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Packing and covering in bipartite graphs

Max. number
of disjoint edges?

packK2 = 3

Min. number of vertices
to cover all edges?

coverK2 = 3

cover = pack
(Kőnig’s Theorem, 1931)
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Packing and covering cycles

Max. number
of disjoint cycles?

packcycles = 4

Min. number of vertices
to cover all cycles?

covercycles = 8

pack ⩽ cover ⩽ c · pack log pack
(Erdős-Pósa Theorem, 1965)
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The Erdős-Pósa Theorem

Theorem (Erdős and Pósa, 1965)
Every graph has one of the following:

• k vertex-disjoint cycles;
• a feedback vertex set of size O(k log k).

Min-max theorem (like Kőnig’s and Menger’s theorems, etc.).

Our goal: generalize from cycles to minor-models.
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Minor models

Definition
An H-model in G is a set {Su}u∈V(H) of disjoint subsets of V(G)
s.t.

• the G[Su]’s are connected;
• edge uv in H⇒ edge between Su and Sv in G.

≽

G H

G has a H-model ⇐⇒ H is a minor of G
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The Erdős-Pósa property of minor models

Definition
H has the Erdős-Pósa property if there is a function f s.t., for
every graph G and k ∈ N,

• G has k vertex-disjoint H-models; or
• there is X ⊆ V(G) s.t. G− X is H-minor free and |X| ⩽ f(k).

f is a gap of H.

Theorem (Robertson and Seymour, 1986)
H has the Erdős-Pósa property iff H is planar.

With which gap?
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A non-exhaustive history of Erdős-Pósa gaps

Graph H EP gap Reference
K3 O(k log k) Erdős, Pósa 1965

planar large Robertson, Seymour 1986
forest O(k) Fiorini, Joret, Wood 2013
planar O(k polylog k) Chekuri, Chuzhoy 2013
cycle O(k log k) Fiorini, Herinckx 2014

O(k log k) Chatzidimitriou et al. 2015
wheel O(k log k) Aboulker et al. 2017
planar O(k log k) Cames van Batenburg,

Huynh, Joret, R.
SODA 2019

Best possible:
• H not planar⇒ no Erdős-Pósa property;
• H has a cycle⇒ no o(k log k) gap.
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The key lemma

“every graph has a small H-model or a large useless part”

Lemma (Cames van Batenburg, Huynh, Joret, R., 2018+)
For every graph G and every planar graph H,

• G has an H-model of size O(log |G|);
or

• G = A B |B| ⩾ large(|A ∩ B|)
G[B] is H-minor free
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Proof sketch for H = K3

Goal: “G has a small K3-model or a large useless part”
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Proof sketch for H = K3

Goal: “G has a small K3-model or a large useless part”

Maximum collection of disjoint paths of length ℓ:
(covering G, for simplicity)

• either every path sees ⩾ 3 other paths:
cycle of length O(ℓ · log |G|)

• or one path sees ⩽ 2 other paths

:
cycle of length ⩽ 2ℓ or large useless part.

there are ⩽ 2 incident edges
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Proof sketch for H = K3

A B

Goal: “G has a small K3-model or a large useless part”

Maximum collection of disjoint paths of length ℓ:
(covering G, for simplicity)

• either every path sees ⩾ 3 other paths:
cycle of length O(ℓ · log |G|)

• or one path sees ⩽ 2 other paths

:
cycle of length ⩽ 2ℓ or large useless part.

• B is K3-minor free
• |B| ⩾ large(|A ∩ B|)
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How to generalize?

Crucial property: we can conclude
when two paths are connected
with many edges.
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How to generalize?

Crucial property: we can conclude
when two paths are connected
with many edges.

Possible extension to H = K4:

Pack cycles of bounded size first,
then paths.

⇝ gap O(k log k) when H is a wheel
(Aboulker, Fiorini, Huynh, Joret, R. and Sau, 2018)
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Orchards

An a× b-orchard in G consists in collections
• P1, . . . ,Pa of vertex-disjoint (horizontal) paths; and
• T1, . . . , Tb of vertex-disjoint (vertical) trees,

s.t. for every i ∈ [a], j ∈ [b]:

• Pi ∩ Tj ̸= ∅ and connected;
and

• each leaf of Tj lies on
some horizontal path.

P1
P2
P3
P4
P5

Pa

T1 T2 Tb. . .

...
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Consequences



Consequence 1/4: Algorithms

packH(G) max. number of disjoint H-models in G
coverH(G) min. size of a cover of H-models in G

Param. Problem Exact Approximate
packK3 Cycle

Packing
NPC • polytime O(logOPT)-approx.

• O(log(n) 12−ϵ)-approx. is
quasi-NP-hard

coverK3 FVS NPC • polytime 2-approx.

Theorem (from our results)
For every planar graph H, there is a polytime
O(log(OPT))-approximation algorithm for packH.

(idem for coverH, but O(1)-approximations are already known)
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Consequence 2/4: Large treewidth graph decomposition

Theorem (Stiebitz, JGT 1996)
Every graph of large minimum degree has a partition into
many subgraphs of large minimum degree.

Same for treewidth?

Theorem
If G has treewidth at least

• poly(r) · k polylog(k+ 1) (Chekury and Chuzhoy, 2013)
• s(r) · k log(k+ 1) (from our results)

then it has k disjoint subgraphs of treewidth at least r.
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then it has k disjoint subgraphs of treewidth at least r.
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Consequence 3/4: Packing cycles with modularity constraints

Theorem (Thomassen, JGT 1988)
For every m ∈ N⩾1 there is a function f s.t., for every k ∈ N and
every graph G,

• G contains k vertex-disjoint cycles of length 0 mod m,
• or there is a subset X of at most f(k) vertices s.t. G − X has
no such cycle.

• from Thomassen’s proof: f(k) = 22O(k)

• Chekury and Chuzhoy (2013): f(k) = k polylog k
• from our result: f(k) = O(k log k) (tight)
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Consequence 4/4: Erdős-Pósa in minor-closed classes

EP65: every gap for K3 is an Ω(k log k).

Theorem (Bienstock and Dean, JCTB 1992)
k 7→ 54k is a gap for K3 in planar graphs.

Theorem (Fomin, Saurabh, and Thilikos, JGT 2011)
For every planar graph H and every proper minor-closed class
G, there is a O(k) gap for H in G.

The previous theorem also follows from our results.
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Open problems



The right gap

Theorem (our main theorem)
H planar⇒ there is a O(k log k) gap for H.

In our proof, the hidden constant (which depends on H) is:
• not known to be computable;
• large.

What is the “right” contribution of H in the gap?

Theorem (Mousset et al., JCTB 2017)
There is a function f(k, ℓ) = O(k log k+ kℓ) such that Cℓ has
gap f(·, ℓ), for every ℓ ⩾ 3.

Same behavior?
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Variants

• vertex version / edge version;

• directed / undirected;
• induced / non-induced;
• weighted / non-weighted;
• labelled / non-labelled;
• minors models/ subdivisions / immersions / …

Thank you for your attention!
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