implies that the maximum size of an
independent set is smaller than the neighbourhood NH(v) of any vertex v. Thus H
contains some orientation of a triangle. By assumption this is not a 3-cycle, and so it
must be transitive, i.e. the triangle consists of vertices x, y, z and edges xz, xy, zy.

Since H − z has no 3-cycle, Lemma 8.7 implies that H − z contains a y-x path P
of length t ≤ 6. This gives us 2 cycles C1 := yPxy and C2 := yPxzy of lengths t + 1
and t+ 2 respectively. Write ` as ` = a(t+ 1) + r with 0 ≤ r ≤ t ≤ 6. We can wind r
times around C2 and (a − r) times around C1 to find a closed walk of length ` in H
provided that r ≤ a. But the latter holds as a = b`/(t+ 1)c ≥ 6. �

Probably the use of the Regularity lemma is heavy-handed in this instance – it
would be interesting to obtain a proof which does not use it.

9. Outexpanders and Hamilton cycles

Roughly speaking, a graph is an expander if for every set S of vertices the neigh-
bourhood N(S) of S is significantly larger than S itself. A number of papers have
recently demonstrated that there is a remarkably close connection between Hamil-
tonicity and expansion. The following notion of robustly expanding (dense) digraphs
was introduced in [7].

Let 0 < ν ≤ τ < 1. Given any digraph G on n vertices and S ⊆ V (G), the ν-robust
outneighbourhood RN+

ν,G(S) of S is the set of all those vertices x ofG which have at least

νn inneighbours in S. G is called a robust (ν, τ)-outexpander if |RN+
ν,G(S)| ≥ |S|+ νn

for all S ⊆ V (G) with τn < |S| < (1− τ)n. As the name suggests, this notion has the
advantage that it is preserved even if we delete some vertices and edges from G.

Theorem 9.1 (Kühn, Osthus and Treglown [7]). Let n0 be a positive integer and ν, τ, η
be positive constants such that 1/n0 � ν ≤ τ � η < 1. Let G be a digraph on n ≥ n0
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vertices with δ0(G) ≥ ηn which is a robust (ν, τ)-outexpander. Then G contains a
Hamilton cycle.

The result has a number of applications, e.g. an (approximate) analogue of Chvátal’s
and Pósa’s theorems for digraphs, and an (approximate) analogue of Dirac’s theorem
for oriented graphs. It is also used as a tool in the proof of Kelly’s Conjecture.

Theorem 9.2. For every α > 0 there exists an integer N = N(α) such that every
oriented graph G of order |G| ≥ N with δ0(G) ≥ (3/8 + α)|G| contains a Hamilton
cycle.

Theorem 9.3. For every η > 0 there exists an integer n0 = n0(η) such that the
following holds. Suppose G is a digraph on n ≥ n0 vertices such that for all k < n

2

(i) d+k ≥ k + ηn or d−n−k−ηn ≥ n− k;
(ii) d−k ≥ k + ηn or d+n−k−ηn ≥ n− k.

Then G contains a Hamilton cycle.

The original proof of Theorem 9.1 relied on the Blow-up Lemma. Below, we give a
brief sketch of a proof which avoids any use of the Blow-up lemma.

The following result states that robust outexpansion is inherited by the reduced
digraph.

Lemma 9.4. Let M ′, n0 be positive integers and let ε, d, η, ν, τ be positive constants
such that 1/n0 � ε� d� ν, τ, η < 1 and such that M ′ � n0. Let G be a digraph on
n ≥ n0 vertices with δ0(G) ≥ ηn and such that G is a robust (ν, τ)-outexpander. Let R
be the reduced digraph of G with parameters ε, d and M ′. Then δ0(R) ≥ η|R|/2 and R
is a robust (ν/2, 2τ)-outexpander.

Proof. LetG′ be as in the degree form of the diregularity lemma, k := |R|, let V1, . . . , Vk
be the clusters of G (i.e. the vertices of R) and V0 the exceptional set. Let m := |V1| =
· · · = |Vk|. Then

δ0(R) ≥ (δ0(G′)− |V0|)/m ≥ (δ0(G)− (d+ 2ε)n)/m ≥ ηk/2.

Consider any S ⊆ V (R) with 2τk ≤ |S| ≤ (1 − 2τ)k. Let S′ be the union of all
the clusters belonging to S. Then τn ≤ |S′| ≤ (1 − 2τ)n. Since |N−G′(x) ∩ S′| ≥
|N−G (x) ∩ S′| − (d+ ε)n ≥ νn/2 for every x ∈ RN+

ν,G(S′) this implies that

|RN+
ν/2,G′(S

′)| ≥ |RN+
ν,G(S′)| ≥ |S′|+ νn ≥ |S|m+ νmk.

However, in G′ every vertex x ∈ RN+
ν/2,G′(S

′)\V0 receives edges from vertices in at

least |N−G′(x) ∩ S′|/m ≥ (νn/2)/m ≥ νk/2 clusters Vi ∈ S. Thus by the final property
of the partition in Lemma 7.1 the cluster Vj containing x is an outneighbour of each
such Vi (in R). Hence Vj ∈ RN+

ν/2,R(S). This in turn implies that

|RN+
ν/2,R(S)| ≥ (|RN+

ν/2,G′(S
′)| − |V0|)/m ≥ |S|+ νk/2,

as required. �
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We also need the result that every super-regular digraph contains a Hamilton cycle.

Lemma 9.5. Suppose that 1/n0 � ε� d� 1 and G is an (ε, d)-super-regular digraph
on n ≥ n0 vertices. Then G contains a Hamilton cycle.

Sketch proof of Lemma 9.5. We first prove that G contains a 1-factor. Consider
the auxiliary bipartite graph whose vertex classes A and B are copies of V (G) with
an edge between a ∈ A and b ∈ B if there is an edge from a to b in G. One can show
that this bipartite graph has a perfect matching (by Hall’s marriage theorem), which
in turn corresponds to a 1-factor in G.

It is now not hard to prove the lemma using the ‘rotation-extension’ technique:
Choose a 1-factor of G. Now remove an edge of a cycle in this 1-factor and let P be
the resulting path. If the final vertex of P has any outneighbours on another cycle C
of the 1-factor, we can extend P into a longer path which includes the vertices of C
(and similarly for the initial vertex of P ). We repeat this as long as possible (and one
can always ensure that the extension step can be carried out at least once). So we
may assume that all outneighbours of the final vertex of P lie on P and similarly for
the initial vertex of P . Together with the ε-regularity this can be used to find a cycle
with the same vertex set as P . Eventually, we arrive at a Hamilton cycle. �

Sketch proof of Theorem 9.1.1 Choose ε, d to satisfy 1/n0 � ε � d � ν. The
first step is to apply the directed version of Szemerédi’s regularity lemma to G. This
gives us a partition of the vertices of G into clusters V1, . . . , Vk and an exceptional
set V0 so that |V0| ≤ εn and all the clusters have size m. Now define the ‘reduced’
digraph R whose vertices are the clusters V1, . . . , Vk. Lemma 9.4 implies that R is
still a (ν/2, 2τ)-outexpander (this is the point where we need the robustness of the
expansion in G) with minimum semidegree at least ηk/2. This in turn can be used to
show that R has a 1-factor F (using the same auxiliary bipartite graph as in the proof
of Lemma 9.5). By removing a small number of vertices from the clusters, we can also
assume that the bipartite subgraphs spanned by successive clusters on each cycle of
F are super-regular, i.e. have high minimum degree. For simplicity, assume that the
cluster size is still m.

Moreover, since G is an expander, we can find a short path in G between clusters
of different cycles of F and also between any pair of exceptional vertices. However, we
need to choose such paths without affecting any of the useful structures that we have
found so far. For this, we will consider paths which ‘wind around’ cycles in F before
moving to another cycle. More precisely, a shifted walk from a cluster A to a cluster
B is a walk W (A,B) of the form

W (A,B) = X1C1X
−
1 X2C2X

−
2 . . . XtCtX

−
t Xt+1,

where X1 = A, Xt+1 = B, Ci is the cycle of F containing Xi, and for each 1 ≤ i ≤ t,
X−i is the predecessor of Xi on Ci and the edge X−i Xi+1 belongs to R. We say that
W as above traverses t cycles (even if some Ci appears several times in W ). We also
say that the clusters X2, . . . , Xt+1 are the entry clusters (as this is where W ‘enters’ a
cycle Ci) and the clusters X−1 , . . . , X

−
t are the exit clusters of W . Note that

(i) for any cycle of F , its clusters are visited the same number of times byW (A,B)−
B.

Using the expansion of R, it is not hard to see that

1This proof follows a survey on digraph Hamilton cycles by D. Kühn and D. Osthus [5]
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Figure 1. Constructing the walk W

(ii) for any clusters A and B there is a shifted walk from A to B which does not
traverse too many cycles.

Indeed, the expansion property implies that the number of clusters one can reach by
traversing t cycles is at least tνk/2 as long as this is significantly less than the total
number k of clusters.

Now we will ‘join up’ the exceptional vertices using shifted walks. For this, write
V0 = {a1, . . . , a`}. For each exceptional vertex ai choose a cluster Ti so that ai has many
outneighbours in Ti. Similarly choose a cluster Ui so that ai has many inneighbours
in Ui and so that

(iii) no cluster appears too often as a Ti or a Ui.

Given a cluster X, let X− be the predecessor of X on the cycle of F which contains
X and let X+ be its successor. Form a ‘walk’ W on V0 ∪ V (R) which starts at a1,
then moves to T1, then follows a shifted walk from T1 to U+

2 , then it winds around
the entire cycle of F containing U+

2 until it reaches U2. Then W moves to a2, then
to a3 using a shifted walk as above until it has visited all the exceptional vertices (see
Figure 5). Proceeding similarly, we can ensure that W has the following properties:

(a) W is a closed walk which visits all of V0 and all of V (R).
(b) For any cycle of F , its clusters are visited the same number of times by W .
(c) Every cluster appears at most m/10 times as an entry or exit cluster.

(b) follows from (i) and (c) follows from (ii) and (iii). The next step towards a Hamilton
cycle would be to find a cycle C in G which corresponds to W (i.e. each occurrence of a
cluster in W is replaced by a distinct vertex of G lying in this cluster). Unfortunately,
the fact that V0 may be much larger than the cluster size m implies that there may be
clusters which are visited more than m times by W , which makes it impossible to find
such a C. So we will apply a ‘short-cutting’ technique to W which avoids ‘winding
around’ the cycles of F too often.

For this, we now fix edges in G corresponding to all those edges of W that do not lie
within a cycle of F . These edges of W are precisely the edges in W at the exceptional
vertices as well as all the edges of the form AB where A is used as an exit cluster by
W and B is used as an entrance cluster by W . For each edge aiTi at an exceptional
vertex we choose an edge aix, where x is an outneighbour of ai in Ti. We similarly
choose an edge yai from Ui to ai for each Uiai. We do this in such a way that all these
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Figure 2. An illustration of the auxiliary digraph J , where there is an
edge from a to b in J

edges are disjoint outside V0. For each occurrence of AB in W , where A is used as
an exit cluster by W and B is used as an entrance cluster, we choose an edge ab from
A to B in G so that all these edges are disjoint from each other and from the edges
chosen for the exceptional vertices (we use (c) here).

Given a cluster A, let Aentry be the set of all those vertices in A which are the final
vertex of an edge of G fixed so far and let Aexit be the set of all those vertices in A
which are the initial vertex of an edge of G fixed so far. So Aentry ∩Aexit = ∅. Let GA
be the bipartite graph whose vertex classes are A \ Aexit and A+ \ A+

entry and whose

edges are all the edges from A \Aexit to A+ \A+
entry in G. Since W consists of shifted

walks, it is easy to see that the vertex classes of GA have equal size. Moreover, it is
possible to carry out the previous steps in such a way that GA is super-regular (here
we use (c) again). This in turn means that GA has a perfect matching MA. These
perfect matchings (for all clusters A) together with all the edges of G fixed so far form
a 1-factor C of G. It remains to transform C into a Hamilton cycle.

Claim. For any cluster A, we can find a perfect matching M ′A in GA so that if we
replace MA in C with M ′A, then all vertices of GA will lie on a common cycle in the
new 1-factor C.

To prove this claim we proceed as follows. For every a ∈ A+ \A+
entry, we move along

the cycle Ca of C containing a (starting at a) and let f(a) be the first vertex on Ca in
A\Aexit. Define an auxiliary digraph J on A+\A+

entry such that N+
J (a) := N+

GA
(f(a)).

So J is obtained by identifying each pair (a, f(a)) into one vertex with an edge from
(a, f(a)) to (b, f(b)) if GA has an edge from f(a) to b (see Figure 6). Since GA is
super-regular, it follows that J is also super-regular. By Lemma 9.5, J has a Hamilton
cycle, which clearly corresponds to a perfect matching M ′A in GA with the desired
property.

We now repeatedly apply the above claim to every cluster. Since Aentry ∩Aexit = ∅
for each cluster A, this ensures that all vertices which lie in clusters on the same cycle
of F will lie on the same cycle of the new 1-factor C. Since by (a) W visits all clusters,
this in turn implies that all the non-exceptional vertices will lie in the same cycle of
C. Since the exceptional vertices form an independent set in C, it follows that C is
actually a Hamilton cycle. �
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