Domination éternelle sur les graphes dirigés et orientations de graphes

JGA 2018

Guillaume Bagan, Alice Joffard, Hamamache Kheddouci

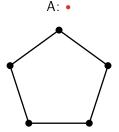
15 novembre 2018

Q: Peut-on éternellement défendre un graphe ?

Sur un graphe G, deux joueurs: le défenseur
 (D), l'attaquant (A)

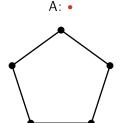
Q: Peut-on éternellement défendre un graphe ?

➤ Sur un graphe G, deux joueurs: le défenseur (D), l'attaquant (A)



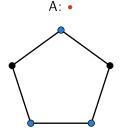
Q: Peut-on éternellement défendre un graphe ?

- Sur un graphe G, deux joueurs: le défenseur
 (D), l'attaquant (A)
- ▶ D choisit un ensemble de sommets où mettre ses gardes.



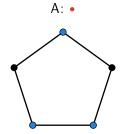
Q: Peut-on éternellement défendre un graphe ?

- Sur un graphe G, deux joueurs: le défenseur
 (D), l'attaquant (A)
- ▶ D choisit un ensemble de sommets où mettre ses gardes.



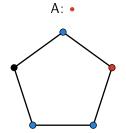
Q: Peut-on éternellement défendre un graphe ?

- Sur un graphe G, deux joueurs: le défenseur
 (D), l'attaquant (A)
- D choisit un ensemble de sommets où mettre ses gardes.
- Attaque : A choisit un sommet.



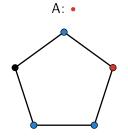
Q: Peut-on éternellement défendre un graphe ?

- Sur un graphe G, deux joueurs: le défenseur
 (D), l'attaquant (A)
- D choisit un ensemble de sommets où mettre ses gardes.
- Attaque : A choisit un sommet.



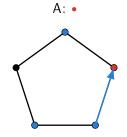
Q: Peut-on éternellement défendre un graphe ?

- Sur un graphe G, deux joueurs: le défenseur
 (D), l'attaquant (A)
- ▶ D choisit un ensemble de sommets où mettre ses gardes.
- Attaque : A choisit un sommet.
- Défense: D déplace un garde sur le sommet attaqué. Les autres ne bougent pas.



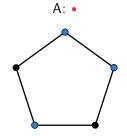
Q: Peut-on éternellement défendre un graphe ?

- Sur un graphe G, deux joueurs: le défenseur
 (D), l'attaquant (A)
- ▶ D choisit un ensemble de sommets où mettre ses gardes.
- Attaque : A choisit un sommet.
- Défense: D déplace un garde sur le sommet attaqué. Les autres ne bougent pas.



Q: Peut-on éternellement défendre un graphe ?

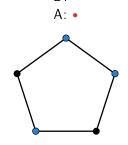
- Sur un graphe G, deux joueurs: le défenseur
 (D), l'attaquant (A)
- ▶ D choisit un ensemble de sommets où mettre ses gardes.
- Attaque : A choisit un sommet.
- Défense: D déplace un garde sur le sommet attaqué. Les autres ne bougent pas.



Q: Peut-on éternellement défendre un graphe ?

- Sur un graphe G, deux joueurs: le défenseur
 (D), l'attaquant (A)
- ▶ D choisit un ensemble de sommets où mettre ses gardes.
- ► Attaque : A choisit un sommet.
- Défense: D déplace un garde sur le sommet attaqué. Les autres ne bougent pas.

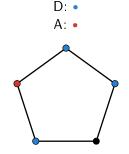
Les phases d'attaque et de défense sont répétées éternellement.



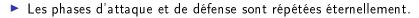
Q: Peut-on éternellement défendre un graphe ?

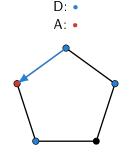
- Sur un graphe G, deux joueurs: le défenseur
 (D), l'attaquant (A)
- ▶ D choisit un ensemble de sommets où mettre ses gardes.
- Attaque : A choisit un sommet.
- Défense: D déplace un garde sur le sommet attaqué. Les autres ne bougent pas.

Les phases d'attaque et de défense sont répétées éternellement.

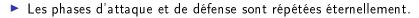


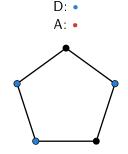
- Sur un graphe G, deux joueurs: le défenseur
 (D), l'attaquant (A)
- ▶ D choisit un ensemble de sommets où mettre ses gardes.
- Attaque : A choisit un sommet.
- Défense: D déplace un garde sur le sommet attaqué. Les autres ne bougent pas.



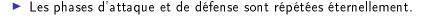


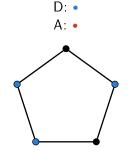
- Sur un graphe G, deux joueurs: le défenseur
 (D), l'attaquant (A)
- ▶ D choisit un ensemble de sommets où mettre ses gardes.
- Attaque : A choisit un sommet.
- Défense: D déplace un garde sur le sommet attaqué. Les autres ne bougent pas.



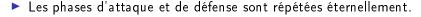


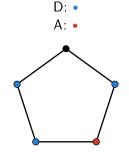
- Sur un graphe G, deux joueurs: le défenseur
 (D), l'attaquant (A)
- D choisit un ensemble de sommets où mettre ses gardes.
- Attaque : A choisit un sommet.
- Défense: D déplace un garde sur le sommet attaqué. Les autres peuvent aussi bouger.



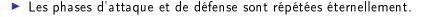


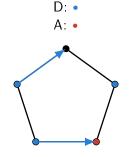
- Sur un graphe G, deux joueurs: le défenseur
 (D), l'attaquant (A)
- D choisit un ensemble de sommets où mettre ses gardes.
- Attaque : A choisit un sommet.
- Défense: D déplace un garde sur le sommet attaqué. Les autres peuvent aussi bouger.



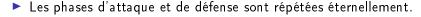


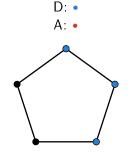
- Sur un graphe G, deux joueurs: le défenseur
 (D), l'attaquant (A)
- D choisit un ensemble de sommets où mettre ses gardes.
- Attaque : A choisit un sommet.
- Défense: D déplace un garde sur le sommet attaqué. Les autres peuvent aussi bouger.



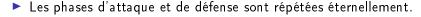


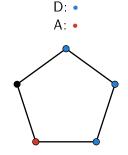
- Sur un graphe G, deux joueurs: le défenseur
 (D), l'attaquant (A)
- ▶ D choisit un ensemble de sommets où mettre ses gardes.
- Attaque : A choisit un sommet.
- Défense: D déplace un garde sur le sommet attaqué. Les autres peuvent aussi bouger.





- Sur un graphe G, deux joueurs: le défenseur
 (D), l'attaquant (A)
- ▶ D choisit un ensemble de sommets où mettre ses gardes.
- Attaque : A choisit un sommet.
- Défense: D déplace un garde sur le sommet attaqué. Les autres peuvent aussi bouger.

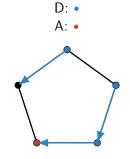




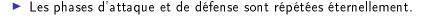
Q: Peut-on éternellement défendre un graphe ?

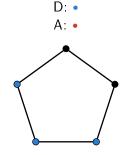
- Sur un graphe G, deux joueurs: le défenseur
 (D), l'attaquant (A)
- ▶ D choisit un ensemble de sommets où mettre ses gardes.
- Attaque : A choisit un sommet.
- Défense: D déplace un garde sur le sommet attaqué. Les autres peuvent aussi bouger.

Les phases d'attaque et de défense sont répétées éternellement.



- Sur un graphe G, deux joueurs: le défenseur
 (D), l'attaquant (A)
- D choisit un ensemble de sommets où mettre ses gardes.
- Attaque : A choisit un sommet.
- Défense: D déplace un garde sur le sommet attaqué. Les autres peuvent aussi bouger.





Definition

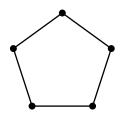
Nombre de domination éternelle (m-éternelle) $\gamma^\infty(G)$ $(\gamma_m^\infty(G))$: nombre minimum de gardes nécessaire au défenseur pour gagner.

Definition

Nombre de domination éternelle (m-éternelle) $\gamma^{\infty}(G)$

 $(\gamma_m^\infty(G))$: nombre minimum de gardes nécessaire au défenseur pour gagner.

Exemple:

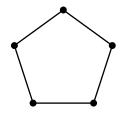


Definition

Nombre de domination éternelle (m-éternelle) $\gamma^{\infty}(G)$

 $(\gamma_m^\infty(G))$: nombre minimum de gardes nécessaire au défenseur pour gagner.

Exemple:

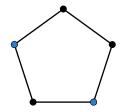


Definition

Nombre de domination éternelle (m-éternelle) $\gamma^{\infty}(G)$

 $(\gamma_m^\infty(G))$: nombre minimum de gardes nécessaire au défenseur pour gagner.

Exemple:

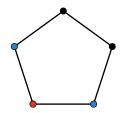


Definition

Nombre de domination éternelle (m-éternelle) $\gamma^{\infty}(G)$

 $(\gamma_m^\infty(G))$: nombre minimum de gardes nécessaire au défenseur pour gagner.

Exemple:



Definition

Nombre de domination éternelle (m-éternelle) $\gamma^{\infty}(G)$

 $(\gamma_m^\infty(G))$: nombre minimum de gardes nécessaire au défenseur pour gagner.

Exemple:

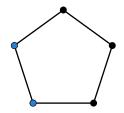


Definition

Nombre de domination éternelle (m-éternelle) $\gamma^{\infty}(G)$

 $(\gamma_m^\infty(G))$: nombre minimum de gardes nécessaire au défenseur pour gagner.

Exemple:

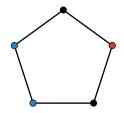


Definition

Nombre de domination éternelle (m-éternelle) $\gamma^{\infty}(G)$

 $(\gamma_m^\infty(G))$: nombre minimum de gardes nécessaire au défenseur pour gagner.

Exemple:



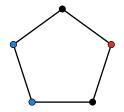
Definition

Nombre de domination éternelle (m-éternelle) $\gamma^{\infty}(G)$

 $(\gamma_m^\infty(G))$: nombre minimum de gardes nécessaire au défenseur pour gagner.

Exemple:

domination éternelle sur C₅ avec 2 gardes: A gagne

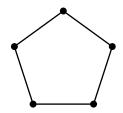


Definition

Nombre de domination éternelle (m-éternelle) $\gamma^{\infty}(G)$

 $(\gamma_m^\infty(G))$: nombre minimum de gardes nécessaire au défenseur pour gagner.

Exemple:

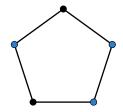


Definition

Nombre de domination éternelle (m-éternelle) $\gamma^{\infty}(G)$

 $(\gamma_m^\infty(G))$: nombre minimum de gardes nécessaire au défenseur pour gagner.

Exemple:

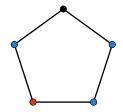


Definition

Nombre de domination éternelle (m-éternelle) $\gamma^{\infty}(G)$

 $(\gamma_m^\infty(G))$: nombre minimum de gardes nécessaire au défenseur pour gagner.

Exemple:



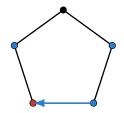
Definition

Nombre de domination éternelle (m-éternelle) $\gamma^{\infty}(G)$

 $(\gamma_m^\infty(G))$: nombre minimum de gardes nécessaire au défenseur pour gagner.

Exemple:

domination éternelle sur C_5 avec 3 gardes



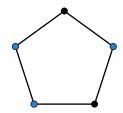
Definition

Nombre de domination éternelle (m-éternelle) $\gamma^{\infty}(G)$

 $(\gamma_m^\infty(G))$: nombre minimum de gardes nécessaire au défenseur pour gagner.

Exemple:

domination éternelle sur C_5 avec 3 gardes



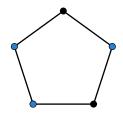
Definition

Nombre de domination éternelle (m-éternelle) $\gamma^{\infty}(G)$

 $(\gamma_m^\infty(G))$: nombre minimum de gardes nécessaire au défenseur pour gagner.

Exemple:

domination éternelle sur C_5 avec 3 gardes: D gagne



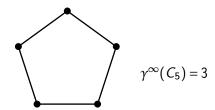
Definition

Nombre de domination éternelle (m-éternelle) $\gamma^{\infty}(G)$

 $(\gamma_m^\infty(G))$: nombre minimum de gardes nécessaire au défenseur pour gagner.

Exemple:

domination éternelle sur C_5 avec 3 gardes: D gagne



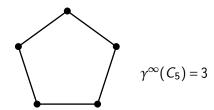
Definition

Nombre de domination éternelle (m-éternelle) $\gamma^{\infty}(G)$

 $(\gamma_m^\infty(G))$: nombre minimum de gardes nécessaire au défenseur pour gagner.

Exemple:

domination m-éternelle sur C₅ avec 1 garde: A gagne

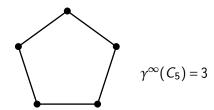


Definition

Nombre de domination éternelle (m-éternelle) $\gamma^{\infty}(G)$

 $(\gamma_m^\infty(G))$: nombre minimum de gardes nécessaire au défenseur pour gagner.

Exemple:



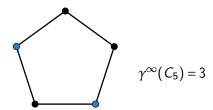
Definition

Nombre de domination éternelle (m-éternelle) $\gamma^{\infty}(G)$

 $(\gamma_m^\infty(G))$: nombre minimum de gardes nécessaire au défenseur pour gagner.

Exemple:

domination m-éternelle sur C_5 avec 2 gardes

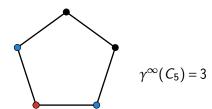


Definition

Nombre de domination éternelle (m-éternelle) $\gamma^{\infty}(G)$

 $(\gamma_m^\infty(G))$: nombre minimum de gardes nécessaire au défenseur pour gagner.

Exemple:



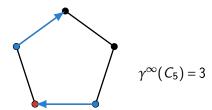
Definition

Nombre de domination éternelle (m-éternelle) $\gamma^{\infty}(G)$

 $(\gamma_m^\infty(G))$: nombre minimum de gardes nécessaire au défenseur pour gagner.

Exemple:

domination m-éternelle sur C_5 avec 2 gardes

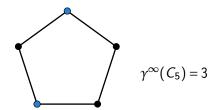


Definition

Nombre de domination éternelle (m-éternelle) $\gamma^{\infty}(G)$

 $(\gamma_m^\infty(G))$: nombre minimum de gardes nécessaire au défenseur pour gagner.

Exemple:

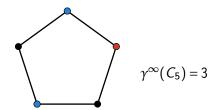


Definition

Nombre de domination éternelle (m-éternelle) $\gamma^{\infty}(G)$

 $(\gamma_m^\infty(G))$: nombre minimum de gardes nécessaire au défenseur pour gagner.

Exemple:

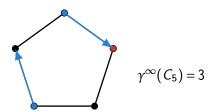


Definition

Nombre de domination éternelle (m-éternelle) $\gamma^{\infty}(G)$

 $(\gamma_m^\infty(G))$: nombre minimum de gardes nécessaire au défenseur pour gagner.

Exemple:

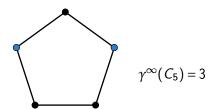


Definition

Nombre de domination éternelle (m-éternelle) $\gamma^{\infty}(G)$

 $(\gamma_m^\infty(G))$: nombre minimum de gardes nécessaire au défenseur pour gagner.

Exemple:

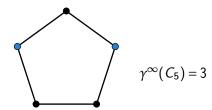


Definition

Nombre de domination éternelle (m-éternelle) $\gamma^{\infty}(G)$

 $(\gamma_m^\infty(G))$: nombre minimum de gardes nécessaire au défenseur pour gagner.

Exemple:

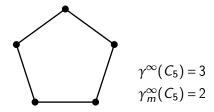


Definition

Nombre de domination éternelle (m-éternelle) $\gamma^{\infty}(G)$

 $(\gamma_m^\infty(G))$: nombre minimum de gardes nécessaire au défenseur pour gagner.

Exemple:



Introduction de la domination éternelle: Burger et al, 2004.

- Introduction de la domination éternelle: Burger et al, 2004.
- Introduction de la domination m-éternelle: Goddard et al, 2005.

- Introduction de la domination éternelle: Burger et al, 2004.
- Introduction de la domination m-éternelle: Goddard et al, 2005.
- Etude des paramètres sur les cliques, les graphes complets bipartis, les cycles, les grilles...

- Introduction de la domination éternelle: Burger et al, 2004.
- Introduction de la domination m-éternelle: Goddard et al, 2005.
- Etude des paramètres sur les cliques, les graphes complets bipartis, les cycles, les grilles...
- Bornes générales pour les deux paramètres:

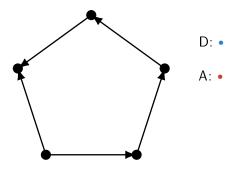
- Introduction de la domination éternelle: Burger et al, 2004.
- Introduction de la domination m-éternelle: Goddard et al, 2005.
- Etude des paramètres sur les cliques, les graphes complets bipartis, les cycles, les grilles...
- Bornes générales pour les deux paramètres:

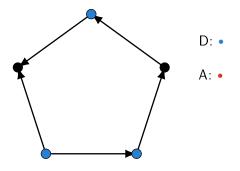
Théorème (Burger 04, Goddard 05, Klostermeyer 07)

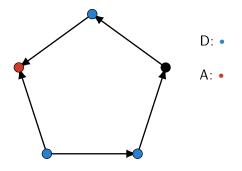
 $\gamma(G) \leq \gamma_m^{\infty}(G) \leq \alpha(G) \leq \gamma^{\infty}(G) \leq {\alpha(G)+1 \choose 2}$ où γ est le nombre de domination et α le nombre d'indépendance.

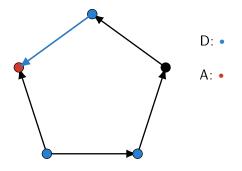
Théorème (Burger et al 04)

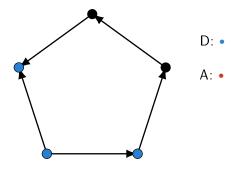
 $\gamma^{\infty}(G) \leq \theta(G)$ où θ est la taille d'une couverture par cliques minimale.

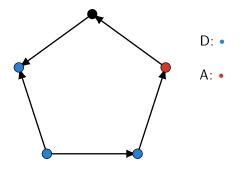


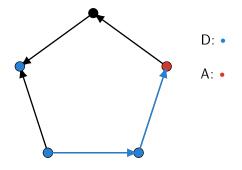


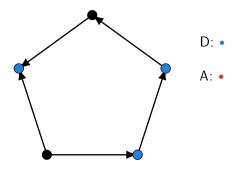










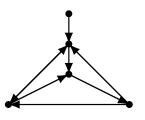


Definition

lpha(D): ordre du plus grand sous-graphe induit acyclique de D.

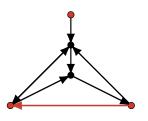
Definition

 $\alpha(D)$: ordre du plus grand sous-graphe induit acyclique de D.



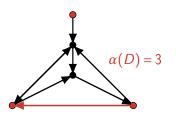
Definition

 $\alpha(D)$: ordre du plus grand sous-graphe induit acyclique de D.



Definition

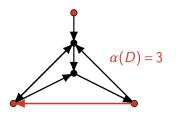
 $\alpha(D)$: ordre du plus grand sous-graphe induit acyclique de D.



Bornes générales

Definition

 $\alpha(D)$: ordre du plus grand sous-graphe induit acyclique de D.



Théorème

$$\gamma(D) \le \gamma_m^{\infty}(D) \le \alpha(D) \le \gamma^{\infty}(D) \le {\alpha(D) + 1 \choose 2}.$$

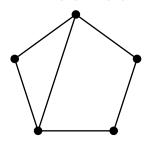
Principe: Orienter G pour minimiser son nombre de domination (m-)éternelle.

Principe: Orienter G pour minimiser son nombre de domination (m-)éternelle.

Definition

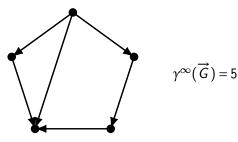
Principe: Orienter G pour minimiser son nombre de domination (m-)éternelle.

Definition



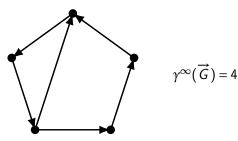
Principe: Orienter G pour minimiser son nombre de domination (m-)éternelle.

Definition



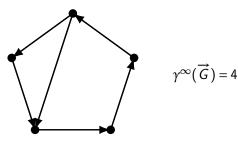
Principe: Orienter G pour minimiser son nombre de domination (m-)éternelle.

Definition



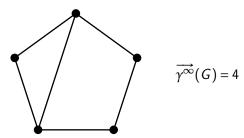
Principe: Orienter G pour minimiser son nombre de domination (m-)éternelle.

Definition



Principe: Orienter G pour minimiser son nombre de domination (m-)éternelle.

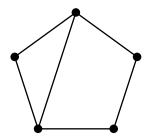
Definition



Principe: Orienter G pour minimiser son nombre de domination (m-)éternelle.

Definition

 $\overrightarrow{\gamma^{\infty}}(G), \overrightarrow{\gamma^{\infty}_m}(G), \overrightarrow{\alpha}(G)$: minimum, sur toutes les orientations D possibles de G, de $\gamma^{\infty}(D), \gamma^{\infty}_m(D)$ et $\alpha(D)$.



Proposition

Pour G un graphe avec au moins une arête, $\gamma(G) \le \alpha(G) < \overrightarrow{\alpha}(G) \le \gamma^{\infty}(G)$.

Théorème

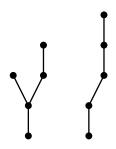
Soit G un graphe d'ordre n. Alors, $\overrightarrow{\gamma^{\infty}}(G) = n$ ssi $\overrightarrow{\gamma_m}(G) = n$ ssi G est une forêt.

Théorème

Soit G un graphe d'ordre n. Alors, $\overrightarrow{\gamma^{\infty}}(G) = n$ ssi $\overrightarrow{\gamma_m}(G) = n$ ssi G est une forêt.

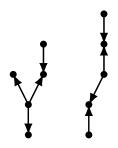
Théorème

Soit G un graphe d'ordre n. Alors, $\overrightarrow{\gamma^{\infty}}(G) = n$ ssi $\overrightarrow{\gamma_m}(G) = n$ ssi G est une forêt.



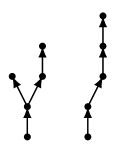
Théorème

Soit G un graphe d'ordre n. Alors, $\overrightarrow{\gamma^{\infty}}(G) = n$ ssi $\overrightarrow{\gamma_m}(G) = n$ ssi G est une forêt.



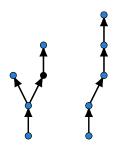
Théorème

Soit G un graphe d'ordre n. Alors, $\overrightarrow{\gamma^{\infty}}(G) = n$ ssi $\overrightarrow{\gamma_m^{\infty}}(G) = n$ ssi G est une forêt.



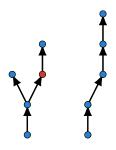
Théorème

Soit G un graphe d'ordre n. Alors, $\overrightarrow{\gamma^{\infty}}(G) = n$ ssi $\overrightarrow{\gamma_m}(G) = n$ ssi G est une forêt.



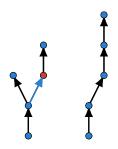
Théorème

Soit G un graphe d'ordre n. Alors, $\overrightarrow{\gamma^{\infty}}(G) = n$ ssi $\overrightarrow{\gamma_m}(G) = n$ ssi G est une forêt.



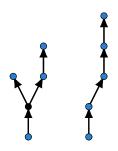
Théorème

Soit G un graphe d'ordre n. Alors, $\overrightarrow{\gamma^{\infty}}(G) = n$ ssi $\overrightarrow{\gamma_m}(G) = n$ ssi G est une forêt.



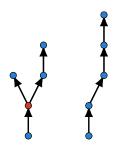
Théorème

Soit G un graphe d'ordre n. Alors, $\overrightarrow{\gamma^{\infty}}(G) = n$ ssi $\overrightarrow{\gamma_m}(G) = n$ ssi G est une forêt.



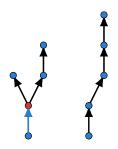
Théorème

Soit G un graphe d'ordre n. Alors, $\overrightarrow{\gamma^{\infty}}(G) = n$ ssi $\overrightarrow{\gamma_m}(G) = n$ ssi G est une forêt.



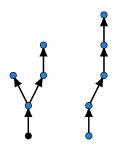
Théorème

Soit G un graphe d'ordre n. Alors, $\overrightarrow{\gamma^{\infty}}(G) = n$ ssi $\overrightarrow{\gamma_m}(G) = n$ ssi G est une forêt.



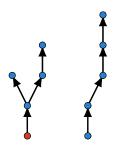
Théorème

Soit G un graphe d'ordre n. Alors, $\overrightarrow{\gamma^{\infty}}(G) = n$ ssi $\overrightarrow{\gamma_m}(G) = n$ ssi G est une forêt.



Théorème

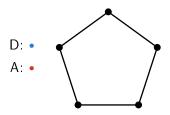
Soit G un graphe d'ordre n. Alors, $\overrightarrow{\gamma^{\infty}}(G) = n$ ssi $\overrightarrow{\gamma_m}(G) = n$ ssi G est une forêt.



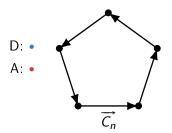
$$\frac{\mathsf{Th\'{e}or\`{e}me}}{\gamma^{\infty}(C_n) = n-1 \text{ et } \overrightarrow{\gamma_m^{\infty}}(C_n) = \left\lceil \frac{n}{2} \right\rceil \text{ pour tout } n \geq 3.$$

$$\frac{\text{Th\'eor\`eme}}{\gamma^{\infty}}(C_n) = n-1 \text{ et } \overline{\gamma_m^{\infty}}(C_n) = \left\lceil \frac{n}{2} \right\rceil \text{ pour tout } n \geq 3.$$

$$\frac{\text{Th\'eor\`eme}}{\gamma^{\infty}}(C_n) = n-1 \text{ et } \overline{\gamma_m^{\infty}}(C_n) = \left\lceil \frac{n}{2} \right\rceil \text{ pour tout } n \geq 3.$$

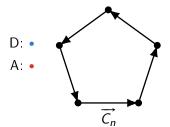


$$\frac{\text{Th\'eor\`eme}}{\gamma^{\infty}}(C_n) = n-1 \text{ et } \overline{\gamma_m^{\infty}}(C_n) = \left\lceil \frac{n}{2} \right\rceil \text{ pour tout } n \geq 3.$$



$$\frac{\text{Th\'eor\`eme}}{\gamma^{\infty}}(C_n) = n-1 \text{ et } \overline{\gamma_m^{\infty}}(C_n) = \left\lceil \frac{n}{2} \right\rceil \text{ pour tout } n \geq 3.$$

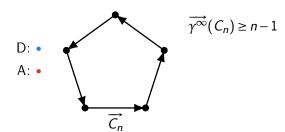
$$\overrightarrow{\alpha}\left(C_{n}\right)=n-1$$



Théorème

$$\overrightarrow{\gamma^{\infty}}(C_n) = n-1 \text{ et } \overrightarrow{\gamma^{\infty}_m}(C_n) = \left\lceil \frac{n}{2} \right\rceil \text{ pour tout } n \ge 3.$$

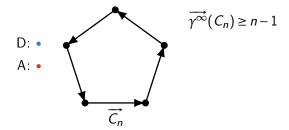
$$\overrightarrow{\alpha}(C_n) = n-1$$



Théorème

$$\overrightarrow{\gamma^{\infty}}(C_n) = n-1$$
 et $\overrightarrow{\gamma^{\infty}_m}(C_n) = \left\lceil \frac{n}{2} \right\rceil$ pour tout $n \ge 3$.

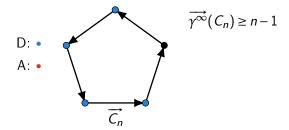
Preuve:



Théorème

$$\overrightarrow{\gamma^{\infty}}(C_n) = n-1$$
 et $\overrightarrow{\gamma^{\infty}_m}(C_n) = \left\lceil \frac{n}{2} \right\rceil$ pour tout $n \ge 3$.

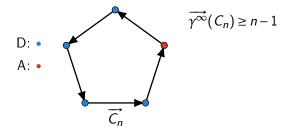
Preuve:



Théorème

$$\overrightarrow{\gamma^{\infty}}(C_n) = n-1$$
 et $\overrightarrow{\gamma^{\infty}_m}(C_n) = \left\lceil \frac{n}{2} \right\rceil$ pour tout $n \ge 3$.

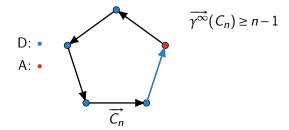
Preuve:



Théorème

$$\overrightarrow{\gamma^{\infty}}(C_n) = n-1$$
 et $\overrightarrow{\gamma^{\infty}_m}(C_n) = \left\lceil \frac{n}{2} \right\rceil$ pour tout $n \ge 3$.

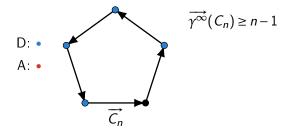
Preuve:



Théorème

$$\overrightarrow{\gamma^{\infty}}(C_n) = n-1$$
 et $\overrightarrow{\gamma^{\infty}_m}(C_n) = \left\lceil \frac{n}{2} \right\rceil$ pour tout $n \ge 3$.

Preuve:

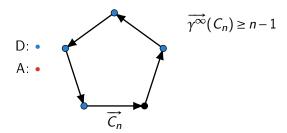


Théorème

$$\overrightarrow{\gamma^{\infty}}(C_n) = n-1$$
 et $\overrightarrow{\gamma^{\infty}_m}(C_n) = \left\lceil \frac{n}{2} \right\rceil$ pour tout $n \ge 3$.

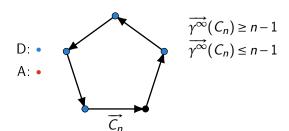
Preuve:

domination éternelle sur $\overrightarrow{C_n}$ avec n-1 gardes : D gagne



Théorème

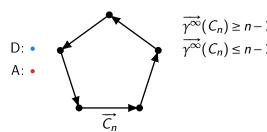
$$\overrightarrow{\gamma^{\infty}}(C_n) = n-1 \text{ et } \overrightarrow{\gamma^{\infty}_m}(C_n) = \left\lceil \frac{n}{2} \right\rceil \text{ pour tout } n \geq 3.$$



Théorème

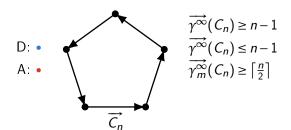
$$\overrightarrow{\gamma^{\infty}}(C_n) = n-1$$
 et $\overrightarrow{\gamma^{\infty}_m}(C_n) = \left\lceil \frac{n}{2} \right\rceil$ pour tout $n \ge 3$.

$$\gamma(\overrightarrow{C_n}) = \lceil \frac{n}{2} \rceil$$



Théorème

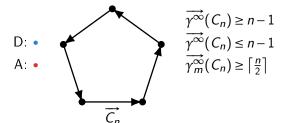
$$\overrightarrow{\gamma^{\infty}}(C_n) = n-1 \text{ et } \overrightarrow{\gamma^{\infty}_m}(C_n) = \left\lceil \frac{n}{2} \right\rceil \text{ pour tout } n \ge 3.$$



Théorème

$$\overrightarrow{\gamma^{\infty}}(C_n) = n-1$$
 et $\overrightarrow{\gamma^{\infty}_m}(C_n) = \lceil \frac{n}{2} \rceil$ pour tout $n \ge 3$.

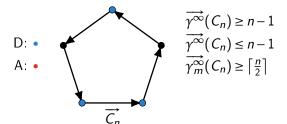
Preuve:



Théorème

$$\overrightarrow{\gamma^{\infty}}(C_n) = n-1$$
 et $\overrightarrow{\gamma^{\infty}_m}(C_n) = \lceil \frac{n}{2} \rceil$ pour tout $n \ge 3$.

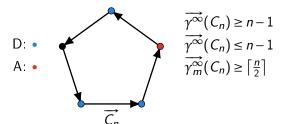
Preuve:



Théorème

$$\overrightarrow{\gamma^{\infty}}(C_n) = n-1$$
 et $\overrightarrow{\gamma^{\infty}_m}(C_n) = \lceil \frac{n}{2} \rceil$ pour tout $n \ge 3$.

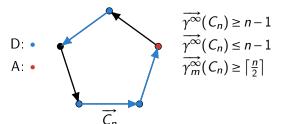
Preuve:



Théorème

$$\overrightarrow{\gamma^{\infty}}(C_n) = n-1$$
 et $\overrightarrow{\gamma^{\infty}_m}(C_n) = \lceil \frac{n}{2} \rceil$ pour tout $n \ge 3$.

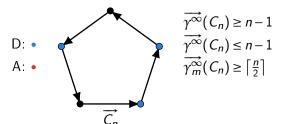
Preuve:



Théorème

$$\overrightarrow{\gamma^{\infty}}(C_n) = n-1$$
 et $\overrightarrow{\gamma^{\infty}_m}(C_n) = \lceil \frac{n}{2} \rceil$ pour tout $n \ge 3$.

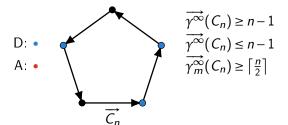
Preuve:



Théorème

$$\overrightarrow{\gamma^{\infty}}(C_n) = n-1$$
 et $\overrightarrow{\gamma^{\infty}_m}(C_n) = \lceil \frac{n}{2} \rceil$ pour tout $n \ge 3$.

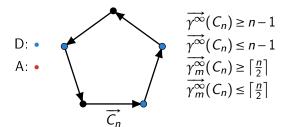
Preuve:



Théorème

$$\overrightarrow{\gamma^{\infty}}(C_n) = n-1$$
 et $\overrightarrow{\gamma^{\infty}_m}(C_n) = \left\lceil \frac{n}{2} \right\rceil$ pour tout $n \ge 3$.

Preuve:



Théorème \overrightarrow{D} écider si $\overrightarrow{\gamma^{\infty}}(G) \le k$ est coNP-difficile.

Théorème

Décider si $\overrightarrow{\gamma^{\infty}}(G) \le k$ est coNP-difficile.

Théorème

Décider si $\overrightarrow{\gamma^{\infty}}(G) \le k$ est coNP-difficile.

Preuve:

Décider si $\gamma^{\infty}(G) \le k$ est coNP-difficile \rightarrow Réduction

Théorème

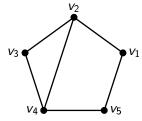
Décider si $\overrightarrow{\gamma^{\infty}}(G) \le k$ est coNP-difficile.

Preuve:

Décider si $\gamma^{\infty}(G) \le k$ est coNP-difficile \rightarrow Réduction

Definition

Pour un graphe G, soit C(G) le graphe obtenu en ajoutant à G un sommet par arête et en le connectant aux deux extremités.



Théorème

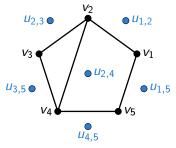
Décider si $\overrightarrow{\gamma^{\infty}}(G) \le k$ est coNP-difficile.

Preuve:

Décider si $\gamma^{\infty}(G) \leq k$ est coNP-difficile \rightarrow Réduction

Definition

Pour un graphe G, soit C(G) le graphe obtenu en ajoutant à G un sommet par arête et en le connectant aux deux extremités.



Théorème

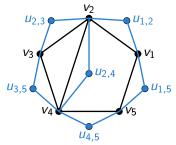
Décider si $\overrightarrow{\gamma^{\infty}}(G) \le k$ est coNP-difficile.

Preuve:

Décider si $\gamma^{\infty}(G) \le k$ est coNP-difficile \rightarrow Réduction

Definition

Pour un graphe G, soit C(G) le graphe obtenu en ajoutant à G un sommet par arête et en le connectant aux deux extremités.



Théorème

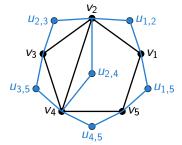
Décider si $\overrightarrow{\gamma^{\infty}}(G) \le k$ est coNP-difficile.

Preuve:

Décider si $\gamma^{\infty}(G) \le k$ est coNP-difficile \rightarrow Réduction

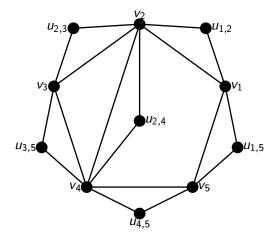
Definition

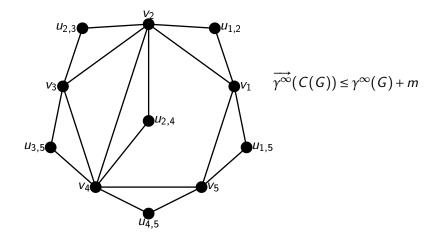
Pour un graphe G, soit C(G) le graphe obtenu en ajoutant à G un sommet par arête et en le connectant aux deux extremités.

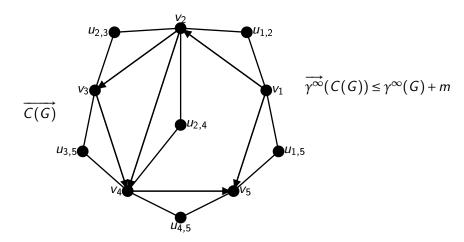


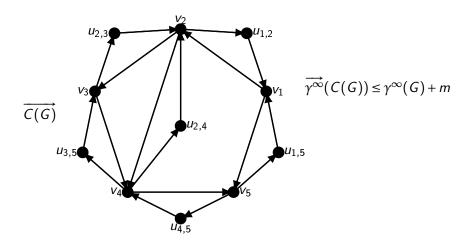
Lemme

Pour G un graphe non dirigé à m arêtes, $\overrightarrow{\gamma^{\infty}}(C(G)) = \gamma^{\infty}(G) + m$.

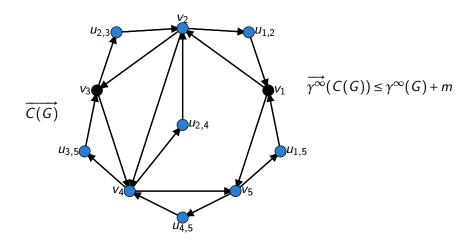


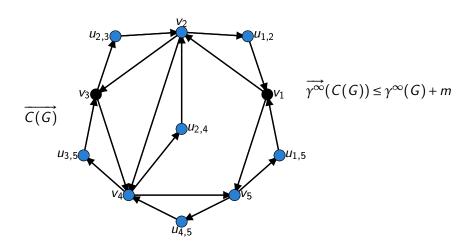


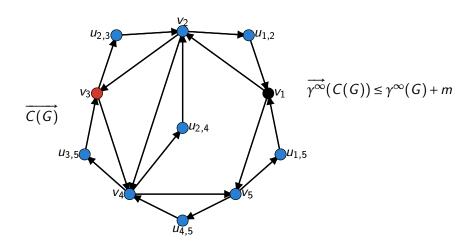


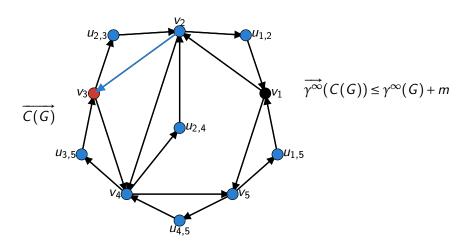


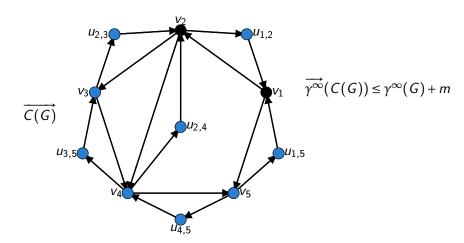
Preuve de $\overrightarrow{\gamma^{\infty}}(C(G)) = \underline{\gamma^{\infty}}(G) + m$ domination éternelle sur C(G) avec $\gamma^{\infty}(G) + m$ gardes

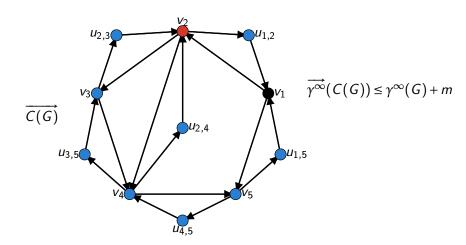


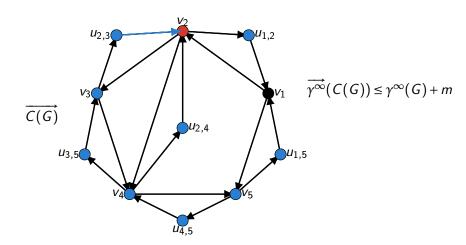


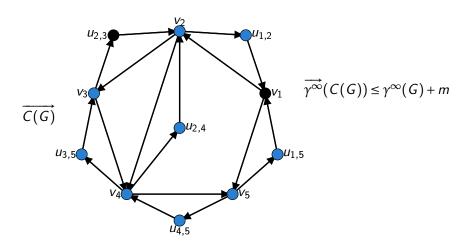


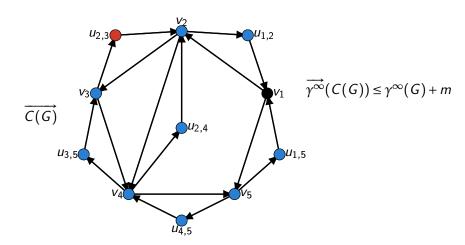


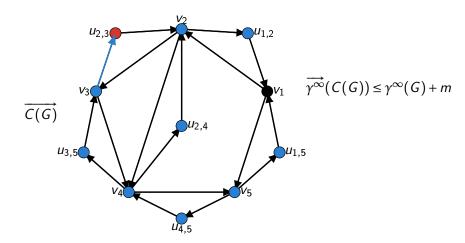


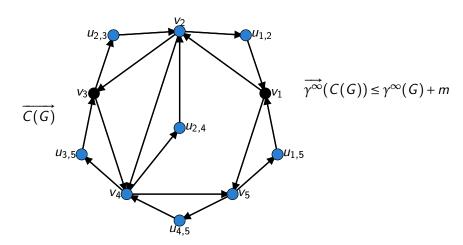




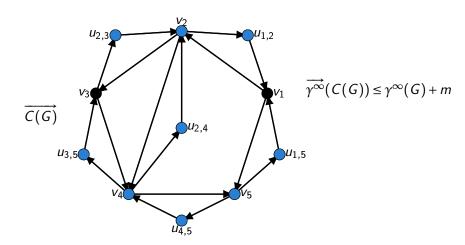




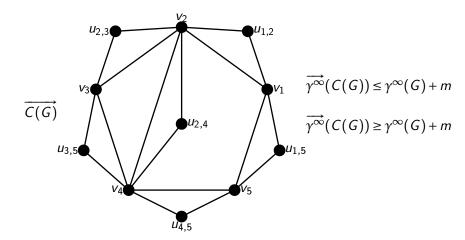


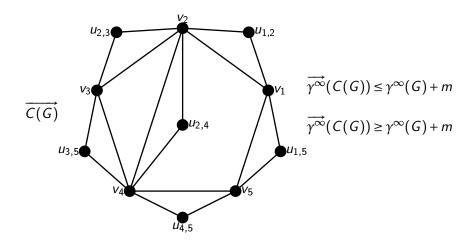


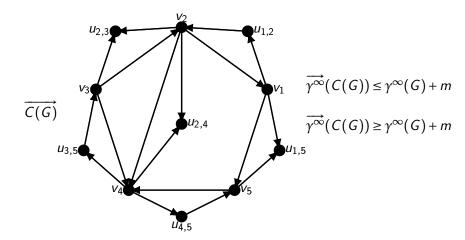
domination éternelle sur C(G) avec $\gamma^{\infty}(G) + m$ gardes: D gagne

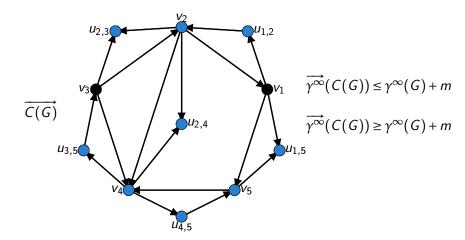


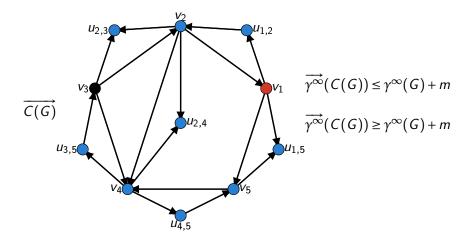
Preuve de $\overrightarrow{\gamma^{\infty}}(C(G)) = \gamma^{\infty}(G) + m$

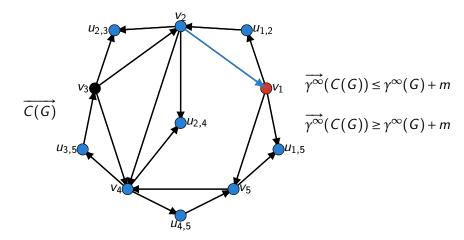


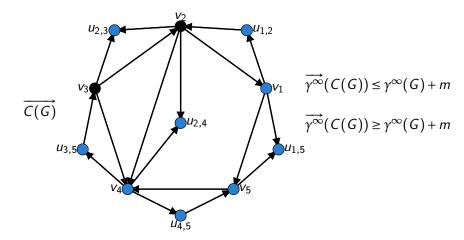


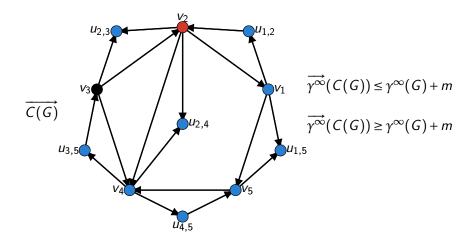


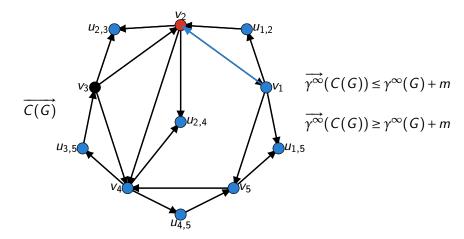


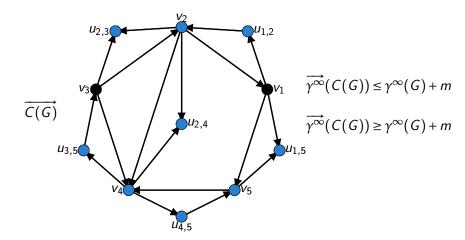






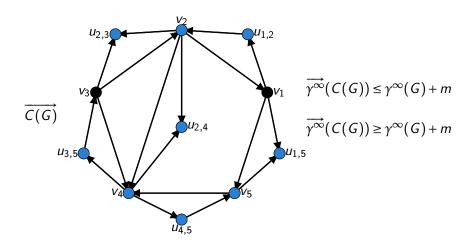






Preuve de $\overrightarrow{\gamma^{\infty}}(C(G)) = \gamma^{\infty}(G) + m$

domination éternelle sur G avec $\gamma^\infty(C(G))-m$ gardes: D gagne



• Caractérisation complète des graphes pour lesquels $\overrightarrow{\gamma_m^\infty}(G) = 2$.

- Caractérisation complète des graphes pour lesquels $\overrightarrow{\gamma_m^\infty}(G) = 2$.
- ▶ Valeur exacte de $\overrightarrow{\gamma_m^{\infty}}$ et $\overrightarrow{\gamma^{\infty}}$ pour les bicliques.

- Caractérisation complète des graphes pour lesquels $\overrightarrow{\gamma_m^\infty}(G) = 2$.
- ▶ Valeur exacte de $\overrightarrow{\gamma_m^\infty}$ et $\overrightarrow{\gamma^\infty}$ pour les bicliques.
- **B** Bornes sérrées de $\overrightarrow{\gamma^{\infty}}$ pour les grilles.

- Caractérisation complète des graphes pour lesquels $\overrightarrow{\gamma_m^{\infty}}(G) = 2$.
- ► Valeur exacte de $\overrightarrow{\gamma_m^{\infty}}$ et $\overrightarrow{\gamma^{\infty}}$ pour les bicliques.
- Bornes sérrées de $\overrightarrow{\gamma^{\infty}}$ pour les grilles.
- ▶ Borne supérieure de $\overrightarrow{\gamma_m^{\infty}}$ pour les grilles, grilles toriques et hypergrilles toriques.

- Caractérisation complète des graphes pour lesquels $\overrightarrow{\gamma_m^\infty}(G) = 2$.
- ▶ Valeur exacte de $\overrightarrow{\gamma_m^{\infty}}$ et $\overrightarrow{\gamma^{\infty}}$ pour les bicliques.
- Bornes sérrées de $\overrightarrow{\gamma^{\infty}}$ pour les grilles.
- ▶ Borne supérieure de $\overrightarrow{\gamma_m^{\infty}}$ pour les grilles, grilles toriques et hypergrilles toriques.
- ► Valeur exacte des deux paramètres pour les grilles du roi.

Y a-t-il un paramètre naturel pour les graphes dirigés qui soit une borne supérieure de γ^{∞} comme le nombre de cliques dans une couverture minimale l'est pour les graphes ?

- Y a-t-il un paramètre naturel pour les graphes dirigés qui soit une borne supérieure de γ^{∞} comme le nombre de cliques dans une couverture minimale l'est pour les graphes ?
- Caractériser les graphes pour lesquels $\overrightarrow{\gamma_m^{\infty}} = \gamma$.

- Y a-t-il un paramètre naturel pour les graphes dirigés qui soit une borne supérieure de γ^{∞} comme le nombre de cliques dans une couverture minimale l'est pour les graphes ?
- Caractériser les graphes pour lesquels $\overrightarrow{\gamma_m} = \gamma$.
- Etudier la complexité de décider si $\overrightarrow{\gamma_m^\infty}(G) \le k$ dans le cas général et si k est fixé.

- Y a-t-il un paramètre naturel pour les graphes dirigés qui soit une borne supérieure de γ^{∞} comme le nombre de cliques dans une couverture minimale l'est pour les graphes ?
- Caractériser les graphes pour lesquels $\overrightarrow{\gamma_m^{\infty}} = \gamma$.
- Etudier la complexité de décider si $\overrightarrow{\gamma_m^\infty}(G) \le k$ dans le cas général et si k est fixé.

