Achromatic number of signed graphs

Dimitri Lajou (LaBRI Bordeaux) Supervised by Hervé Hocquard and Éric Sopena

14 Novembre 2018

Achromatic numbers

- Achromatic number of a graph (Harary and Hedetniemi (1970))
- Achromatic number of a 2-edge-colored graph
- Achromatic number of a signed graph
- Other achromatic numbers

Achromatic numbers

- Achromatic number of a graph (Harary and Hedetniemi (1970))
- Achromatic number of a 2-edge-colored graph
- Achromatic number of a signed graph
- Other achromatic numbers

Achromatic numbers

• Achromatic number of a graph (Harary and Hedetniemi (1970))

- Achromatic number of a 2-edge-colored graph
- Achromatic number of a signed graph
- Other achromatic numbers

 \mathbf{Y}

 \searrow

A clique is a graph in which we cannot identify vertices.

A clique is a graph in which we cannot identify vertices.

 \searrow

 $\chi(G)$ is the order of the smallest clique we can reach from G by a homomorphism.

 $\chi(G)$ is the order of the smallest clique we can reach from G by a homomorphism.

we can reach from G by a homomorphism.

A surjective homomorphism is a A clique is a graph in which sequence of identifications we cannot identify vertices. of non adjacent vertices. $\chi(G) = 3$ $\chi(G)$ is the order of the smallest clique we can reach from G by a homomorphism.

 $\psi(G) = 4$

Consider the following algorithm: **Require:** A graph G. **Ensure:** Returns an integer R(G). **while** there exist two non adjacent vertices **do** Choose randomly u and v such that $uv \notin E(G)$. Identify u and v. **end while return** |G| Consider the following algorithm: **Require:** A graph *G*. **Ensure:** Returns an integer R(G). **while** there exist two non adjacent vertices **do** Choose randomly *u* and *v* such that $uv \notin E(G)$. Identify *u* and *v*. **end while return** |G|

Consider the following algorithm: **Require:** A graph *G*. **Ensure:** Returns an integer R(G). **while** there exist two non adjacent vertices **do** Choose randomly *u* and *v* such that $uv \notin E(G)$. Identify *u* and *v*. **end while return** |G|

Problem: ACHROMATIC NUMBER Instance: A graph G and an integer k Question: Is $\psi(G) \ge k$?

Theorem (Yannakakis and Gavril, 1980)

The problem ACHROMATIC NUMBER is NP-complete even for complements of bipartite graphs.

Theorem (Bodlaender, 1989)

The problem ACHROMATIC NUMBER is NP-complete even for graphs that are both connected interval graphs and co-graphs.

Achromatic numbers

• Achromatic number of a graph (Harary and Hedetniemi (1970))

• Achromatic number of a 2-edge-colored graph

- Achromatic number of a signed graph
- Other achromatic numbers

A 2-edge-colored graph (G, C) is a simple undirected graph where each edge can be either positive or negative. C is the set of negative edges.

A 2-edge-colored clique.

A 2-edge-colored graph (G, C) is a simple undirected graph where each edge can be either positive or negative. C is the set of negative edges.

A 2-edge-colored clique.

 $(G, C) \rightarrow_{2ec} (H, D) \iff$ there exists a surjective homomorphism from (G, C) to (H, D).

For a 2-edge-colored graph (G, C), we define and note:

- χ₂(G, C), the chromatic number of (G, C), is the order of the smallest 2-edge-colored clique (K, D) such that (G, C) →_{2ec} (K, D),
- ψ₂(G, C), the achromatic number of (G, C), is the order of the largest 2-edge-colored clique (K, D) such that (G, C) →_{2ec} (K, D).

Problem: 2-EDGE-COLORED GRAPH ACHROMATIC NUMBER [2EC-AN] Instance: A 2-edge-colored graph (G, C) and an integer kQuestion: Is $\psi_2(G, C) \ge k$?

Theorem

The problem 2EC-AN is NP-complete even for graphs that are both connected interval graphs and co-graphs and for graphs that are complements of bipartite graphs.

Achromatic numbers

- Achromatic number of a graph (Harary and Hedetniemi (1970))
- Achromatic number of a 2-edge-colored graph

• Achromatic number of a signed graph

Other achromatic numbers

A signed graph $[G, \Sigma]$ is a graph where each edge can be either positive or negative. Moreover we can resign at each vertex v. Resigning at v consists in inverting the signs of all edges incident with v. Σ is the set of negative edges.

A signed graph $[G, \Sigma]$ is a graph where each edge can be either positive or negative. Moreover we can resign at each vertex v. Resigning at v consists in inverting the signs of all edges incident with v. Σ is the set of negative edges.

A signed graph $[G, \Sigma]$ is a graph where each edge can be either positive or negative. Moreover we can resign at each vertex v. Resigning at v consists in inverting the signs of all edges incident with v. Σ is the set of negative edges.

A signed graph $[G, \Sigma]$ is a graph where each edge can be either positive or negative. Moreover we can resign at each vertex v. Resigning at v consists in inverting the signs of all edges incident with v. Σ is the set of negative edges.

A signed clique.

A signed graph $[G, \Sigma]$ is a graph where each edge can be either positive or negative. Moreover we can resign at each vertex v. Resigning at v consists in inverting the signs of all edges incident with v. Σ is the set of negative edges.

A signed clique.

 $[G, \Sigma] \rightarrow_s [H, \Pi] \iff$ there exists a surjective homomorphism (identifications and resignings) from $[G, \Sigma]$ to $[H, \Pi]$.

This graph is a 2-edge-colored clique but not a signed clique.

This graph is a 2-edge-colored clique and a signed clique.

For a signed graph $[G, \Sigma]$, we define and note:

- χ_s[G, Σ], the chromatic number of [G, Σ], is the order of the smallest signed clique [K, Π] such that [G, Σ] →_s [K, Π],
- ψ_s[G,Σ], the achromatic number of [G,Σ], is the order of the largest signed clique [K, Π] such that [G,Σ] →_s [K, Π].

Theorem

Theorem

Theorem

Theorem

Theorem

Overview

Achromatic numbers

- Achromatic number of a graph (Harary and Hedetniemi (1970))
- Achromatic number of a 2-edge-colored graph
- Achromatic number of a signed graph
- Other achromatic numbers

For a graph G and a signed graph $[G, \Sigma]$:

- $\psi_{\min}[G, \Sigma] = \min \{ \psi_2(G, C) \mid (G, C) \in [G, \Sigma] \},\$
- $\psi_{\max}[G, \Sigma] = \max \{ \psi_2(G, C) \mid (G, C) \in [G, \Sigma] \},\$
- $\psi_{\max}^{2ec}(G)$ is the order of the greatest 2ec clique (H, D) such that $(G, C) \rightarrow_{2ec} (H, D)$,
- ψ^{signed}_{max}(G) is the order of the greatest signed clique [H, Π] such that [G, Σ] →_s [H, Π].

For a graph G and a signed graph $[G, \Sigma]$:

- $\psi_{\min}[G, \Sigma] = \min \{ \psi_2(G, C) \mid (G, C) \in [G, \Sigma] \},\$
- $\psi_{\max}[G, \Sigma] = \max \{ \psi_2(G, C) \mid (G, C) \in [G, \Sigma] \},\$
- $\psi_{\max}^{2ec}(G)$ is the order of the greatest 2ec clique (H, D) such that $(G, C) \rightarrow_{2ec} (H, D)$,
- ψ^{signed}_{max}(G) is the order of the greatest signed clique [H, Π] such that [G, Σ] →_s [H, Π].

For a graph G and a signed graph $[G, \Sigma]$:

- $\psi_{\min}[G, \Sigma] = \min \{ \psi_2(G, C) \mid (G, C) \in [G, \Sigma] \},\$
- $\psi_{\max}[G, \Sigma] = \max \{ \psi_2(G, C) \mid (G, C) \in [G, \Sigma] \},\$
- $\psi_{\max}^{2ec}(G)$ is the order of the greatest 2ec clique (H, D) such that $(G, C) \rightarrow_{2ec} (H, D)$,
- ψ^{signed}_{max}(G) is the order of the greatest signed clique [H, Π] such that [G, Σ] →_s [H, Π].

$$\chi_{s}[G,\Sigma] \xrightarrow{R[G,\Sigma]} \psi_{s}[G,\Sigma] \xrightarrow{\psi_{\max}[G,\Sigma]} 0 \xrightarrow{1} 2 \xrightarrow{3} 4 \xrightarrow{5} 6 \xrightarrow{7} 8$$

Figure: Relationship between some numbers for every signed graph $[G, \Sigma]$ and every 2-edge-colored graph $(G, C) \in [G, \Sigma]$.

Observation

In a 2-edge-colored clique (K, D), every two vertices u and v verify at least one of the following: either $uv \in E(K)$ or u and v are joined by a path +- or -+.

Theorem (Naserasr, Rollová and Sopena, 2014)

In a signed clique $[K,\Pi]$, every two vertices u and v verify at least one of the following: either $uv \in E(K)$ or u and v belong to an UC_4 .

Corollary

A 2-edge-colored clique (K, D) has diameter 2.

Overview

- Achromatic number of a graph (Harary and Hedetniemi (1970))
- Achromatic number of a 2-edge-colored graph
- Achromatic number of a signed graph
- Other achromatic numbers


```
Problem: SIGNED GRAPH MAX-ACHROMATIC NUMBER

[SIGNED-MAX-AN]

Instance: A signed graph [G, \Sigma] and an integer k

Question: Is \psi_{\max}[G, \Sigma] \ge k?
```

```
Problem: GRAPH 2-EDGE-COLORED MAX-ACHROMATIC NUMBER

[MAX-2EC-AN]

Instance: A graph G and an integer k

Question: Is \psi_{\max}^{2ec}(G) \ge k?
```

```
Problem: GRAPH SIGNED MAX-ACHROMATIC

NUMBER[MAX-SIGNED-AN]

Instance: A graph G and an integer k

Question: Is \psi_{\max}^{signed}(G) \ge k?
```

Theorem

The following problems are NP-complete:

- SIGNED-MAX-AN, even for connected diamond-free perfect graphs,
- MAX-2EC-AN, even for connected diamond-free perfect graphs,
- MAX-SIGNED-AN, even for connected perfect graphs.

Problem: 3-PARTITION Instance: A set $\mathcal{A} = \{a_1, \dots, a_{3m}\} \in \mathbb{N}^{3m}$ and an integer B such that $\frac{B}{4} < a_i < \frac{B}{2}$ for every $i, 1 \le i \le m$. Question: Is there a partition $\{P_1, \dots, P_m\}$ of \mathcal{A} such that $|P_i| = 3$ and $\sum_{a_j \in P_i} a_j = B$ for every $i, 1 \le i \le m$?

Theorem (Garey and Johnson, 1990)

The problem 3-PARTITION is NP-complete.

a complete bipartite positive graph between the left nodes and the right nodes

- - a complete bipartite positive graph between the left nodes and the right nodes

- •••• a positive complete subgraph on the vertices
- a negative complete subgraph on the vertices
 - a complete bipartite positive graph between the left nodes and the right nodes

If 3-PARTITION has a solution then $\psi_{\max}[G, \Sigma] \geq |\mathcal{T}| + |\mathcal{G}|$.

- •••• a positive complete subgraph on the vertices
- a negative complete subgraph on the vertices
 - a complete bipartite positive graph between the left nodes and the right nodes

a complete bipartite positive graph between the left nodes and the right nodes

Claim

If $(G, C) \rightarrow_{2ec} (K, D)$ where (K, D) is a 2-edge-colored clique of size greater than $|\mathcal{T}| + |\mathcal{G}|$ then $G \rightarrow K'$ where K' has order greater than $|\mathcal{T}| + |\mathcal{G}|$ and K' has diameter 2.

Achromatic numbers

	Ordinary graphs	2-edge-colored graphs	Signed graphs
ψ	NP-complete		
ψ_2		NP-complete	
ψ_{s}			NP-complete
ψ_{max}	NP-complete		NP-complete
ψ_{min}	Π_2 (complete ?)		Π_2 (complete ?)
$\psi^{2\mathrm{ec}}_{\mathrm{max}}$	NP-complete		
ψ_{\max}^{signed}	NP-complete		

Table: Decision problems related to achromatic numbers.

	Ordinary graphs	2-edge-colored graphs	Signed graphs
ψ	NP-complete		
ψ_2		NP-complete	
ψ_{s}			NP-complete
ψ_{max}	NP-complete		NP-complete
ψ_{min}	Π_2 (complete ?)		Π_2 (complete ?)
$\psi^{2\mathrm{ec}}_{\mathrm{max}}$	NP-complete		
ψ_{\max}^{signed}	NP-complete		

Table: Decision problems related to achromatic numbers.

Thank you for your attention!

References I

Hans L. Bodlaender.

Achromatic number is NP-complete for cographs and interval graphs.

Information Processing Letters, 31(3):135–138, 1989.

Michael R. Garey and David S. Johnson.

Computers and Intractability; A Guide to the Theory of NP-Completeness.

W. H. Freeman & Co., New York, NY, USA, 1990.

The achromatic number of a graph.

Journal of Combinatorial Theory, 8(2):154–161, 1970.

Reza Naserasr, Edita Rollová, and Éric Sopena.

Homomorphisms of signed graphs.

Journal of Graph Theory, 79(3):178–212, 2015.

Edge dominating sets in graphs.

SIAM Journal on Applied Mathematics, 38(3):364–372, 1980.