PACKING AND COVERING MINORS

Jean-Florent Raymond (TU Berlin)

Joint work with Wouter Cames van Batenburg, Tony Huynh, and Gwenaël Joret (Université Libre de Bruxelles).

PACKING AND COVERING IN BIPARTITE GRAPHS

 $pack_{K_2} = 3$

 $pack_{K_2} = 3$

Min. number of vertices to cover all edges?

 $pack_{K_2} = 3$

Min. number of vertices to cover all edges?

 $pack_{K_2} = 3$

Min. number of vertices to cover all edges?

 $pack_{K_2} = 3$

Min. number of vertices to cover all edges?

 $cover_{K_2} = 3$

Min. number of vertices to cover all edges?

 $pack_{K_2} = 3$ cover = pack(Kőnig's Theorem, 1931)

PACKING AND COVERING CYCLES

 $\mathsf{pack}_{\mathsf{cycles}} = 4$

 $\mathsf{pack}_{\mathsf{cycles}} = 4$

Min. number of vertices to cover all cycles?

 $\mathsf{pack}_{\mathsf{cycles}} = 4$

Min. number of vertices to cover all cycles?

 $pack_{cycles} = 4$

 $cover_{cycles} = 8$

Min. number of vertices to cover all cycles?

 $pack \leq cover \leq c \cdot pack \log pack$ (Erdős-Pósa Theorem, 1965)

Packing and covering minors

Theorem (Erdős and Pósa, 1965)

Every graph has one of the following:

- k vertex-disjoint cycles;
- a feedback vertex set of size O(k log k).

Theorem (Erdős and Pósa, 1965)

Every graph has one of the following:

- k vertex-disjoint cycles;
- a feedback vertex set of size O(k log k).

Min-max theorem (like Kőnig's and Menger's theorems, etc.).

Theorem (Erdős and Pósa, 1965)

Every graph has one of the following:

- k vertex-disjoint cycles;
- a feedback vertex set of size O(k log k).

Min-max theorem (like Kőnig's and Menger's theorems, etc.). Our goal: generalize from cycles to minor-models.

MINOR MODELS

Definition

An *H*-model in *G* is a set $\{S_u\}_{u \in V(H)}$ of disjoint subsets of V(G) s.t.

- the $G[S_u]$'s are connected;
- edge uv in $H \Rightarrow$ edge between S_u and S_v in G.

MINOR MODELS

Definition

An *H*-model in *G* is a set $\{S_u\}_{u \in V(H)}$ of disjoint subsets of V(G) s.t.

- the $G[S_u]$'s are connected;
- edge uv in $H \Rightarrow$ edge between S_u and S_v in G.

MINOR MODELS

Definition

An *H*-model in *G* is a set $\{S_u\}_{u \in V(H)}$ of disjoint subsets of V(G) s.t.

- the $G[S_u]$'s are connected;
- edge uv in $H \Rightarrow$ edge between S_u and S_v in G.

G has a H-model \iff H is a minor of G

H has the Erdős-Pósa property if there is a function f s.t., for every graph *G* and $k \in \mathbb{N}$,

- G has k vertex-disjoint H-models; or
- there is $X \subseteq V(G)$ s.t. G X is *H*-minor free and $|X| \leq f(k)$.

H has the Erdős-Pósa property if there is a function f s.t., for every graph *G* and $k \in \mathbb{N}$,

- G has k vertex-disjoint H-models; or
- there is $X \subseteq V(G)$ s.t. G X is *H*-minor free and $|X| \leq f(k)$.

f is a gap of H.

H has the Erdős-Pósa property if there is a function f s.t., for every graph *G* and $k \in \mathbb{N}$,

- G has k vertex-disjoint H-models; or
- there is $X \subseteq V(G)$ s.t. G X is *H*-minor free and $|X| \leq f(k)$.

f is a gap of H.

Theorem (Robertson and Seymour, 1986)

H has the Erdős-Pósa property iff H is planar.

H has the Erdős-Pósa property if there is a function f s.t., for every graph *G* and $k \in \mathbb{N}$,

- G has k vertex-disjoint H-models; or
- there is $X \subseteq V(G)$ s.t. G X is *H*-minor free and $|X| \leq f(k)$.

f is a gap of H.

Theorem (Robertson and Seymour, 1986)

H has the Erdős-Pósa property iff H is planar.

With which gap?

Graph H	EP gap	Reference	
<i>K</i> ₃	$O(k \log k)$	Erdős, Pósa	1965

Graph H	EP gap	Reference	
<i>K</i> ₃	$O(k \log k)$	Erdős, Pósa	1965
planar	large	Robertson, Seymour	1986

Graph H	EP gap	Reference	
K ₃	$O(k \log k)$	Erdős, Pósa	1965
planar	large	Robertson, Seymour	1986
forest	O(k)	Fiorini, Joret, Wood	2013

Graph H	EP gap	Reference	
K ₃	$O(k \log k)$	Erdős, Pósa	1965
planar	large	Robertson, Seymour	1986
forest	O(k)	Fiorini, Joret, Wood	2013
planar	O(k polylog k)	Chekuri, Chuzhoy	2013

Graph H	EP gap	Reference	
K ₃	$O(k \log k)$	Erdős, Pósa	1965
planar	large	Robertson, Seymour	1986
forest	O(k)	Fiorini, Joret, Wood	2013
planar	O(k polylog k)	Chekuri, Chuzhoy	2013
cycle	$O(k \log k)$	Fiorini, Herinckx	2014
Ø	$O(k \log k)$	Chatzidimitriou et al.	2015
wheel	$O(k \log k)$	Aboulker et al.	2017

Graph H	EP gap	Reference	
К3	$O(k \log k)$	Erdős, Pósa	1965
planar	large	Robertson, Seymour	1986
forest	O(k)	Fiorini, Joret, Wood	2013
planar	O(k polylog k)	Chekuri, Chuzhoy	2013
cycle	$O(k \log k)$	Fiorini, Herinckx	2014
	$O(k \log k)$	Chatzidimitriou et al.	2015
wheel	$O(k \log k)$	Aboulker et al.	2017
planar	$O(k \log k)$	Cames van Batenburg,	SODA 2019
		Huynh, Joret, R.	

Graph H	EP gap	Reference	
К3	$O(k \log k)$	Erdős, Pósa	1965
planar	large	Robertson, Seymour	1986
forest	O(k)	Fiorini, Joret, Wood	2013
planar	O(k polylog k)	Chekuri, Chuzhoy	2013
cycle	$O(k \log k)$	Fiorini, Herinckx	2014
	$O(k \log k)$	Chatzidimitriou et al.	2015
wheel	$O(k \log k)$	Aboulker et al.	2017
planar	$O(k \log k)$	Cames van Batenburg,	SODA 2019
		Huynh, Joret, R.	

Best possible:

• *H* not planar \Rightarrow no Erdős-Pósa property;
A NON-EXHAUSTIVE HISTORY OF ERDŐS-PÓSA GAPS

Graph H	EP gap	Reference	
K ₃	$O(k \log k)$	Erdős, Pósa	1965
planar	large	Robertson, Seymour	1986
forest	O(k)	Fiorini, Joret, Wood	2013
planar	O(k polylog k)	Chekuri, Chuzhoy	2013
cycle	$O(k \log k)$	Fiorini, Herinckx	2014
	$O(k \log k)$	Chatzidimitriou et al.	2015
wheel	$O(k \log k)$	Aboulker et al.	2017
planar	$O(k \log k)$	Cames van Batenburg,	SODA 2019
		Huynh, Joret, R.	

Best possible:

- *H* not planar \Rightarrow no Erdős-Pósa property;
- *H* has a cycle \Rightarrow no $o(k \log k)$ gap.

"every graph has a small H-model or a large useless part"

"every graph has a small H-model or a large useless part"

Lemma (Cames van Batenburg, Huynh, Joret, R., 2018+) For every graph G and every planar graph H,

• G has an H-model of size O(log |G|);

or

 $G[B] \text{ is } H\text{-minor free} \\ |B| \ge \text{large}(|A \cap B|)$

PROOF SKETCH FOR $H = K_3$

Goal: "G has a small K₃-model or a large useless part"

Goal: "G has a small K₃-model or a large useless part"

Maximum collection of disjoint paths of length ℓ : (covering G, for simplicity)

Maximum collection of disjoint paths of length ℓ : (covering G, for simplicity)

• either every path sees \geq 3 other paths

Maximum collection of disjoint paths of length ℓ : (covering G, for simplicity)

• either every path sees \geq 3 other paths

Maximum collection of disjoint paths of length ℓ : (covering G, for simplicity)

• either every path sees \geq 3 other paths

Maximum collection of disjoint paths of length ℓ : (covering G, for simplicity)

• either every path sees \geq 3 other paths:

cycle of length $O(\ell \cdot \log |G|)$

Goal: "G has a small K₃-model or a large useless part"

Maximum collection of disjoint paths of length ℓ : (covering G, for simplicity)

• either every path sees \geq 3 other paths:

cycle of length $O(\ell \cdot \log |G|)$

Maximum collection of disjoint paths of length ℓ : (covering G, for simplicity)

• either every path sees \geq 3 other paths:

```
cycle of length O(\ell \cdot \log |G|)
```

 \cdot or one path sees \leqslant 2 other paths

Maximum collection of disjoint paths of length ℓ : (covering G, for simplicity)

cycle of length $\leqslant 2\ell$

• either every path sees \geq 3 other paths:

cycle of length $O(\ell \cdot \log |G|)$

 \cdot or one path sees \leqslant 2 other paths

Maximum collection of disjoint paths of length ℓ : (covering *G*, for simplicity)

there are \leqslant 2 incident edges

• either every path sees \geq 3 other paths:

```
cycle of length O(\ell \cdot \log |G|)
```

 \cdot or one path sees \leqslant 2 other paths

Maximum collection of disjoint paths of length ℓ : (covering *G*, for simplicity)

- B is K_3 -minor free
- $\cdot |B| \ge \text{large}(|A \cap B|)$

• either every path sees \geq 3 other paths:

cycle of length $O(\ell \cdot \log |G|)$

 $\cdot\,$ or one path sees \leqslant 2 other paths

Maximum collection of disjoint paths of length ℓ : (covering *G*, for simplicity)

- B is K_3 -minor free
- $\cdot |B| \ge \text{large}(|A \cap B|)$

• either every path sees \geq 3 other paths:

cycle of length $O(\ell \cdot \log |G|)$

· or one path sees \leqslant 2 other paths:

cycle of length $\leqslant 2\ell$ or large useless part.

How to generalize?

Crucial property: we can conclude when two paths are connected with many edges.

Crucial property: we can conclude when two paths are connected with many edges.

Possible extension to $H = K_4$:

Pack cycles of bounded size first, then paths.

Crucial property: we can conclude when two paths are connected with many edges.

Possible extension to $H = K_4$:

Pack cycles of bounded size first, then paths.

 \rightsquigarrow gap $O(k \log k)$ when H is a wheel (Aboulker, Fiorini, Huynh, Joret, R. and Sau, 2018)

ORCHARDS

An $a \times b$ -orchard in G consists in collections

- P_1, \ldots, P_a of vertex-disjoint (horizontal) paths; and
- T_1, \ldots, T_b of vertex-disjoint (vertical) trees,

s.t. for every $i \in [a], j \in [b]$:

- $P_i \cap T_j \neq \emptyset$ and connected; and
- each leaf of T_j lies on some horizontal path.

Consequences

Param.	Problem	Exact	Approximate
pack _{K3}	Cycle	NPC	 polytime O(log OPT)-approx.
	Packing		• $O(\log(n)^{\frac{1}{2}-\epsilon})$ -approx. is
			quasi-NP-hard
cover _{K3}	FVS	NPC	• polytime 2-approx.

Param.	Problem	Exact	Approximate
pack _{K3}	Cycle	NPC	 polytime O(log OPT)-approx.
	Packing		• $O(\log(n)^{\frac{1}{2}-\epsilon})$ -approx. is
			quasi-NP-hard
cover _{K3}	FVS	NPC	• polytime 2-approx.

Theorem (from our results)

For every planar graph H, there is a polytime O(log(OPT))-approximation algorithm for pack_H.

Param.	Problem	Exact	Approximate
pack _{K3}	Cycle	NPC	 polytime O(log OPT)-approx.
	Packing		• $O(\log(n)^{\frac{1}{2}-\epsilon})$ -approx. is
			quasi-NP-hard
cover _{K3}	FVS	NPC	• polytime 2-approx.

Theorem (from our results)

For every planar graph H, there is a polytime O(log(OPT))-approximation algorithm for pack_H.

(idem for **cover**_H, but O(1)-approximations are already known)

Every graph of large minimum degree has a partition into many subgraphs of large minimum degree.

Every graph of large minimum degree has a partition into many subgraphs of large minimum degree.

Same for treewidth?

Every graph of large minimum degree has a partition into many subgraphs of large minimum degree.

Same for treewidth?

Theorem

If G has treewidth at least

• $poly(r) \cdot k polylog(k + 1)$ (Chekury and Chuzhoy, 2013)

then it has *k* disjoint subgraphs of treewidth at least *r*.

Every graph of large minimum degree has a partition into many subgraphs of large minimum degree.

Same for treewidth?

Theorem

If G has treewidth at least

- $poly(r) \cdot k polylog(k + 1)$ (Chekury and Chuzhoy, 2013)
- $s(r) \cdot k \log(k+1)$

(from our results)

then it has **k** disjoint subgraphs of treewidth at least **r**.

- G contains k vertex-disjoint cycles of length 0 mod m,
- or there is a subset X of at most f(k) vertices s.t. G X has no such cycle.

- G contains k vertex-disjoint cycles of length 0 mod m,
- or there is a subset X of at most f(k) vertices s.t. G X has no such cycle.
- from Thomassen's proof: $f(k) = 2^{2^{O(k)}}$

- G contains k vertex-disjoint cycles of length 0 mod m,
- or there is a subset X of at most f(k) vertices s.t. G X has no such cycle.
- from Thomassen's proof:
- Chekury and Chuzhoy (2013): f(k) =

$$f(k) = 2^{2^{O(k)}}$$
$$f(k) = k \text{ polylog } k$$

- G contains k vertex-disjoint cycles of length 0 mod m,
- or there is a subset X of at most f(k) vertices s.t. G X has no such cycle.
- from Thomassen's proof:
- Chekury and Chuzhoy (2013):
- from our result:

$$f(k) = 2^{2^{O(k)}}$$

$$f(k) = k \operatorname{polylog} k$$

$$f(k) = O(k \log k) \text{ (tight)}$$

EP65: every gap for K_3 is an $\Omega(k \log k)$.

EP65: every gap for K_3 is an $\Omega(k \log k)$.

Theorem (Bienstock and Dean, JCTB 1992)

 $k \mapsto 54k$ is a gap for K_3 in planar graphs.

EP65: every gap for K_3 is an $\Omega(k \log k)$.

Theorem (Bienstock and Dean, JCTB 1992)

 $k \mapsto 54k$ is a gap for K_3 in planar graphs.

Theorem (Fomin, Saurabh, and Thilikos, JGT 2011)

For every planar graph H and every proper minor-closed class *G*, there is a O(k) gap for H in *G*.
EP65: every gap for K_3 is an $\Omega(k \log k)$.

Theorem (Bienstock and Dean, JCTB 1992)

 $k \mapsto 54k$ is a gap for K_3 in planar graphs.

Theorem (Fomin, Saurabh, and Thilikos, JGT 2011)

For every planar graph H and every proper minor-closed class *G*, there is a O(k) gap for H in *G*.

The previous theorem also follows from our results.

OPEN PROBLEMS

H planar \Rightarrow there is a O(k log k) gap for H.

H planar \Rightarrow there is a O(k log k) gap for H.

In our proof, the hidden constant (which depends on *H*) is:

• not known to be computable;

H planar \Rightarrow there is a O(k log k) gap for H.

In our proof, the hidden constant (which depends on *H*) is:

- not known to be computable;
- large.

H planar \Rightarrow there is a $O(k \log k)$ gap for H.

In our proof, the hidden constant (which depends on *H*) is:

- not known to be computable;
- large.

What is the "right" contribution of *H* in the gap?

H planar \Rightarrow there is a O(k log k) gap for H.

In our proof, the hidden constant (which depends on *H*) is:

- not known to be computable;
- large.

What is the "right" contribution of *H* in the gap?

Theorem (Mousset et al., JCTB 2017)

There is a function $f(k, \ell) = O(k \log k + k\ell)$ such that C_{ℓ} has gap $f(\cdot, \ell)$, for every $\ell \ge 3$.

H planar \Rightarrow there is a $O(k \log k)$ gap for H.

In our proof, the hidden constant (which depends on *H*) is:

- not known to be computable;
- large.

What is the "right" contribution of *H* in the gap?

Theorem (Mousset et al., JCTB 2017)

There is a function $f(k, \ell) = O(k \log k + k\ell)$ such that C_{ℓ} has gap $f(\cdot, \ell)$, for every $\ell \ge 3$.

Same behavior?

· vertex version / edge version;

- vertex version / edge version;
- · directed / undirected;

- · vertex version / edge version;
- · directed / undirected;
- induced / non-induced;

- vertex version / edge version;
- · directed / undirected;
- induced / non-induced;
- weighted / non-weighted;

- vertex version / edge version;
- · directed / undirected;
- induced / non-induced;
- weighted / non-weighted;
- labelled / non-labelled;

- vertex version / edge version;
- · directed / undirected;
- induced / non-induced;
- weighted / non-weighted;
- labelled / non-labelled;
- minors models/ subdivisions / immersions / ...

- vertex version / edge version;
- directed / undirected;
- induced / non-induced;
- weighted / non-weighted;
- labelled / non-labelled;
- minors models/ subdivisions / immersions / ...

- vertex version / edge version;
- directed / undirected;
- induced / non-induced;
- weighted / non-weighted;
- labelled / non-labelled;
- minors models/ subdivisions / immersions / ...

Thank you for your attention!