Fractional chromatic number and girth

François Pirot, joint work with J.S. Sereni

JGA 2018

Colouring and Stable Sets

Stable sets

A *stable set* of a graph is a subset of its vertices with no edges in between. It can be:

- *maximal*: Any other vertex of the graph shares an edge with at least one of its vertices.
- maximum: Its size is the biggest possible in the graph.

Colouring and Stable Sets

Stable sets

A *stable set* of a graph is a subset of its vertices with no edges in between. It can be:

- *maximal*: Any other vertex of the graph shares an edge with at least one of its vertices.
- maximum: Its size is the biggest possible in the graph.

Chromatic Number

A k-colouring of some graph G = (V, E) is a function c : V → [k] such that uv ∈ E ⇒ c(u) ≠ c(v). In other words, this is a partition of V of size k into stables sets. The chromatic number χ(G) of G is the minimum k such that there is a k-colouring of G.

A colouring of C_5 needs 3 colours : $\chi(C_5) = 3$

The chromatic number formulated as a Linear Program

The Linear Program

Let G be some graph, and S be the set of (maximal) stable sets of G.

$$\chi(G) = \min \sum_{S \in S} w_S$$

such that $\begin{cases} \forall v \in V(G), & \sum_{S \ni v} w_S \ge 1 \\ \forall S \in S, & w_S \in \{0, 1\} \end{cases}$

The chromatic number formulated as a Linear Program

The Linear Program

Let G be some graph, and S be the set of (maximal) stable sets of G.

$$\chi(G) = \min \sum_{S \in S} w_S$$

such that
$$\begin{cases} \forall v \in V(G), & \sum_{S \ni v} w_S \ge 1 \\ \forall S \in S, & w_S \in \{0, 1\} \end{cases}$$

Fractional Chromatic Number

The fractional chromatic number $\chi_f(G)$ of some graph G is the solution to the fractional relaxation of the linear program computing $\chi(G)$. It can also be defined through fractional colourings.

- A (a, b)-colouring of some graph G = (V, E) is a function $c : V \to {[a] \choose b}$ such that $uv \in E \Rightarrow c(u) \cap c(v) = \emptyset$.
- $\chi_f(G) = \inf \left\{ \frac{a}{b} \mid G \text{ has a } (a, b) \text{-colouring} \right\}$

Illustration and Properties

Remark

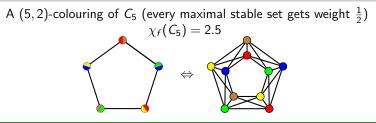
A (a, b)-colouring of some graph G can be seen as a *a*-colouring of $G \boxtimes K_b$.

A (5,2)-colouring of C_5 (every maximal stable set gets weight $\frac{1}{2}$) $\chi_f(C_5) = 2.5$ \Leftrightarrow

Illustration and Properties

Remark

A (a, b)-colouring of some graph G can be seen as a *a*-colouring of $G \boxtimes K_b$.



Properties

For any graph G on n vertices, of maximum degree Δ , clique and stability numbers ω and α (size of the biggest clique / stable set):

$$\omega \leq \chi_f(G) \leq \chi(G) \leq \Delta + 1$$

$$\frac{n}{\alpha} \leq \chi_f(G)$$

François Pirot

Theorem (Molloy, 2017)

If a graph G of maximum degree Δ is triangle-free (so of girth at least 4), then:

$$\chi(G) \leq (1+o(1))rac{\Delta}{\ln\Delta}.$$

Theorem (Molloy, 2017)

If a graph G of maximum degree Δ is triangle-free (so of girth at least 4), then:

$$\chi(G) \leq (1+o(1))rac{\Delta}{\ln\Delta}.$$

Theorem (Reed, 1999)

For any graph G of maximum degree Δ and of clique number ω ,

$$\chi_f(G) \leq \frac{\omega + \Delta + 1}{2}.$$

Theorem (Molloy, 2017)

If a graph G of maximum degree Δ is triangle-free (so of girth at least 4), then:

$$\chi(G) \leq (1+o(1))rac{\Delta}{\ln\Delta}.$$

Theorem (Reed, 1999)

For any graph G of maximum degree Δ and of clique number ω ,

$$\chi_f(G) \leq \frac{\omega + \Delta + 1}{2}.$$

Comment on these theorems

The second theorem gives a bound for triangle-free graph: $\chi_f \leq \frac{\Delta+3}{2}$. This is a lot weaker than the bound given by the first theorem in the asymptotic, but for small degrees ($\Delta \geq 4$) there is no better known bound!

François Pirot

The greedy fractional colouring algorithm

For some graph G, fix a probability distribution on the stable sets of any induced subgraph of G. We denote by **S** the corresponding random stable set.

The algorithm

- Set $G_0 = G$.
- ② At each step *i*, give to every stable set *I* of *G_i* a weight proportional to ℙ[**S** = *I*] in such a way that the new maximum induced weight on the vertices of *G_i* is exactly 1. (We take care never to exceed 1)
- Define G_{i+1} as the graph G_i where those new vertices with weight 1 are removed. Stop if this is the empty graph.

The greedy fractional colouring algorithm

The algorithm

• Set
$$G_0 = G$$
.

- ② At each step *i*, give to every stable set *I* of *G_i* a weight proportional to ℙ[**S** = *I*] in such a way that the new maximum induced weight on the vertices of *G_i* is exactly 1. (We take care never to exceed 1)
- Define G_{i+1} as the graph G_i where those new vertices with weight 1 are removed. Stop if this is the empty graph.

Lemma (weak version)

If for every induced subgraph H of G, every random stable set **S** of H, and every vertex $v \in V(H)$,

$$\alpha \mathbb{P}\left[\mathbf{v} \in \mathbf{S}\right] + \beta \mathbb{E}\left[|N(\mathbf{v}) \cap \mathbf{S}|\right] \geq 1,$$

then the returned fractional colouring is of weight at most

$$\alpha + \beta \Delta(G).$$

The greedy fractional colouring algorithm

The algorithm

• Set
$$G_0 = G$$
.

- ② At each step *i*, give to every stable set *I* of *G_i* a weight proportional to ℙ[**S** = *I*] in such a way that the new maximum induced weight on the vertices of *G_i* is exactly 1. (We take care never to exceed 1)
- Define G_{i+1} as the graph G_i where those new vertices with weight 1 are removed. Stop if this is the empty graph.

Lemma (P, Sereni [2018+])

Fix some depth $r \ge 1$. If for every induced subgraph H of G, every random stable set **S** of H, and every vertex $v \in V(H)$,

$$\sum_{i=0}^{i} \alpha_i(\boldsymbol{v}) \mathbb{E}\left[|N^i(\boldsymbol{v}) \cap \mathbf{S}| \right] \ge 1,$$

then the returned fractional colouring is of weight at most

$$\max_{v\in V(G)}\sum_{i=1}^{r}\alpha_{i}(v)|N^{i}(v)|.$$

François Pirot

• Let v be some vertex in G, and **S** a random maximum stable set of G. We show that

$$rac{\omega(\mathcal{G})+1}{2}\mathbb{P}\left[\mathbf{v}\in\mathbf{S}
ight] +rac{1}{2}\mathbb{E}\left[\left| \mathcal{N}(\mathbf{v})\cap\mathbf{S}
ight|
ight] \geq1$$

• Let v be some vertex in G, and **S** a random maximum stable set of G. We show that

$$rac{\omega(\mathcal{G})+1}{2}\mathbb{P}\left[v\in \mathbf{S}
ight] +rac{1}{2}\mathbb{E}\left[|\mathsf{N}(v)\cap\mathbf{S}|
ight] \geq 1$$

• We condition on $\mathbf{R} := \mathbf{S} \setminus N[v]$. There are 2 possible random events:

• Let v be some vertex in G, and **S** a random maximum stable set of G. We show that

$$rac{\omega(\mathcal{G})+1}{2}\mathbb{P}\left[\mathbf{v}\in\mathbf{S}
ight] +rac{1}{2}\mathbb{E}\left[|\mathcal{N}(\mathbf{v})\cap\mathbf{S}|
ight] \geq 1$$

We condition on R := S\N[v]. There are 2 possible random events:
 Q Event X₁: The uncovered part of N(v) is a clique (of size k ∈ [1,ω]).

Then the events $u \in \mathbf{S}$ for $u \in N[v] \setminus N(\mathbf{R})$ are equally likely.

$$\mathbb{P}\left[\mathbf{v}\in\mathbf{S}\mid X_{1}
ight]=rac{1}{k},\quad \mathbb{E}\left[\left|\mathcal{N}(\mathbf{v})\cap\mathbf{S}
ight|\mid X_{1}
ight]=rac{k-1}{k}$$

• Let v be some vertex in G, and **S** a random maximum stable set of G. We show that

$$rac{\omega(\mathcal{G})+1}{2}\mathbb{P}\left[\mathbf{v}\in\mathbf{S}
ight] +rac{1}{2}\mathbb{E}\left[|\mathcal{N}(\mathbf{v})\cap\mathbf{S}|
ight] \geq1$$

- We condition on $\mathbf{R} \coloneqq \mathbf{S} \setminus \mathcal{N}[v]$. There are 2 possible random events:
 - Solution Event X_1 : The uncovered part of N(v) is a clique (of size $k \in [1, \omega]$). Then the events $u \in \mathbf{S}$ for $u \in N[v] \setminus N(\mathbf{R})$ are equally likely.

$$\mathbb{P}[v \in \mathbf{S} \mid X_1] = \frac{1}{k}, \quad \mathbb{E}[|N(v) \cap \mathbf{S}| \mid X_1] = \frac{k-1}{k}$$

 Event X₂: At least 2 independent neighbours of v are not covered by R. Then |N(v) ∩ R| ≥ 2, and v ∉ R.

$$\mathbb{P}\left[\nu \in \mathbf{S} \mid X_2\right] = 0, \quad \mathbb{E}\left[|N(\nu) \cap \mathbf{S}| \mid X_2\right] \geq 2$$

Limitation

When using the uniform distribution on maximum stable sets, the algorithms cannot beat Reed's bound for some bipartite graphs. These are highly irregular; considering regular graphs helps avoiding this, at the cost of proving bounds only on n/α instead of χ_f .

Limitation

When using the uniform distribution on maximum stable sets, the algorithms cannot beat Reed's bound for some bipartite graphs. These are highly irregular; considering regular graphs helps avoiding this, at the cost of proving bounds only on n/α instead of χ_f .

Independence ratio upper bounds (P, Sereni [2018+])

We propose some upper bounds for $\frac{n}{\alpha}$ for graphs *G* on *n* vertices and stability number α , depending on its girth and (small) maximum degree.

girth	4	5	6	8	10	12
$\Delta = 3$	2.8	2.8	pprox 2.7272	pprox 2.6252	pprox 2.5571	pprox 2.5103
$\Delta = 4$	3.375	3.28	pprox 3.1538	pprox 3.0385	?	?

Limitation

When using the uniform distribution on maximum stable sets, the algorithms cannot beat Reed's bound for some bipartite graphs. These are highly irregular; considering regular graphs helps avoiding this, at the cost of proving bounds only on n/α instead of χ_f .

Independence ratio upper bounds (P, Sereni [2018+]),

We propose some upper bounds for $\frac{n}{\alpha}$ for graphs *G* on *n* vertices and stability number α , depending on its girth and (small) maximum degree.

girth	4	5	6	8	10	12
$\Delta = 3$	2.8	2.8	pprox 2.7272	pprox 2.6252	pprox 2.5571	pprox 2.5103
$\Delta = 4$	3.375	3.28	pprox 3.1538	pprox 3.0385	?	?

Corollary

These are upper bounds for χ_f in the class of vertex transitive graphs.

François Pirot

Less constrained lemma (P, Sereni [2018+])

Fix some depth $r \ge 1$, and let S be a random stable set of some d-regular graph G, such that for every vertex $v \in V(G)$,

$$\sum_{i=0}^{r} \alpha_i \mathbb{E}\left[|X_i(\mathbf{v}) \cap S| \right] \ge 1,$$

where $X_i(v)$ is the random variable counting the number of paths of length *i* beginning in *v* and ending in *S*. Then

$$\frac{n}{\alpha(G)} \leq \alpha_0 + \sum_{i=1}^r \alpha_i d(d-1)^{i-1}.$$

Less constrained lemma (P, Sereni [2018+])

Fix some depth $r \ge 1$, and let S be a random stable set of some d-regular graph G, such that for every vertex $v \in V(G)$,

$$\sum_{i=0}^{r} \alpha_i \mathbb{E}\left[|X_i(\mathbf{v}) \cap S| \right] \geq 1,$$

where $X_i(v)$ is the random variable counting the number of paths of length *i* beginning in *v* and ending in *S*. Then

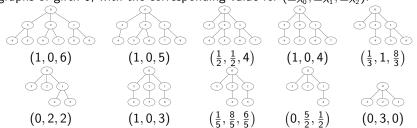
$$\frac{n}{\alpha(G)} \leq \alpha_0 + \sum_{i=1}^r \alpha_i d(d-1)^{i-1}.$$

Method overview

- Enumerate all the possible partially covered neighbourhoods up to depth r of G, and compute (E_{X0},...,E_{Xr}) for each of them.
- Compute the best possible $(\alpha_0, \ldots, \alpha_r)$ through a linear program.

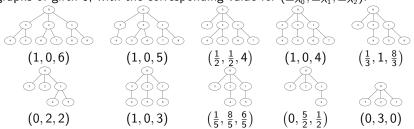
Computer work

The 10 possible partially covered neighbourhoods of depth 2 for 3-regular graphs of girth 6, with the corresponding value for $(\mathbb{E}_{X_0}, \mathbb{E}_{X_1}, \mathbb{E}_{X_2})$.



Computer work

The 10 possible partially covered neighbourhoods of depth 2 for 3-regular graphs of girth 6, with the corresponding value for $(\mathbb{E}_{X_0}, \mathbb{E}_{X_1}, \mathbb{E}_{X_2})$.



Linear Program computing the desired bound for *d*-regular graphs

$$\begin{array}{ll} \text{minimize} & \alpha_0 + \sum_{i=1}^r d(d-1)^{i-1} \alpha_i \\\\ \text{such that} & \begin{cases} \forall v, \forall R, & \sum_{i=0}^r \alpha_i \mathbb{E}\left[X_i(v) \mid S \setminus N^r[v] = R\right] \ge 1 \\\\ \forall i, & \alpha_i \ge 0 \end{cases}$$

Theorem (P, Sereni [2018+])

For any graph G of maximum degree Δ and girth at least 7:

$$\chi_f(G) \leq \frac{2\Delta + 9}{5}$$

Theorem (P, Sereni [2018+])

For any graph G of maximum degree Δ and girth at least 7:

$$\chi_f(G) \leq \frac{2\Delta + 9}{5}$$

Comment

This result was obtained with neighbourhoods at depth r = 2. Surprisingly, increasing the depth does not give any better bound for cubic graphs, even though we know that the real bound is 2.8 and not the value 3 given by the theorem.

This is enough to believe that the value 3.4 given by the theorem for graphs of maximum degree 4 and girth 7 is far from the optimal.

Hard-core distribution on maximal stable sets

We use a *hard-core* random distribution on *maximal* stable sets instead of the *uniform* distribution on *maximum* stable sets. Let **S** be the corresponding random stable set, and S be the set of

Let **S** be the corresponding random stable set, and S be the set o maximal stable sets of G, then

$$\forall I \in \mathcal{S}, \mathbb{P}_{\lambda}[\mathbf{S} = I] = \frac{\lambda^{|I|}}{\sum_{J \in \mathcal{S}} \lambda^{|J|}}, \text{ for any } \lambda > 0.$$

Hard-core distribution on maximal stable sets

We use a *hard-core* random distribution on *maximal* stable sets instead of the *uniform* distribution on *maximum* stable sets.

Let **S** be the corresponding random stable set, and S be the set of maximal stable sets of G, then

$$\forall I \in \mathcal{S}, \mathbb{P}_{\lambda}[\mathbf{S} = I] = \frac{\lambda^{|I|}}{\sum\limits_{J \in \mathcal{S}} \lambda^{|J|}}, \text{ for any } \lambda > 0.$$

Main difficulty

For some neighbourhood $W = N^r[v]$, let $\mathbf{R} := \mathbf{S} \setminus W$. It must hold that the vertices of \overline{W} not covered by \mathbf{R} must be covered by $\mathbf{S} \cap W$. We consider neighbourhoods at distance r = 2, and ask for girth 7 in order to ensure that the vertices in \overline{W} can be covered by at most one vertex in W.

• We can imagine replacing the girth constraint by any other local constraint which is well expressed when we enumerate neighbourhoods at depth *r*: for instance bounding the number of triangles in which every vertex appears, or forbidding any fixed small enough subgraph.

- We can imagine replacing the girth constraint by any other local constraint which is well expressed when we enumerate neighbourhoods at depth *r*: for instance bounding the number of triangles in which every vertex appears, or forbidding any fixed small enough subgraph.
- We could also have results for the independence ratio and hopefully fractional chromatic number – of square graphs with little adaptation of this method.

- We can imagine replacing the girth constraint by any other local constraint which is well expressed when we enumerate neighbourhoods at depth *r*: for instance bounding the number of triangles in which every vertex appears, or forbidding any fixed small enough subgraph.
- We could also have results for the independence ratio and hopefully fractional chromatic number – of square graphs with little adaptation of this method.

Thank you for your attention!