Glauber dynamics for edge colorings of trees

Michelle Delcourt³ Marc Heinrich¹ Guillem Perarnau²

¹Université Lyon 1, LIRIS, France

²University of Birmingham, England.

³University of Waterloo, Canada.

November 15, 2018

• Generating a random coloring of a graph.

- Generating a random coloring of a graph.
- Start from an arbitrary coloring.
- Repeat the following:
 - choose a vertex v uniformly at random (u.a.r.)
 - choose a color c u.a.r
 - if $c \notin N(v)$ recolor v with color c.

- Generating a random coloring of a graph.
- Start from an arbitrary coloring.
- Repeat the following:
 - choose a vertex v uniformly at random (u.a.r.)
 - choose a color c u.a.r
 - if $c \notin N(v)$ recolor v with color c.
- Repeating the process long enough, the coloring is 'close to' uniformly distributed.

- Generating a random coloring of a graph.
- Start from an arbitrary coloring.
- Repeat the following:
 - choose a vertex v uniformly at random (u.a.r.)
 - choose a color c u.a.r
 - if $c \notin N(v)$ recolor v with color c.
- Repeating the process long enough, the coloring is 'close to' uniformly distributed.

Question

How long is 'long enough'?

- Generating a random coloring of a graph.
- Start from an arbitrary coloring.
- Repeat the following:
 - choose a vertex v uniformly at random (u.a.r.)
 - choose a color c u.a.r
 - if $c \notin N(v)$ recolor v with color c.
- Repeating the process long enough, the coloring is 'close to' uniformly distributed.

Question

How long is 'long enough'? Polynomial (in the size of G)?

- Generate random colorings of graphs.
- Approximation algorithms for counting problems.
- Motivation from statistical physics: Potts model, (Generalization of the Ising model).

A **Markov Chain** is a random walk on a graph. On each (directed) edge, there is a probability transition.

Transition Martrix $P[i \rightarrow j] =$ probability to move from *i* to *j*.

A Markov Chain is a random walk on a graph. On each (directed) edge, there is a probability transition.

Transition Martrix $P[i \rightarrow j] =$ probability to move from *i* to *j*.

A **Markov Chain** is a random walk on a graph. On each (directed) edge, there is a probability transition.

Transition Martrix $P[i \rightarrow j] =$ probability to move from *i* to *j*.

- $X_0 P^t$: distribution after t steps.
- Ω : set of states.

Markov Chain

- Irreducible: the graph is strongly connected.
- Aperiodic: "non-zero probability to stay in the same place".
- Total variation distance $\|\mu \eta\|_{\tau V} = \sum_{x \in \Omega} |\mu(x) \eta(x)|$

Markov Chain

- Irreducible: the graph is strongly connected.
- Aperiodic: "non-zero probability to stay in the same place".

• Total variation distance
$$\|\mu - \eta\|_{ au V} = \sum_{x \in \Omega} |\mu(x) - \eta(x)|$$

• Irreducible + Aperiodic \Rightarrow Ergodic : There is a unique stationary distribution π .

•
$$\pi P = \pi$$

• $\lim_{t\to\infty} X_0 P^t = \pi$

• Mixing time:
$$\tau = \min \left\{ t, \max_{X_0} \|X_0 P^t - \pi\|_{\tau_V} \leq \frac{1}{2} \right\}$$

Markov Chain

• $\Omega = \text{set of all possible } k$ -colorings.

$$P[\sigma \to \tau] = \begin{cases} \frac{1}{kn} & \text{if } \sigma \text{ and } \tau \text{ differ on only one vertex} \\ 0 & \text{otherwise} \end{cases}$$

•
$$P[\sigma \to \tau] = P[\tau \to \sigma]$$

- The stationary distribution is uniform.
- The process is called **Glauber Dynamics**, noted \mathcal{L}_{GD} .

Known Results

If $k \ge \Delta + 2$, the process is ergodic.

[M. R. Jerrum, 1994], [E. Vigoda, 1999], [S. Chen, A. Moitra, 2018], [M. Delcourt, G. Perarnau, L. Postle, 2018]

Marc Heinrich

Known Results

If $k \ge \Delta + 2$, the process is ergodic.

Conjecture

If $k \ge \Delta + 2$, the mixing time is polynomial.

[M. R. Jerrum, 1994], [E. Vigoda, 1999], [S. Chen, A. Moitra, 2018], [M. Delcourt, G. Perarnau, L. Postle, 2018]

Marc Heinrich

Known Results

If $k \ge \Delta + 2$, the process is ergodic.

Conjecture

If $k \ge \Delta + 2$, the mixing time is polynomial.

Class of graph	# of colors	Mixing time	Reference
	$k > 2\Delta$	$O(n \log n)$	[Jer94]
General graphs	$k > rac{11}{6}\Delta$	$O(n^2 \log n)$	[Vig99]
	$(\frac{11}{6}-\varepsilon)\Delta$	$O(n^2)$	[CM18, DPP18]

[M. R. Jerrum, 1994], [E. Vigoda, 1999], [S. Chen, A. Moitra, 2018], [M. Delcourt, G. Perarnau, L. Postle, 2018]

Marc Heinrich

Class of graph	# of colors	Mixing time	Reference
Graphs with girth \geq 7	1.489 ∆	$O(n \log n)$	[DFHV13]
Planar Graphs	$\Omega(\frac{\Delta}{\log \Delta})$	$O(n^3 \log^9 n)$	[HVV07]
Trees	$k \ge 3$	$n^{O(1+\frac{\Delta}{k\log\Delta})}$	[LMP09]
Edge coloring complete tree	2Δ	poly(<i>n</i>)	[Poo16]

[M. Dyer, A Frieze, T. P. Hayes, E. Vigoda, 2013], [T. P. Hayes, J. C. Vera, E. Vigoda, 2007], [B. Lucier, M. Molloy; Y. Peres, 2009], [C. Y. Poon, 2016]

Marc Heinrich

Glauber dynamics for edge colorings of trees

Theorem

Glauber dynamics for edge colorings of a tree with $\Delta + 1$ colors mixes in polynomial time.

• The number of colors is tight.

Theorem

Glauber dynamics for edge colorings of a tree with $\Delta + 1$ colors mixes in polynomial time.

- The number of colors is tight.
- Proof for complete regular trees.

Coupling

Coupling

• Comparison of Markov Chains:

Coupling

- Comparison of Markov Chains:
 - given Markov chain $\mathcal L$ with mixing time au,
 - \bullet define some modified dynamics \mathcal{L}' with τ' ,
 - bound τ in terms of τ' .

Let V_1, \ldots, V_ℓ be a partition of the vertices. Consider the process \mathcal{L}_B where at each step:

- Select a block at random.
- Choose a new coloring of this block uniformly at random.

Marc Heinrich

November 15, 2018 11/14

Let V_1, \ldots, V_ℓ be a partition of the vertices. Consider the process \mathcal{L}_B where at each step:

- Select a block at random.
- Choose a new coloring of this block uniformly at random.

Theorem ([Mar00])

If the Glauber Dynamics restricted to each block are ergodic, then:

$$au(\mathcal{L}_{GD}) \leq au(\mathcal{L}_{B}) \cdot \max_{i} au(\mathcal{L}_{GD}|_{V_{i}})$$

[Martinelli, 2000]

Marc Heinrich

November 15, 2018 11/14

Complete trees

Idea

Recursively decompose the tree using block dynamics.

Idea

Recursively decompose the tree using block dynamics.

Idea

Recursively decompose the tree using block dynamics.

 $au(h) \leq au(h-1) au(\mathcal{L}_B)$

- The color of the internal edges on each block does not matter.
- \bullet Block dynamics \simeq Glauber Dynamics for edge coloring a star.

- The color of the internal edges on each block does not matter.
- Block dynamics \simeq Glauber Dynamics for edge coloring a star.

$$au(h) \leq (au^*)^h$$

With τ^* the mixing time for a star of size Δ .

- The color of the internal edges on each block does not matter.
- Block dynamics \simeq Glauber Dynamics for edge coloring a star.

$$\tau(h) \leq (\tau^*)^h$$

With τ^* the mixing time for a star of size Δ .

Lemma

The mixing time for the Glauber dynamics for edge coloring a star of size Δ is at most:

$$au^* \leq \mathsf{poly}(\Delta)$$

Conclusion

- Edge coloring for other graphs:
 - K_n , $K_{n,n}$,
 - chordal graphs, interval graphs...
 - graphs with bounded treewidth,
 - random *d*-regular graphs.
- Number of colours necessary for ergodicity of edge colorings.
- Improve on Vigoda's bound by a large margin.

Conclusion

- Edge coloring for other graphs:
 - K_n, K_{n,n},
 - chordal graphs, interval graphs...
 - graphs with bounded treewidth,
 - random *d*-regular graphs.
- Number of colours necessary for ergodicity of edge colorings.
- Improve on Vigoda's bound by a large margin.

Thank You!