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Graph

⇒ Reconfiguration graph

Solutions // Nodes. Most similar solutions // Neighbors.
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Graph 3-recoloring: bad cases (1)
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Graph 3-recoloring: bad cases (2)
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Graph 3-recoloring: bad cases (2)
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Graph recoloring: cycles of length multiple of 3

Theorem (Cereceda, Johnson, van den Heuvel ’11)

For any graph G, any two 3-colourings α, β, if

Neither α nor β contain a frozen cycle, and

α and β have the same wrapping number on every cycle,

then G can be recoloured from α to β.

Corollary (Wrochna ’15)

All graphs with no cycle of length multiple of 3 are 3-colourable.
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Graph recoloring: induced cycles of length multiple of 3

Conjecture (Folklore ’15)

Every graph with no induced cycle of length multiple of 3 contains
an edge whose removal does not create an induced cycle of length
multiple of 3.

Nope! (Wrochna ’18)

Hypothetical Corollary (Wrochna ’15)

All graphs with no induced cycle of length multiple of 3 are
3-colourable.

Theorem (Bonamy, Charbit, Thomassé ’15)

All graphs with no induced cycle of length multiple of 3 are
O(1)-colourable.

Marthe Bonamy Combinatorial Reconfiguration 6/14



Graph recoloring: induced cycles of length multiple of 3

Conjecture (Folklore ’15)

Every graph with no induced cycle of length multiple of 3 contains
an edge whose removal does not create an induced cycle of length
multiple of 3.

Nope! (Wrochna ’18)

Hypothetical Corollary (Wrochna ’15)

All graphs with no induced cycle of length multiple of 3 are
3-colourable.

Theorem (Bonamy, Charbit, Thomassé ’15)
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Kempe equivalence
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Kempe equivalence: Goal

∆: Maximum degree of the graph

Theorem (Brooks ’41)

Every graph is ∆-colourable, except for cliques and odd cycles.

Conjecture (Mohar ’05)

All the ∆-colourings of a graph are Kempe equivalent.
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Kempe equivalence: Results

The conjecture is false! (van den Heuvel ’13)
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Kempe equivalence: Results (2)

Theorem (Feghali, Johnson, Paulusma ’15)

True for all graphs with ∆ ≤ 3 (other than the 3-prism).

Theorem (B., Bousquet, Feghali, Johnson ’15)

True for all graphs (other than the 3-prism).

Understand Glauber Dynamics (analyse Antiferromagnetic Potts
Model when the temperature tends to 0)

Marthe Bonamy Combinatorial Reconfiguration 10/14



Kempe equivalence: Results (2)

Theorem (Feghali, Johnson, Paulusma ’15)

True for all graphs with ∆ ≤ 3 (other than the 3-prism).

Theorem (B., Bousquet, Feghali, Johnson ’15)

True for all graphs (other than the 3-prism).

Understand Glauber Dynamics (analyse Antiferromagnetic Potts
Model when the temperature tends to 0)

Marthe Bonamy Combinatorial Reconfiguration 10/14



Kempe equivalence: Results (2)

Theorem (Feghali, Johnson, Paulusma ’15)

True for all graphs with ∆ ≤ 3 (other than the 3-prism).

Theorem (B., Bousquet, Feghali, Johnson ’15)

True for all graphs (other than the 3-prism).

Understand Glauber Dynamics (analyse Antiferromagnetic Potts
Model when the temperature tends to 0)

Marthe Bonamy Combinatorial Reconfiguration 10/14



Independent Set Reconfiguration

⇒ Reconfiguration Graph

Solutions // Vertices. Closest solutions // Neighbors.

TARk(G )
k = 1
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Independent Set Reconfiguration ⇒ Reconfiguration Graph

Solutions // Vertices. Closest solutions // Neighbors.

TARk(G )
k = 2
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Reconfiguration Graphs

Two solutions:

In the same connected component?
What distance between them?

Reconfiguration graph:

Connected?
Maximal diameter of a connected component?

Various problems, various elementary steps...
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Elementary steps

1 Token Addition and Removal (TAR): We can add or remove
tokens (up to some cardinality constraints)

2 Token Jumping (TJ): A token jumps to anywhere else

3 Token Sliding (TS): A token slides along an edge

Reconfiguration graph connected ⇒ Efficient enumeration?
Sampling?

Almost every thing is PSPACE-hard.
⇒ Restricted graph classes, Fixed Parameter Tractability
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Conclusion

Distributed recolouring (with Paul Ouvrard, Mikaël Rabie,
Jukka Suomela, Jara Uitto, DISC’2018)

Distributed reconfiguration of independent sets (Keren
Censor-Hillel and Mikaël Rabie, 2018)

Stronger links with applications

Meta-theorems

Merci !
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