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Colouring and Stable Sets

Stable sets

A stable set of a graph is a subset of its vertices with no edges in
between. It can be:

maximal: Any other vertex of the graph shares an edge with at least
one of its vertices.

maximum: Its size is the biggest possible in the graph.

Chromatic Number

A k-colouring of some graph G = (V ,E ) is a function c : V → [k]
such that uv ∈ E ⇒ c(u) 6= c(v). In other words, this is a partition
of V of size k into stables sets. The chromatic number χ(G ) of G is
the minimum k such that there is a k-colouring of G .

A colouring of C5 needs 3 colours : χ(C5) = 3

François Pirot Fractional chromatic number and girth 11/2018 2/13



Colouring and Stable Sets

Stable sets

A stable set of a graph is a subset of its vertices with no edges in
between. It can be:

maximal: Any other vertex of the graph shares an edge with at least
one of its vertices.

maximum: Its size is the biggest possible in the graph.

Chromatic Number

A k-colouring of some graph G = (V ,E ) is a function c : V → [k]
such that uv ∈ E ⇒ c(u) 6= c(v). In other words, this is a partition
of V of size k into stables sets. The chromatic number χ(G ) of G is
the minimum k such that there is a k-colouring of G .

A colouring of C5 needs 3 colours : χ(C5) = 3

François Pirot Fractional chromatic number and girth 11/2018 2/13



The chromatic number formulated as a Linear Program

The Linear Program

Let G be some graph, and S be the set of (maximal) stable sets of G .

χ(G ) = min
∑
S∈S

wS

such that

 ∀v ∈ V (G ),
∑
S3v

wS ≥ 1

∀S ∈ S, wS ∈ {0, 1}

Fractional Chromatic Number

The fractional chromatic number χf (G ) of some graph G is the solution
to the fractional relaxation of the linear program computing χ(G ).
It can also be defined through fractional colourings.

A (a, b)-colouring of some graph G = (V ,E ) is a function

c : V →
(

[a]
b

)
such that uv ∈ E ⇒ c(u) ∩ c(v) = ∅.

χf (G ) = inf
{

a
b

∣∣ G has a (a, b)-colouring
}
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Illustration and Properties

Remark

A (a, b)-colouring of some graph G can be seen as a a-colouring of
G � Kb.

A (5, 2)-colouring of C5 (every maximal stable set gets weight 1
2 )

χf (C5) = 2.5

⇔

Properties

For any graph G on n vertices, of maximum degree ∆, clique and
stability numbers ω and α (size of the biggest clique / stable set):

ω ≤ χf (G ) ≤ χ(G ) ≤ ∆ + 1

n

α
≤ χf (G )
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Known results

Theorem (Molloy, 2017)

If a graph G of maximum degree ∆ is triangle-free (so of girth at least
4), then:

χ(G ) ≤ (1 + o(1))
∆

ln ∆
.

Theorem (Reed, 1999)

For any graph G of maximum degree ∆ and of clique number ω,

χf (G ) ≤ ω + ∆ + 1

2
.

Comment on these theorems

The second theorem gives a bound for triangle-free graph: χf ≤ ∆+3
2 .

This is a lot weaker than the bound given by the first theorem in the
asymptotic, but for small degrees (∆ ≥ 4) there is no better known
bound!
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The greedy fractional colouring algorithm

For some graph G , fix a probability distribution on the stable sets of any
induced subgraph of G . We denote by S the corresponding random
stable set.

The algorithm

1 Set G0 = G .

2 At each step i , give to every stable set I of Gi a weight proportional
to P [S = I ] in such a way that the new maximum induced weight on
the vertices of Gi is exactly 1. (We take care never to exceed 1)

3 Define Gi+1 as the graph Gi where those new vertices with weight 1
are removed. Stop if this is the empty graph.

Lemma (P, Sereni [2018+])

Fix some depth r ≥ 1. If for every induced subgraph H of G , every
random stable set S of H, and every vertex v ∈ V (H),

r∑
i=0

αi (v)E
[
|N i (v) ∩ S|

]
≥ 1,

then the returned fractional colouring is of weight at most

max
v∈V (G)

r∑
i=1

αi (v)|N i (v)|.
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Proof of the fractional Reed’s bound

Let v be some vertex in G , and S a random maximum stable set of
G . We show that

ω(G ) + 1

2
P [v ∈ S] +

1

2
E [|N(v) ∩ S|] ≥ 1

We condition on R := S\N[v ]. There are 2 possible random events:
1 Event X1: The uncovered part of N(v) is a clique (of size k ∈ [1, ω]).

Then the events u ∈ S for u ∈ N[v ]\N(R) are equally likely.

P [v ∈ S | X1] =
1

k
, E [|N(v) ∩ S| | X1] =

k − 1

k

2 Event X2: At least 2 independent neighbours of v are not covered by
R. Then |N(v) ∩ R| ≥ 2, and v /∈ R.

P [v ∈ S | X2] = 0, E [|N(v) ∩ S| | X2] ≥ 2
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New results

Limitation

When using the uniform distribution on maximum stable sets, the
algorithms cannot beat Reed’s bound for some bipartite graphs.
These are highly irregular; considering regular graphs helps avoiding this,
at the cost of proving bounds only on n/α instead of χf .

Independence ratio upper bounds (P, Sereni [2018+])

We propose some upper bounds for n
α for graphs G on n vertices and

stability number α, depending on its girth and (small) maximum degree.

girth 4 5 6 8 10 12

∆ = 3 2.8 2.8 ≈ 2.7272 ≈ 2.6252 ≈ 2.5571 ≈ 2.5103

∆ = 4 3.375 3.28 ≈ 3.1538 ≈ 3.0385 ? ?

Corollary

These are upper bounds for χf in the class of vertex transitive graphs.
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An insight of the method

Less constrained lemma (P, Sereni [2018+])

Fix some depth r ≥ 1, and let S be a random stable set of some
d-regular graph G , such that for every vertex v ∈ V (G ),

r∑
i=0

αiE [|Xi (v) ∩ S |] ≥ 1,

where Xi (v) is the random variable counting the number of paths of
length i beginning in v and ending in S . Then

n

α(G )
≤ α0 +

r∑
i=1

αid(d − 1)i−1.

Method overview

Enumerate all the possible partially covered neighbourhoods up to
depth r of G , and compute (EX0 , . . . ,EXr ) for each of them.

Compute the best possible (α0, . . . , αr ) through a linear program.
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Computer work

The 10 possible partially covered neighbourhoods of depth 2 for 3-regular
graphs of girth 6, with the corresponding value for (EX0 ,EX1 ,EX2 ).

(1, 0, 6) (1, 0, 5)
(

1
2 ,

1
2 , 4
)

(1, 0, 4)
(

1
3 , 1,

8
3

)

(0, 2, 2) (1, 0, 3)
(

1
5 ,

8
5 ,

6
5

) (
0, 5

2 ,
1
2

)
(0, 3, 0)

Linear Program computing the desired bound for d-regular graphs

minimize α0 +
r∑

i=1

d(d − 1)i−1αi

such that

 ∀v ,∀R,
r∑

i=0

αiE [Xi (v) | S\N r [v ] = R] ≥ 1

∀i , αi ≥ 0
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A better than Reed’s upper bound for graphs of girth 7

Theorem (P, Sereni [2018+])

For any graph G of maximum degree ∆ and girth at least 7:

χf (G ) ≤ 2∆ + 9

5

Comment

This result was obtained with neighbourhoods at depth r = 2.
Surprisingly, increasing the depth does not give any better bound for
cubic graphs, even though we know that the real bound is 2.8 and not
the value 3 given by the theorem.
This is enough to believe that the value 3.4 given by the theorem for
graphs of maximum degree 4 and girth 7 is far from the optimal.
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Presentation of the tools needed for the proof

Hard-core distribution on maximal stable sets

We use a hard-core random distribution on maximal stable sets instead of
the uniform distribution on maximum stable sets.
Let S be the corresponding random stable set, and S be the set of
maximal stable sets of G , then

∀I ∈ S,Pλ[S = I ] =
λ|I |∑

J∈S
λ|J|

, for any λ > 0.

Main difficulty

For some neighbourhood W = N r [v ], let R := S\W . It must hold that
the vertices of W not covered by R must be covered by S ∩W .
We consider neighbourhoods at distance r = 2, and ask for girth 7 in
order to ensure that the vertices in W can be covered by at most one
vertex in W .
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Going further

We can imagine replacing the girth constraint by any other local
constraint which is well expressed when we enumerate
neighbourhoods at depth r : for instance bounding the number of
triangles in which every vertex appears, or forbidding any fixed small
enough subgraph.

We could also have results for the independence ratio – and
hopefully fractional chromatic number – of square graphs with little
adaptation of this method.

Thank you for your attention!
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