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Proofs.
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Proofs in real life

: Where were

you at 3pm?
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Proofs in mathematics
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Example 1: Graph Isomorphism

T e Gy s.t. w(Go) = Gy Checks 7(Gg) = G,
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Example 1: Graph Isomorphism

- :\’
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T e Gy s.t. w(Go) = Gy Checks 7(Gg) = G,
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Example 2: 3-coloring
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Example 2: 3-coloring

checks the 3-coloring is valid
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Classical proofs

Language x
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Classical proofs

Language x

Statement z
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Classical proofs

Language z

(unbounded)
Prover (computationally bounded)
Verifier
-I_b, : Qﬁ&hrk\
Statement x NGAIN

knows a withess w
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Classical proofs

Language x
(unbounded)
Prover (computationally bounded)
Verifier

Statement x

©
Proof g able to verify if the
(gﬁgrg proof is valid or not
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Formalizing proofs

A language £ C{0,1}" is efficiently verifiable if there exists a poly-time
verifier V such that:

* Completeness:
If z € £, there exists a witness we {0,1} with |w| = poly(|x|) such that

V(z,w)=1
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Formalizing proofs

A language £ C{0,1}" is efficiently verifiable if there exists a poly-time
verifier V such that:

* Completeness:
If z € £, there exists a witness we {0,1} with |w| = poly(|x|) such that

V(z,w)=1

* Soundness:
If x ¢ £, then for all poly(|z|)-size witnesses we{0,1}",we have:

V(x,w)=0
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An alternative definition of NP

A language £ C{0,1}" is in NP if there exists a poly-time verifier V'such that:

* Completeness:
If z € £, there exists a witness we {0,1} with |w| = poly(|x|) such that

V(z,w)=1

* Soundness:
If x ¢ £, then for all poly(|z|)-size witnesses we{0,1}",we have:

V(x,w)=0
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An alternative definition of NP

A language £ C{0,1}" is in NP if there exists a poly-time verifier V'such that:

* Completeness:
If z € £, there exists a witness we {0,1} with |w| = poly(|x|) such that

V(z,w)=1

V = the poly-time NDTM

w = choices such that V(x) = 1




Are we stuck with NP?

Convince me of something | cannot check
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What made it possible?

* Interaction:
the verifier and the prover interacts in a series of questions/responses

* Randomness:
guestions cannot be predicted by the prover:
> for zeL , it can always find the good answer

> for z ¢ L, it fails with some probability
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What made it possible?

* Interaction:
the verifier and the prover interacts in a series of questions/responses

* Randomness:
guestions cannot be predicted by the prover:
> for zeL , it can always find the good answer

> for z ¢ L, it fails with some probability

Both are required!




What made it possible?

* Interaction:
the verifier and the prover interacts in a series of questions/responses

* Randomness:
guestions cannot be predicted by the prover:
> for zeL , it can always find the good answer

> for z ¢ L, it fails with some probability

— The verifier can only be convinced up to

some (possibly very large) probability




Interactive proofs.
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Interactive proofs

[Goldwasser-Micali-Rackhoff'86]

(unbounded) Statement z .
Prover (computationally bounded)
Verifier
al > N
a AR
> // ) \
L/ NN
< 42 IS
: !
ar, > AV
P ar i
Proof = accept/reject
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A formal definition of IP

A language £ C{0,1}" admits an interactive proof system if there exists an
unbounded prover P and a probabilistic poly-time verifier V' such that:

* Completeness:
If xe L, then

Pri(P,V)(x)=1]>2/3

 Soundness:
If x¢ L, then

Pri(P,V)(x)=1] <1/3
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A formal definition of IP

A language £ C{0,1}" admits an interactive proof system if there exists an
unbounded prover P and a probabilistic poly-time verifier V' such that:

* Completeness:
If xe L, then

Pri(P,V)(x)=1]>2/3

 Soundness:

One can amplify the bounds by iterating the

process... This exponentially converges




A formal definition of IP

A language £ C{0,1}" admits an interactive proof system if there exists an
unbounded prover P and a probabilistic poly-time verifier V' such that:

* Completeness:
If xe L, then

Pri(P,V)(z)=1]>1—2""

 Soundness:
If x¢ L, then

Pr[(P,V)(zx) =1 <2™"
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A formal definition of IP

A language £ C{0,1}" admits an interactive proof system if there exists an
unbounded prover P and a probabilistic poly-time verifier V' such that:

* Completeness:

If ze€ L, then
Pri(P,V)(x)=1] > 1 —><”L

 Soundness:
If x¢ L, then

Pr[(P,V)(zx) =1 <2™"
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A formal definition of IP

A language £ C{0,1}" admits an interactive proof system if there exists an
unbounded prover P and a probabilistic poly-time verifier V' such that:

* Completeness:

If ze€ L, then
Pri(P,V)(x)=1] > 1 —><”L

 Soundness:

IP = languages that admit

an interative proof system




A formal definition of IP

A language £ C{0,1}" admits an interactive proof system if there exists an

unbounded prover P and a probabilistic poly-time verifier V' such that:

If we want perfect soundness, we are stuck

with classical (NP) proofs

 Soundness:

If x¢ L, then
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Actual definition of IP

A language £ C{0,1}" admits an interactive proof system if there exists an
unbounded prover P and a probabilistic poly-time verifier V' such that:

* Completeness:
If xe L, then

Pri(P,V)(z)=1]>1—2""

* Soundness:
If x ¢ £, then for any unbounded prover P*

Pr[(P*,V)(x) =1 <27"
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Benefits of interactive proofs

Interactive proofs can offer:
* Simpler verification
* Proofs for languages beyond NP

* Additional properties, such as zero-knowledge

CCCCCCCCCC



Back to example 1: Graph Isomorphism




Back to example 1: Graph Isomorphism
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Back to example 1: Graph Isomorphism

/fo\\/xl

o TN\ ﬁ
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@

Pick a secret 0 € Gy, reveal H = o(Gy)

>

Pick b + U ({0, 1}), request mapping from G; to H
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Back to example 1: Graph Isomorphism

/fo\\/xl
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Pick a secret 0 € Gy, reveal H = 0(Gy)

>

Pick b + U ({0, 1}), request mapping from G; to H R
1 V \enh

Reveal ¢, where v =c it b =0, else c o™

T € Gn s.t. m1(Go) = Gy Checks ¥(Gy) = H
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Back to example 1: Graph Isomorphism

* Completeness:
If xe L, then

Pick a secret 0 € Gy, reveal H = 0(Gy)

>
Pick b + U ({0, 1}), request mapping from G; to H R
<
AW Reveal v, where ¢ = o if b =0, else o o 7r_1> | pS
T e Gy s.t. w(Go) = Gy Checks ¥(Gy) = H
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Back to example 1: Graph Isomorphism

* Soundness:
If ¢ £, whatever a cheating prover does to sample H, it fails to

answer the challenge with probability at least 1/2
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Back to example 1: Graph Isomorphism

* Soundness:
If ¢ £, whatever a cheating prover does to sample H, it fails to

answer the challenge with probability .
H is isomorphic to a
most one of the G,'s

reveal a graph H i

N7 \ \ A LY

“\\c\‘ \‘\‘ |l AN .

“‘\ ‘f “\\r‘)“i\ \ A 7
IR mA / & /
/J L/\i\‘/‘g

Checks ¥(Gy) = H
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Back to example 1: Graph Isomorphism

* Soundness:
If ¢ £, whatever a cheating prover does to sample H, it fails to

answer the challenge with probability .
H is isomorphic to a

most one of the G;)'s

reveal a graph H

>

Pick b + U ({0, 1}), request mapping from G; to H

Reveal v > . |
Checks ¥(Gy) = H
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Back to example 1: Graph Isomorphism

* Soundness:
If ¢ £, whatever a cheating prover does to sample H, it fails to

answer the challenge with probability at least 1/2
Pri(P*,V)(x)=1]<1/2

reveal a graph H

>
Pick b + U ({0, 1}), request mapping from G; to H \
Reveal 9 >

Checks ¥(Gy) = H
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Example 2: Graph Non-Isomorphism

Only exponential-size classical (= non-interactive) proofs known

GNIis in co-NP, but it is conjectured that GNI is not in NP:
- polynomial hierarchy would collapse at level 2 [schoning'ss;
- GNI is in QP [Babai'16]

CCCCCCCCCC



Example 2: Graph Non-Isomorphism

Pick b <+ U({0,1}),0 € Gy, reveal o(Gp)

Return b’ € {0,1}

>
Checks b’ = b
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Example 2: Graph Non-Isomorphism

* Completeness:
If ze £, then

Pick b <+ U({0,1}),0 € Gy, reveal o(Gp)

Return b’ € {0,1}

>
Checks b’ = b
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Example 2: Graph Non-Isomorphism

* Soundness:
If ¢ £, then Go=G, and the distribution of the verifier's message is

independent of b. The prover fails to guess b with probability 1/2
Pri(P,V)(x)=1] < 1/2

i Pick b < U({0,1}),0 € &, reveal o(Gs) A
A Sk Return b € {0, 1} .
Checks b’ = b

CCCCCCCCCC



So, what can we prove with IP?

Classical proofs

Interactive proofs

NP
J solution

co-NP
\v4

#P
178 solutions

PSPACE
dvd..V
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So, what can we prove with IP?

Classical proofs

Interactive proofs

NP
J solution

co-NP
\v4

#P
178 solutions

PSPACE
dvd..V
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So, what can we prove with IP?

Classical proofs Interactive proofs
NP J
3 solution J
co-NP
v M [Fortnow-Karloff-Lund-Nissan'89, Shamir'89]
IP = PSPACE
#P

178 solutions

PSPACE P,
V3.V

CCCCCCCCCC



More about interactive proofs

Our GNI proof requires private coins for the verifier

What about public-coin protocols? (Arthur-Merlin classes, AM)

AM =1IP [Goldwasser-Sipser'86]

Proof relies on the “Set lower bound” AM protocol

CCCCCCCCCC



Zero-knowledge proofs.
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Back to example 1 again: Graph Isomorphism

/“(O\\/XI

L Al
\2/ <

O

Pick a secret 0 € Gy, reveal H = 0(Gy)

>

Pick b + U ({0, 1}), request mapping from G; to H R
1 V \enh

Reveal ¢, where v =c it b =0, else c o™

T € Gn s.t. m1(Go) = Gy Checks ¥(Gy) = H
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Back to example 1 again: Graph Isomorphism

What does the verifier learn about
the witness?

Pick a secret 0 € Gy, reveal H = 0(Gy)

>

Pick b + U ({0, 1}), request mapping from G; to H R

Reveal ¢, where ¢y =0 if b=0, else c o} | \

T € Gn s.t. m1(Go) = Gy Checks ¥(Gy) = H

CCCCCCCCCC



The view of the verifier

H = O'(GQ)

b« U(({0,1})

ogifb=0, else conr 1




The view of the verifier

H=0(Gy) =con 1(Gy)

b« U(({0,1})

1

cif b=0, else con™
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The view of the verifier

b« U(({0,1})
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The view of the verifier

HZO‘(Gb) for o < Gxn

b« U(({0,1})
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The view of the verifier

HZO‘(Gb) for o <+ Gxn

b« U(({0,1})

o
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Zero-knowledge interactive proofs

An interactive proof system (P,V) is:

* Honest-verifier zero-knowledge:
if for x € £, there exists a probabilistic, poly-time simulator Simy

such that we have:

UP, V) (2)} = {Simy ()}

CCCCCCCCCC



Zero-knowledge interactive proofs

An interactive proof system (P,V) is:

* Honest-verifier zero-knowledge:
if for x € £, there exists a probabilistic, poly-time simulator Simy

such that we have:

UP, V) (2)} = {Simy ()}

The (honest) verifier learns nothing more than

what it could get from the statement itself

CCCCCCCCCC



Zero-knowledge interactive proofs

An interactive proof system (P,V) is:

* Zero-knowledge:
If for x € L, for any (possibly malicious) verifier V", there exists a

probabilistic, poly-time simulator Simy « such that we have:

UL, V) (2)} ~ {Simy-(z)}
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Zero-knowledge interactive proofs

An interactive proof system (P,V) is:

* Zero-knowledge:
If for x € L, for any (possibly malicious) verifier V", there exists a

probabilistic, poly-time simulator Simy « such that we have:

UL, V) (2)} ~ {Simy-(z)}

Whatever it does, a verifier learns nothing more

than what it could get from the statement itself

CCCCCCCCCC



Different flavours of zero-knowledge

WP, V) (2)} ~ {Simy-(x)}

* Computational zero-knowledge
simulated transcripts are hard to distinguish from real ones by PPT adversaries

* Statistical zero-knowledge
an unbounded adversary learns nothing except with negligible probability

* Perfect zero-knowledge
simulated transcripts and real transcripts are identically distributed

CCCCCCCCCC



Different flavours of zero-knowledge

WP, V) (2)} ~ {Simy-(x)}

* Computational zero-knowledge = CZK
simulated transcripts are hard to distinguish from real ones by PPT adversaries

* Statistical zero-knowledge = SZK
an unbounded adversary learns nothing except with negligible probability

* Perfect zero-knowledge = PZK
simulated transcripts and real transcripts are identically distributed
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Different flavours of zero-knowledge

WP, V) (2)} ~ {Simy-(x)}

* Computational zero-knowledge = CZK
simulated transcripts are hard to distinguish from real ones by PPT adversaries

* Statistical zero-knowledge = SZK
an unbounded adversary learns nothing except with negligible probability

* Perfect zero-knowledge = PZK
simulated transcripts and real transcripts are identically distributed

BPP C PZK C SzK € CzK C IP

CCCCCCCCCC



NP C CZK
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Commitment scheme

Com(x;7)
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Commitment scheme
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Commitment scheme

* Hiding:

The receiver cannot learn anything about the committed value x before it is open
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Commitment scheme

* Hiding:

The receiver cannot learn anything about the committed value x before it is open

* Binding:
The sender cannot open the commitment to any other value z’ #+ X

CCCCCCCCCC



Commitment scheme

* Hiding:

The receiver cannot learn anything about the committed value x before it is open

* Binding:

Commitment schemes with stat./comp. hiding and comp./stat.

binding can be constructed assuming one-way functions exist




A zero-knowledge proof for 3-coloring
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A zero-knowledge proof for 3-coloring
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A zero-knowledge proof for 3-coloring

\[}_‘: Com(ck; Tk)ke[N]
| “‘

(i,5) < U(E)
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A zero-knowledge proof for 3-coloring

(i,5) < U(E)

\[}_‘: Com(ck; Tk)ke[N]

CiyT4,Cj5,T >
Accept if ¢; # ¢; and valid openings
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A zero-knowledge proof for 3-coloring

* Completeness:
If xe L, then

>
Accept if ¢; # ¢; and valid openings
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A zero-knowledge proof for 3-coloring

* Soundness:
If x¢ L, then there must be an edge with the same color at both ends

1
Pri(P*,V)(x)=1]<1-— =
Com(ck;rk)ke[N]
>
. (i, ) « U(E)
AR
CiyTi,Cj,T

Jr" ] >

Accept if ¢; # ¢; and valid openings
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A zero-knowledge proof for 3-coloring

Binding: the prover has to open the

two colors it committed

* Soundness:
If x¢ L, then there must be an edge with the same color at both ends

1
Pri(P*,V)(x)=1]<1-— =
Com(ck;rk)ke[m
>
. (i, ) « U(E)
AR
CiyTi,Cj,T

Jr" ] >

Accept if ¢; # ¢; and valid openings
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A zero-knowledge proof for 3-coloring

* Honest-verifier zero-knowledge:
Actually, the verifier learns the color of 2 vertices at each iteration...
There is an easy fix!

j Com(ck;rk)kew]

(i,5) < U(E)

CiyTi,Cj,T

Accept if ¢; # ¢; and valid openings

CCCCCCCCCC



A zero-knowledge proof for 3-coloring

* Honest-verifier zero-knowledge:

randomly permutes the 3 colors, then commit

Com(ck; rk)ke[N]

(i,5) < U(E)

CiyTi,Cj,T

Accept if ¢; # ¢; and valid openings
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A zero-knowledge proof for 3-coloring

* Honest-verifier zero-knowledge:
If z € L, then, we construct a simulator as:

randomly permutes the 3 colors, then commit

Com(ck; rk)ke[N]

(i,5) < U(E)

CiyTi,Cj,T

Accept if ¢; # ¢; and valid openings
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A zero-knowledge proof for 3-coloring

* Honest-verifier zero-knowledge:
If z € L, then, we construct a simulator as:

(i,5) < U(E)
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A zero-knowledge proof for 3-coloring

* Honest-verifier zero-knowledge:
If z € L, then, we construct a simulator as:

For k € [N|\ {7,757}, Com(0;7%)x
c;, — U({1,2,3}),c; + U({1,2,3}\ {ci})

Com(cl-; 7“@'>, Com(cj; Tj)

(i,5) < U(E)
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A zero-knowledge proof for 3-coloring

Hiding: from the verifier's

 Honest-verifier zero-knowleélge: perspective, non-open values look
If x € £, then, we construct a simulsa like commitments of 0

For k € [N|\ {7,757}, Com(0;7%)x
c;, — U({1,2,3}),c; + U({1,2,3}\ {ci})

Com(cl-; 7“@'>, Com(cj; Tj)

(i,5) < U(E)
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A zero-knowledge proof for 3-coloring

* Honest-verifier zero-knowledge:
If z € L, then, we construct a simulator as:

For k € [N|\ {7,757}, Com(0;7%)x
c;, — U({1,2,3}),c; + U({1,2,3}\ {ci})

Com(cl-; 7“@'>, Com(cj; Tj)

(i,5) < U(E)

Ciy T4, Cjafrj
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Computational ZK

* One can actually prove that this protocol achieves computational zero-

knowledge, but it is a bit more complicated = even a malicious verifier really
learns nothing about the valid coloring

 Itis actually a ZK proof of knowledge: if a prover convinces a verifier,

then the prover has to know a valid 3-coloring = the proof reveals nothing but
it would be possible to extract a valid 3-coloring from interaction with the prover

* Since 3-coloring is NP-complete, we obtain ZK-proofs for any statement
in NP (assuming commitment schemes exist)...
= NP c CZK

CCCCCCCCCC



Concluding remarks.
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Succinct ZK Proofs (ZK-SNARKs, ....)

* Combining ZK proofs with PCP lead to succinct zero-knowledge proofs
(ZK-SNARKS)

* They allow to prove statements with extremely fast verification

* This is particularly useful for proving a complicated computation was
honestly performed... Verification can be much simpler than the actual
computation!
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Non-Interactive Zero-Knowledge Proofs

* Alot of ZK proofs can be made non-interactive by relying on cryptographic
hash functions using the Fiat-Shamir transform [Fiat-Shamir'gé]

w
>
« c+ U(C) )
2
>
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Non-Interactive Zero-Knowledge Proofs

* Alot of ZK proofs can be made non-interactive by relying on cryptographic
hash functions using the Fiat-Shamir transform [riat-Shamir'ge]

c <+ H(w)
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ZK proofs are massively used in practice (they are at the core of modern digital
signatures such as Schnorr or Dilithium)

ZK proofs can be used to force honest behaviour in arbitrary scenarios
We can prove statements about private data with ZK proofs (e.g., on encrypted data)

There is high interest in succinct proofs for cloud computing, ML, cryptocurrencies... as
they allow to certify the result of a computation at minimal cost



Some material and open problems

* To learn more:
> zkproof.org
> YouTube: Berkeley RDI Center - Zero-Knowledge Proofs MOOC
> YouTube: ICMS - Foundations and Applications of Zero-Knowledge Proofs
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Some material and open problems

* To learn more:
> zkproof.org
> YouTube: Berkeley RDI Center - Zero-Knowledge Proofs MOOC
> YouTube: ICMS - Foundations and Applications of Zero-Knowledge Proofs

* Some interesting open problems in https://eprint.iacr.org/2025/202.pdf -
Distributed Non-Interactive ZK Proofs

1 message
per vertex
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https://eprint.iacr.org/2025/202.pdf

Some material and open problems

* To learn more:
> zkproof.org
> YouTube: Berkeley RDI Center - Zero-Knowledge Proofs MOOC
> YouTube: ICMS - Foundations and Applications of Zero-Knowledge Proofs

* Some interesting open problems in https://eprint.iacr.org/2025/202.pdf -
Distributed Non-Interactive ZK Proofs

1 (synchronous) message per oriented edge
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https://eprint.iacr.org/2025/202.pdf

Some material and open problems

* To learn more:
> zkproof.org
> YouTube: Berkeley RDI Center - Zero-Knowledge Proofs MOOC
> YouTube: ICMS - Foundations and Applications of Zero-Knowledge Proofs

* Some interesting open problems in https://eprint.iacr.org/2025/202.pdf -
Distributed Non-Interactive ZK Proofs

Goal: convince the network of some
| property (e.g. triangle-freeness) in ZK,
— Al possibly in presence of coalitions of
| malicious nodes
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https://eprint.iacr.org/2025/202.pdf

Some material and open problems

* To learn more:
> zkproof.org
> YouTube: Berkeley RDI Center - Zero-Knowledge Proofs MOOC
> YouTube: ICMS - Foundations and Applications of Zero-Knowledge Proofs

* Some interesting open problems in https://eprint.iacr.org/2025/202.pdf -
Distributed Non-Interactive ZK Proofs

* Non NP-complete graph problems in SZK?
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https://eprint.iacr.org/2025/202.pdf

Some material and open problems

* To learn more:
> zkproof.org
> YouTube: Berkeley RDI Center - Zero-Knowledge Proofs MOOC
> YouTube: ICMS - Foundations and Applications of Zero-Knowledge Proofs

* Some interesting open problems in https://eprint.iacr.org/2025/202.pdf -
Distributed Non-Interactive ZK Proofs

* Non NP-complete graph problems in SZK?

Thanks!
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