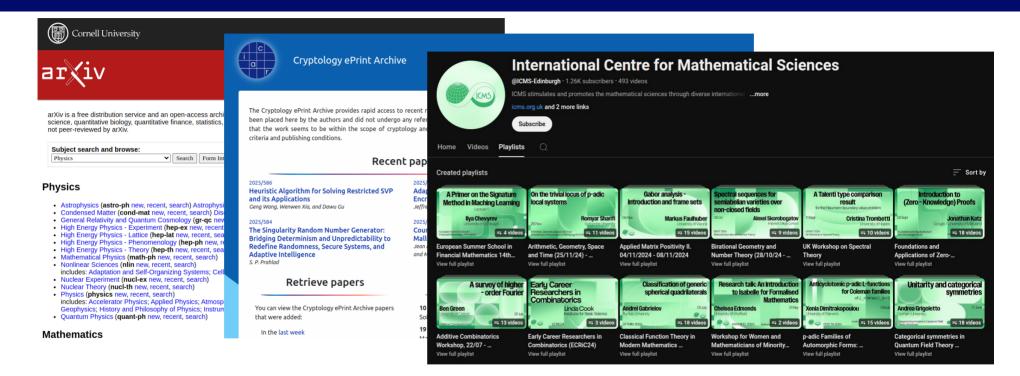
Interactive Proofs and Zero-Knowledge Proofs

Alain Passelègue

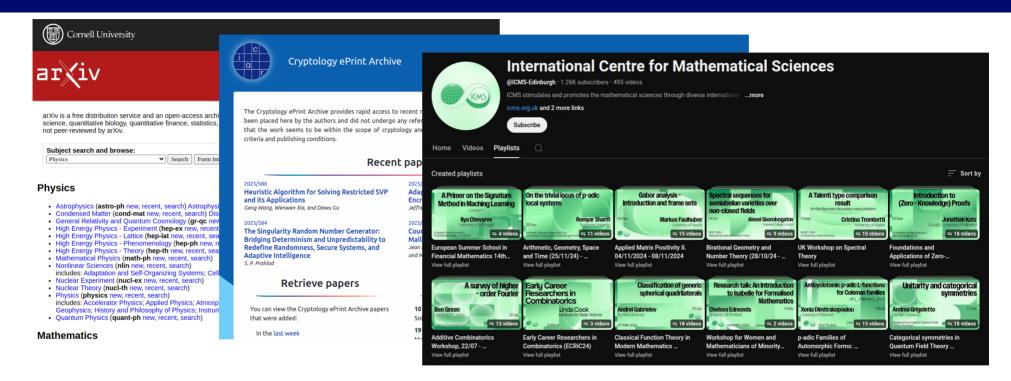
April 7, 2025

Physical seminars in 2025...?



Why are we still organizing live seminars...?

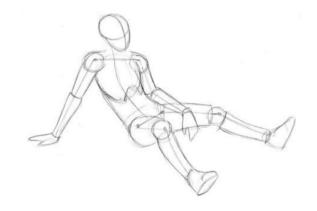
Physical seminars in 2025...?

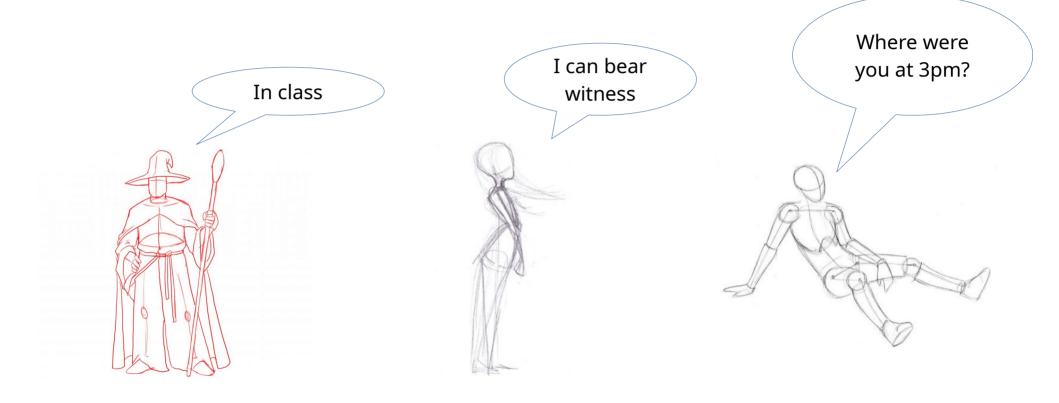


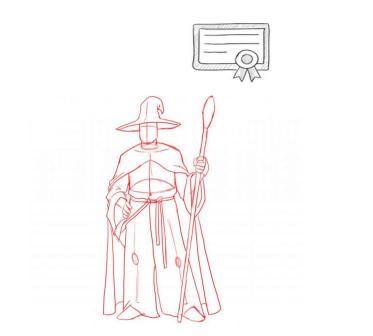
Why are we still organizing live seminars...? ...to ask random questions!

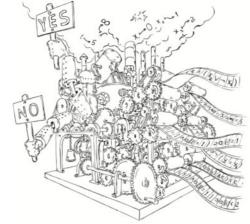
Alain Passelègue

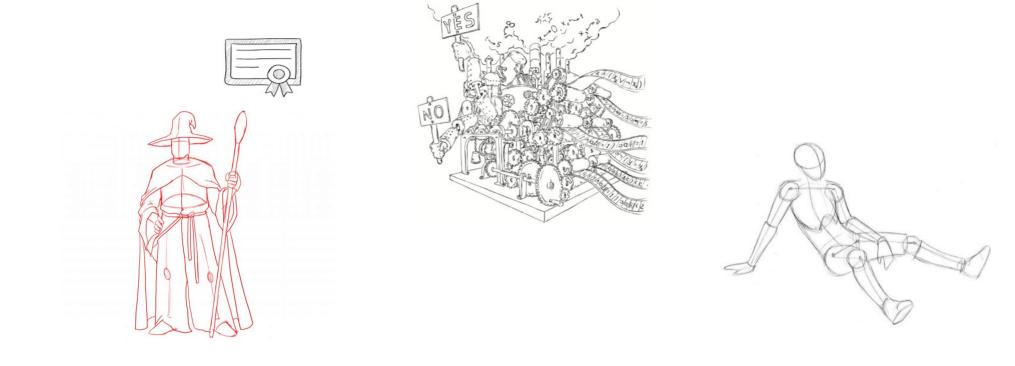
Proofs.

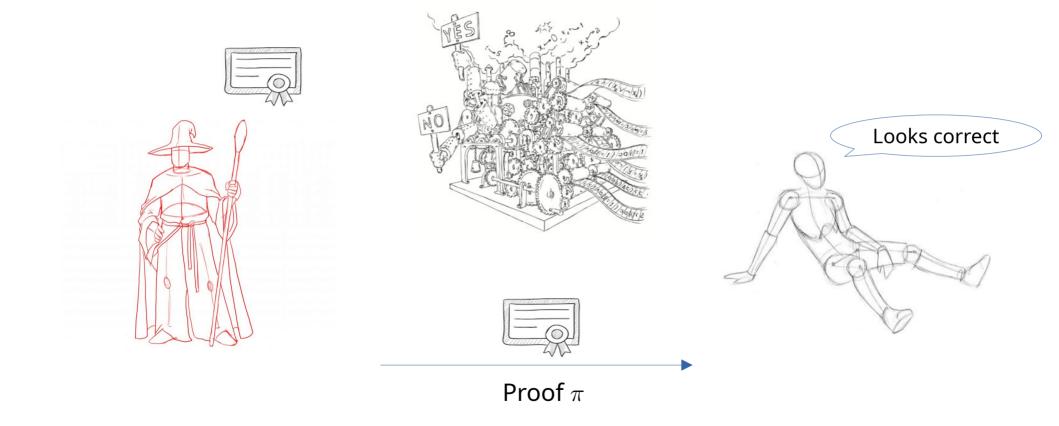




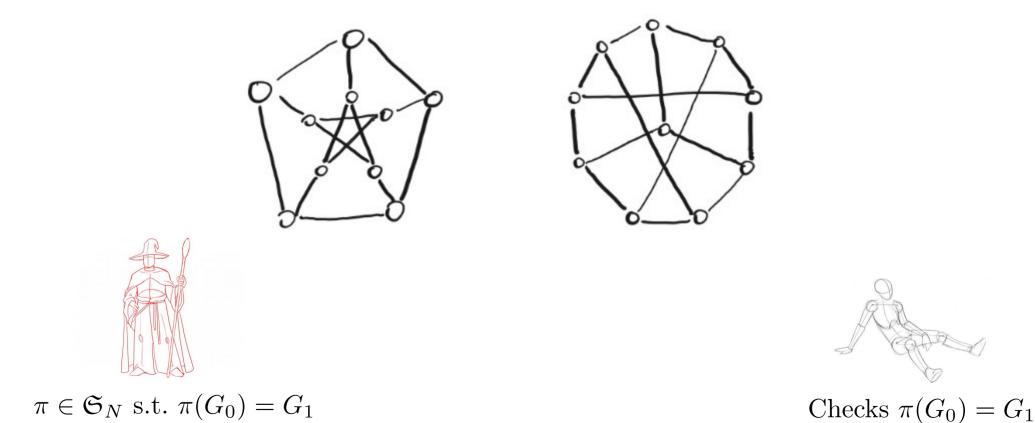






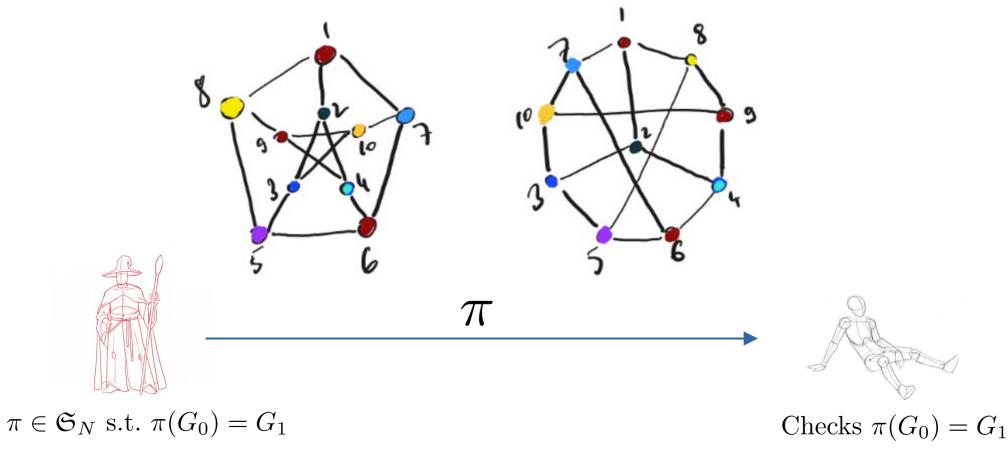


Example 1: Graph Isomorphism

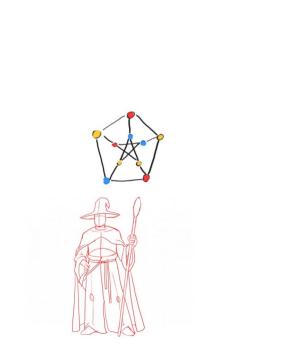


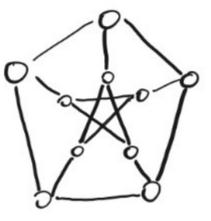
Alain Passelègue

Example 1: Graph Isomorphism



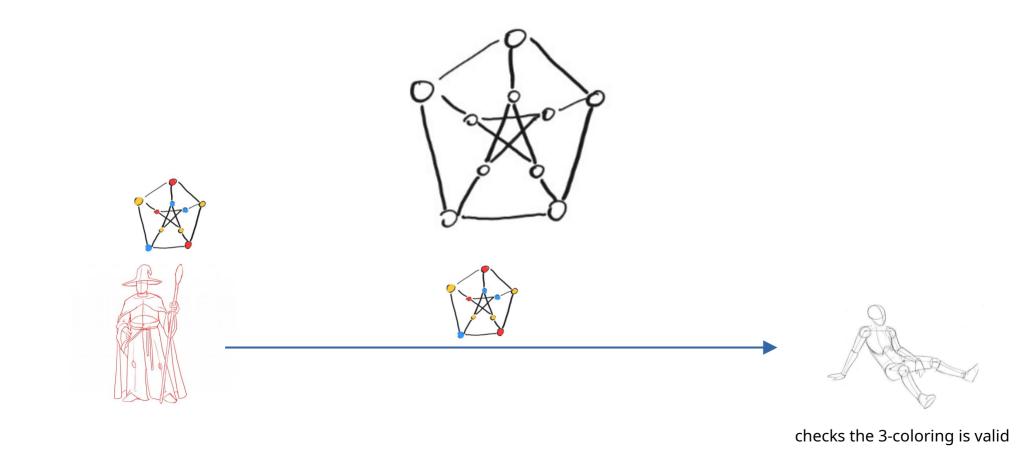
Example 2: 3-coloring





Alain Passelègue

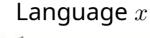
Example 2: 3-coloring



Language x

Language x

 ${\tt Statement}\ x$

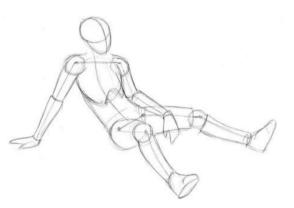


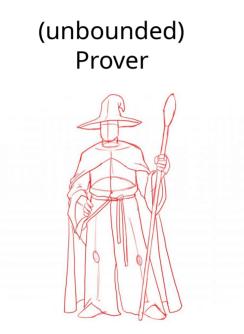
(unbounded) Prover

knows a witness w

Statement x

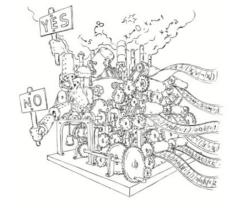
(computationally bounded) Verifier





knows a witness *w*

Language x



Statement *x*

Proof π (short)

(computationally bounded) Verifier

able to verify if the proof is valid or not

Formalizing proofs

A language $\mathcal{L} \subseteq \{0,1\}^*$ is efficiently verifiable if there exists a poly-time verifier *V* such that:

<u>Completeness:</u>

If $x \in \mathcal{L}$, there exists a witness $w \in \{0,1\}^*$ with |w| = poly(|x|) such that

V(x,w) = 1

Formalizing proofs

A language $\mathcal{L} \subseteq \{0,1\}^*$ is efficiently verifiable if there exists a poly-time verifier *V* such that:

<u>Completeness:</u>

If $x \in \mathcal{L}$, there exists a witness $w \in \{0,1\}^*$ with |w| = poly(|x|) such that

$$V(x,w) = 1$$

• Soundness:

If $x \notin \mathcal{L}$, then for all poly(|x|)-size witnesses $w \in \{0,1\}^*$, we have:

V(x,w) = 0

An alternative definition of NP

A language $\mathcal{L} \subseteq \{0,1\}^*$ is in NP if there exists a poly-time verifier V such that:

<u>Completeness:</u>

If $x \in \mathcal{L}$, there exists a witness $w \in \{0,1\}^*$ with |w| = poly(|x|) such that

V(x,w) = 1

• Soundness:

If $x \notin \mathcal{L}$, then for all poly(|x|)-size witnesses $w \in \{0,1\}^*$, we have:

V(x,w) = 0

An alternative definition of NP

A language $\mathcal{L} \subseteq \{0,1\}^*$ is in NP if there exists a poly-time verifier V such that:

<u>Completeness:</u>

If $x \in \mathcal{L}$, there exists a witness $w \in \{0,1\}^*$ with |w| = poly(|x|) such that

$$V(x,w) = 1$$

Soundnoss

V = the poly-time NDTM w = choices such that V(x) = 1

Are we stuck with NP?

Convince me of something I cannot check

What made it possible?

• Interaction:

the verifier and the prover interacts in a series of questions/responses

• Randomness:

questions cannot be predicted by the prover:

- $\ensuremath{\scriptstyle \rightarrow}$ for $x{\in}\ensuremath{\mathcal{L}}$, it can always find the good answer
- \checkmark for $x \notin \mathcal{L}$, it fails with some probability

What made it possible?

• Interaction:

the verifier and the prover interacts in a series of questions/responses

• Randomness:

questions cannot be predicted by the prover:

- $\ensuremath{\scriptstyle \rightarrow}$ for $x{\in}\ensuremath{\mathcal{L}}$, it can always find the good answer
- \checkmark for $x \notin \mathcal{L}$, it fails with some probability

Both are required!

What made it possible?

• Interaction:

the verifier and the prover interacts in a series of questions/responses

• Randomness:

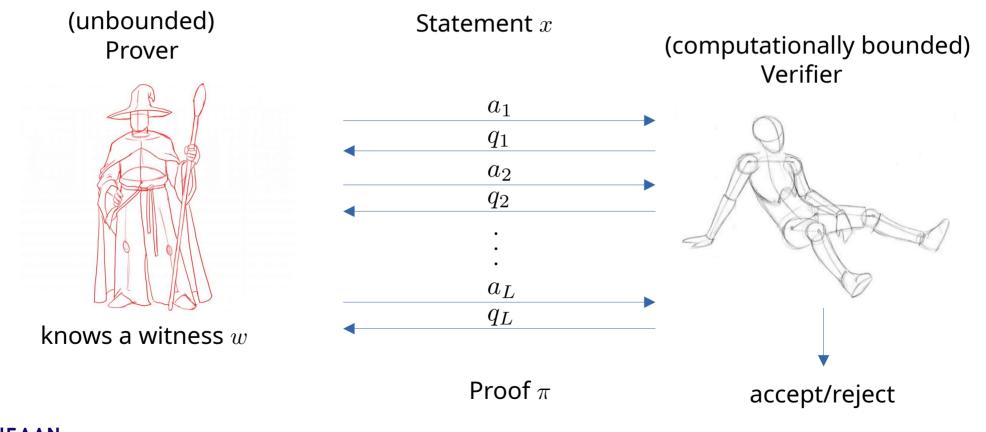
questions cannot be predicted by the prover:

- $\ensuremath{\scriptstyle \rightarrow}$ for $x{\in}\ensuremath{\mathcal{L}}$, it can always find the good answer
- \checkmark for $x \notin \mathcal{L}$, it fails with some probability

⇒ The verifier can only be convinced up to some (possibly very large) probability

Interactive proofs.

Interactive proofs



A language $\mathcal{L} \subseteq \{0,1\}^*$ admits an interactive proof system if there exists an unbounded prover *P* and a probabilistic poly-time verifier *V* such that:

• <u>Completeness:</u>

If $x \in \mathcal{L}$, then

 $\Pr[\langle P, V \rangle(x) = 1] \ge 2/3$

• <u>Soundness:</u>

If $x \notin \mathcal{L}$, then

$$Pr[\langle P, V \rangle(x) = 1] \le 1/3$$

A language $\mathcal{L} \subseteq \{0,1\}^*$ admits an interactive proof system if there exists an unbounded prover *P* and a probabilistic poly-time verifier *V* such that:

• <u>Completeness:</u>

If $x \in \mathcal{L}$, then

$$\Pr[\langle P,V\rangle(x)=1]\geq 2/3$$

• Soundness:

One can amplify the bounds by iterating the process... This exponentially converges

A language $\mathcal{L} \subseteq \{0,1\}^*$ admits an interactive proof system if there exists an unbounded prover *P* and a probabilistic poly-time verifier *V* such that:

• <u>Completeness:</u>

If $x \in \mathcal{L}$, then

$$Pr[\langle P, V \rangle(x) = 1] \ge 1 - 2^{-n}$$

• <u>Soundness:</u>

If $x \notin \mathcal{L}$, then

$$Pr[\langle P, V \rangle(x) = 1] \le 2^{-n}$$

A language $\mathcal{L} \subseteq \{0,1\}^*$ admits an interactive proof system if there exists an unbounded prover *P* and a probabilistic poly-time verifier *V* such that:

<u>Completeness:</u>

If
$$x \in \mathcal{L}$$
, then $Pr[\langle P, V \rangle(x) = 1] \ge 1 - 2^{-n}$

• Soundness:

If $x \notin \mathcal{L}$, then

$$Pr[\langle P, V \rangle(x) = 1] \le 2^{-n}$$

A language $\mathcal{L} \subseteq \{0,1\}^*$ admits an interactive proof system if there exists an unbounded prover *P* and a probabilistic poly-time verifier *V* such that:

<u>Completeness:</u>

If
$$x \in \mathcal{L}$$
, then $Pr[\langle P, V \rangle(x) = 1] \ge 1 - 2^{n}$

• Soundness:

IP = languages that admit an interative proof system

A language $\mathcal{L} \subseteq \{0,1\}^*$ admits an interactive proof system if there exists an

unbounded prover *P* and a probabilistic poly-time verifier *V* such that:

If we want perfect soundness, we are stuck with classical (NP) proofs

• Soundness:

If $x \notin \mathcal{L}$, then

$$Pr[\langle P, V \rangle(x) = 1] \le 2^{-n}$$

Alain Passelègue

Actual definition of IP

A language $\mathcal{L} \subseteq \{0,1\}^*$ admits an interactive proof system if there exists an unbounded prover *P* and a probabilistic poly-time verifier *V* such that:

• <u>Completeness:</u>

If $x \in \mathcal{L}$, then

$$Pr[\langle P, V \rangle(x) = 1] \ge 1 - 2^{-n}$$

• <u>Soundness:</u>

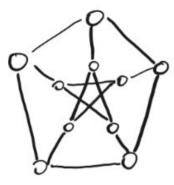
If $x \notin \mathcal{L}$, then for any unbounded prover P^*

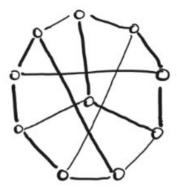
 $\Pr[\langle P^*, V \rangle(x) = 1] \le 2^{-n}$

Benefits of interactive proofs

Interactive proofs can offer:

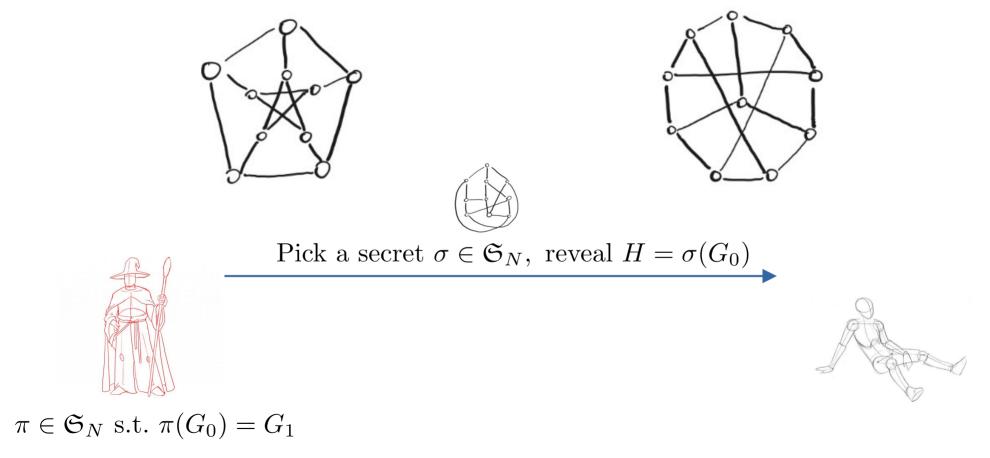
- Simpler verification
- Proofs for languages **beyond NP**
- Additional properties, such as **zero-knowledge**

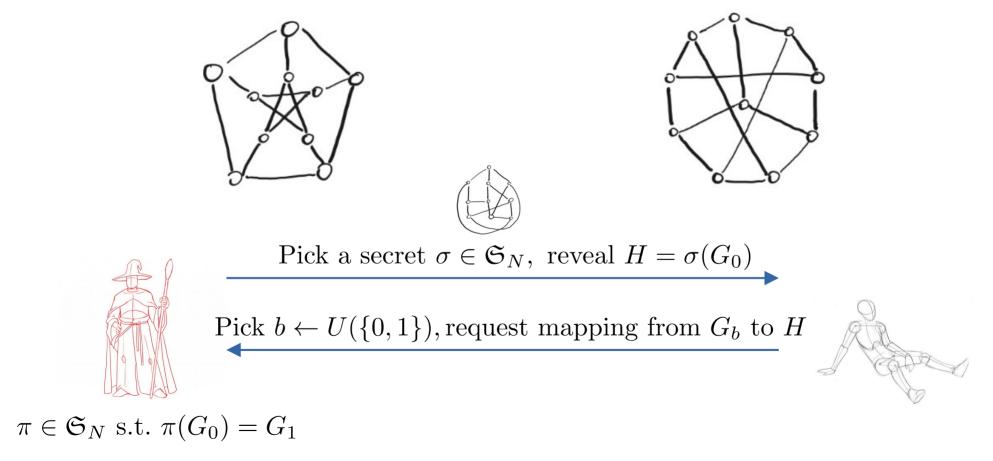




 $\pi \in \mathfrak{S}_N$ s.t. $\pi(G_0) = G_1$

Alain Passelègue



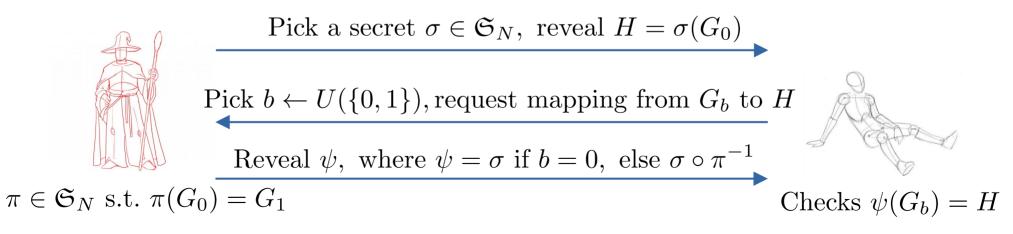




<u>Completeness:</u>

If $x \in \mathcal{L}$, then

 $\Pr[\langle P,V\rangle(x)=1]=1$



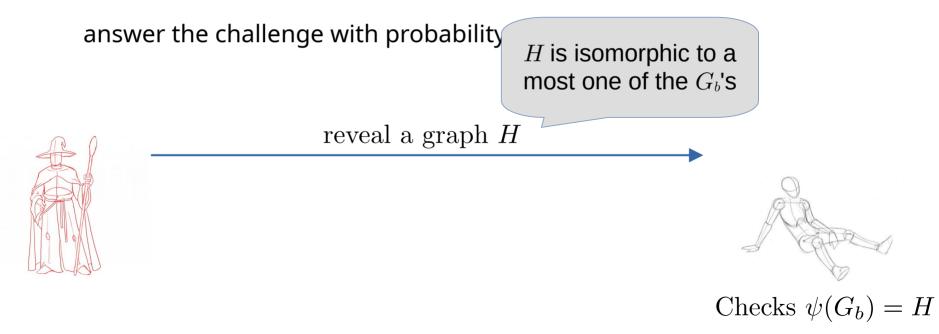
Soundness:

If $x \notin \mathcal{L}$, whatever a cheating prover does to sample H, it fails to answer the challenge with probability at least 1/2

Alain Passelègue

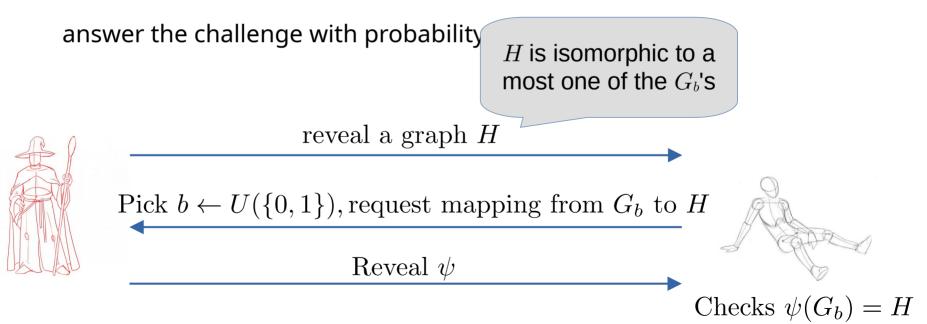
Soundness:

If $x \notin \mathcal{L}$, whatever a cheating prover does to sample H, it fails to



• Soundness:

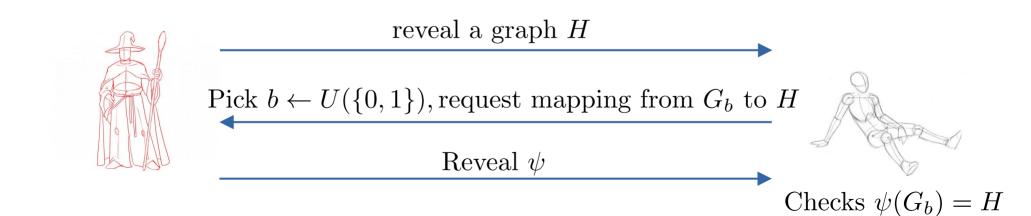
If $x \notin \mathcal{L}$, whatever a cheating prover does to sample H, it fails to



Soundness:

If $x \notin \mathcal{L}$, whatever a cheating prover does to sample H, it fails to

answer the challenge with probability at least 1/2 $Pr[\langle P^*, V \rangle(x) = 1] \le 1/2$

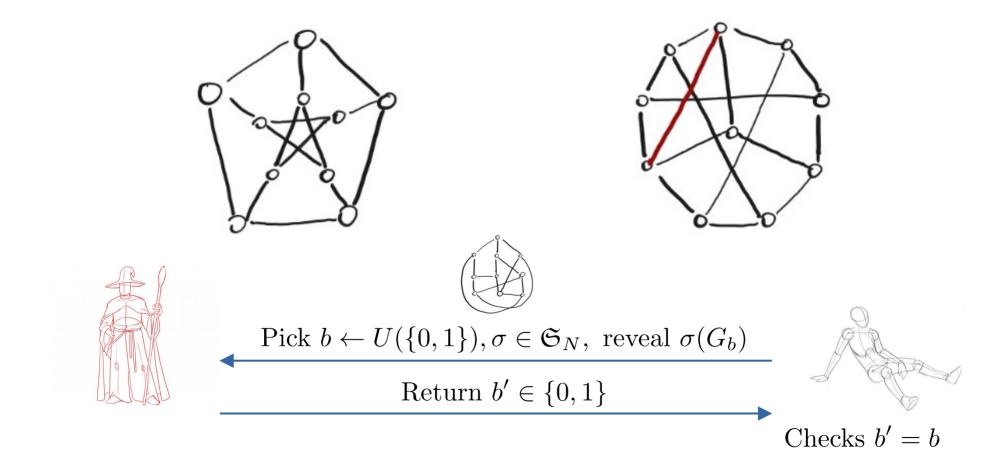


Only exponential-size classical (= non-interactive) proofs known

GNI is in co-NP, but it is conjectured that GNI is not in NP:

- polynomial hierarchy would collapse at level 2 [Schöning'88]
- GNI is in QP [Babai'16]

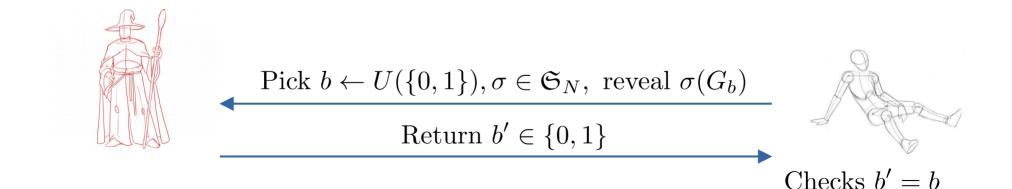
Alain Passelègue



<u>Completeness:</u>

If $x \in \mathcal{L}$, then

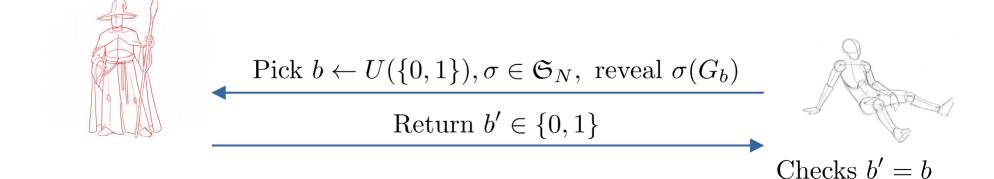
 $Pr[\langle P,V\rangle(x)=1]=1$



• Soundness:

If $x \notin \mathcal{L}$, then $G_0 \equiv G_1$ and the distribution of the verifier's message is independent of *b*. The prover fails to guess *b* with probability 1/2

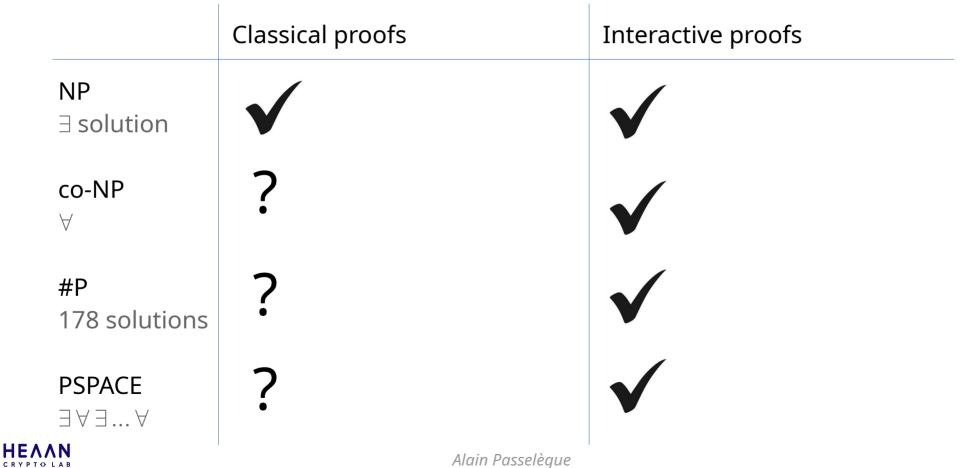
 $\Pr[\langle P,V\rangle(x)=1]\leq 1/2$



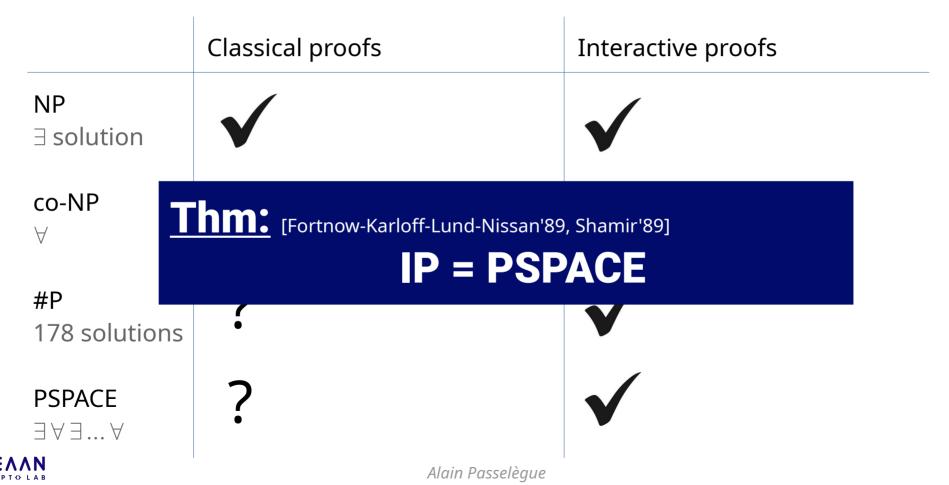
So, what can we prove with IP?

	Classical proofs		Interactive proofs
NP ∃ solution	\checkmark		
co-NP ∀	?		
#P 178 solutions	?		
PSPACE ∃∀∃∀	?		
		Alain Passelègue	

So, what can we prove with IP?



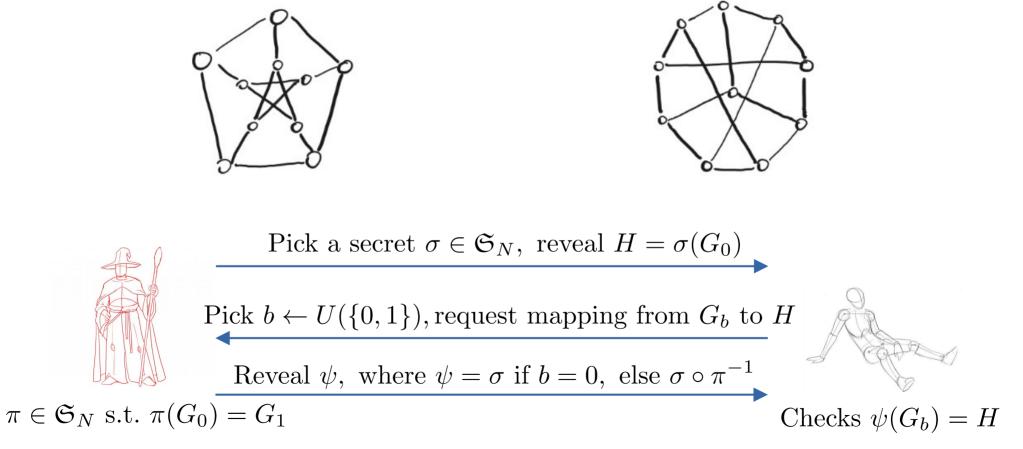
So, what can we prove with IP?



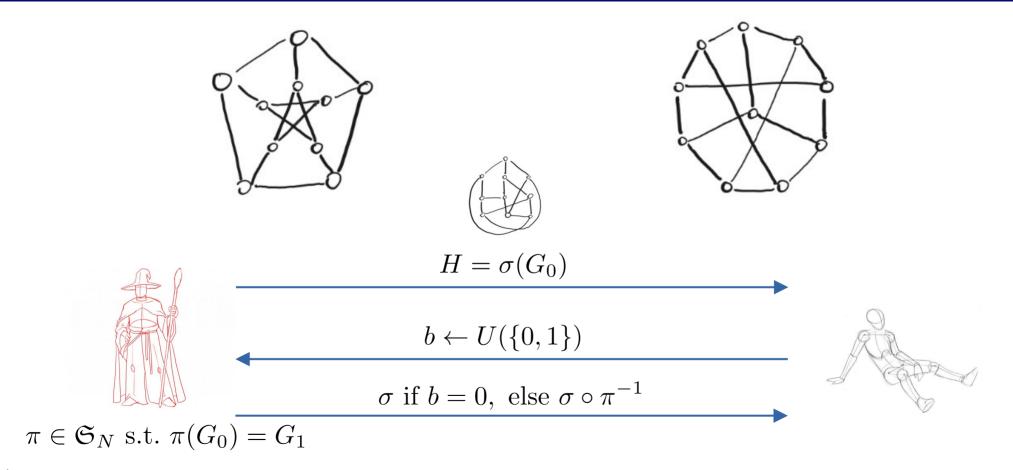
More about interactive proofs

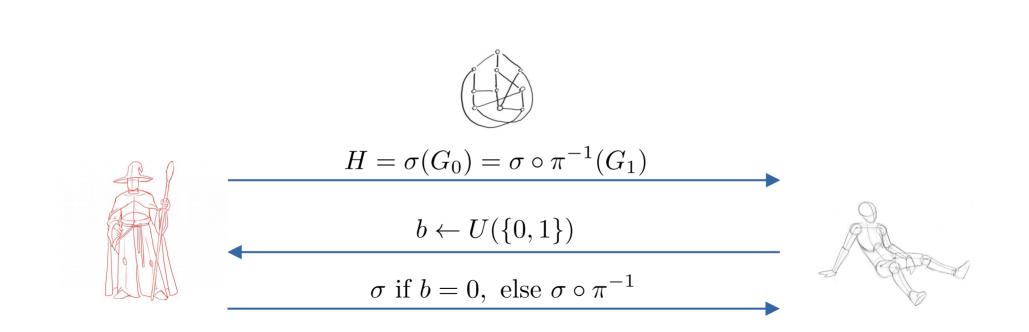
- Our GNI proof requires private coins for the verifier
- What about public-coin protocols? (Arthur-Merlin classes, AM)
- AM = IP [Goldwasser-Sipser'86]
- Proof relies on the "Set lower bound" AM protocol

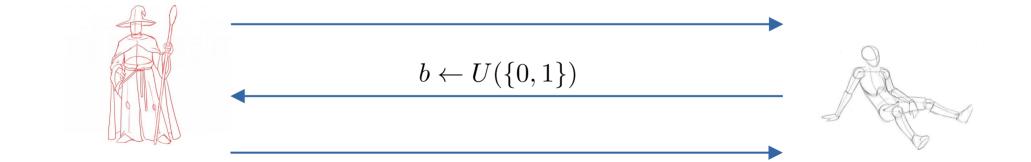
Zero-knowledge proofs.

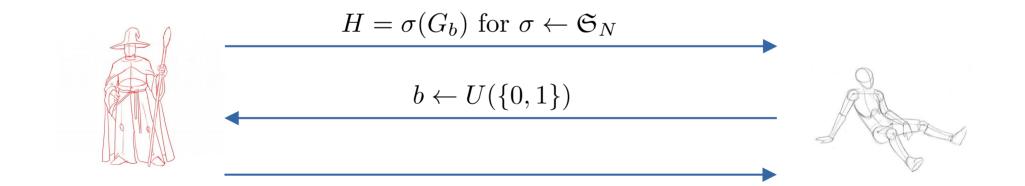


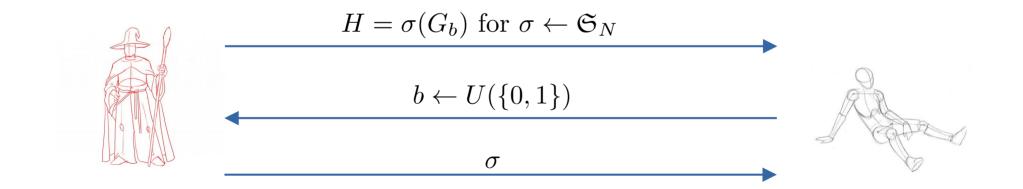
Pick a secret
$$\sigma \in \mathfrak{S}_N$$
, reveal $H = \sigma(G_0)$
Pick $b \leftarrow U(\{0,1\})$, request mapping from G_b to
Reveal ψ , where $\psi = \sigma$ if $b = 0$, else $\sigma \circ \pi^{-1}$
 $\pi \in \mathfrak{S}_N$ s.t. $\pi(G_0) = G_1$
Checks $\psi(G_b) = H$











An interactive proof system (P, V) is:

• Honest-verifier zero-knowledge:

if for $x \in \mathcal{L}$, there exists a probabilistic, poly-time simulator Sim_V

such that we have:

 $\{\langle P,V\rangle(x)\}\approx\{\mathsf{Sim}_V(x)\}$

An interactive proof system (P, V) is:

• Honest-verifier zero-knowledge:

if for $x \in \mathcal{L}$, there exists a probabilistic, poly-time simulator Sim_V

such that we have:

 $\{\langle P,V\rangle(x)\}\approx\{\mathsf{Sim}_V(x)\}$

The (honest) verifier learns nothing more than what it could get from the statement itself

An interactive proof system (P, V) is:

• Zero-knowledge:

If for $x \in \mathcal{L}$, for any (possibly malicious) verifier V^* , there exists a probabilistic, poly-time simulator Sim_{V^*} such that we have:

 $\{\langle P, V^* \rangle(x)\} \approx \{\mathsf{Sim}_{V^*}(x)\}$

An interactive proof system (P, V) is:

• Zero-knowledge:

If for $x \in \mathcal{L}$, for any (possibly malicious) verifier V^* , there exists a probabilistic, poly-time simulator Sim_{V^*} such that we have:

 $\{\langle P, V^* \rangle(x)\} \approx \{\operatorname{Sim}_{V^*}(x)\}$

Whatever it does, a verifier learns nothing more than what it could get from the statement itself

Different flavours of zero-knowledge

 $\{\langle P, V^* \rangle(x)\} \approx \{\mathsf{Sim}_{V^*}(x)\}$

• Computational zero-knowledge

simulated transcripts are hard to distinguish from real ones by PPT adversaries

• Statistical zero-knowledge

an unbounded adversary learns nothing except with negligible probability

• Perfect zero-knowledge

simulated transcripts and real transcripts are identically distributed

Different flavours of zero-knowledge

 $\{\langle P, V^* \rangle(x)\} \approx \{\mathsf{Sim}_{V^*}(x)\}$

Computational zero-knowledge = CZK

simulated transcripts are hard to distinguish from real ones by PPT adversaries

• Statistical zero-knowledge = **SZK**

an unbounded adversary learns nothing except with negligible probability

• Perfect zero-knowledge = **PZK**

simulated transcripts and real transcripts are identically distributed

Different flavours of zero-knowledge

 $\{\langle P, V^* \rangle(x)\} \approx \{\mathsf{Sim}_{V^*}(x)\}$

Computational zero-knowledge = CZK

simulated transcripts are hard to distinguish from real ones by PPT adversaries

• Statistical zero-knowledge = **SZK**

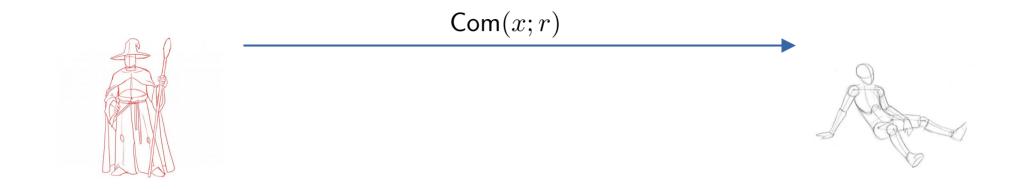
an unbounded adversary learns nothing except with negligible probability

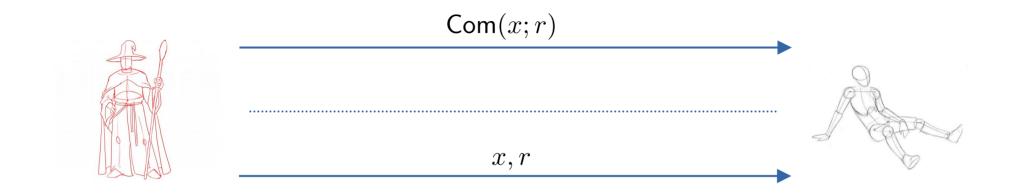
• Perfect zero-knowledge = **PZK**

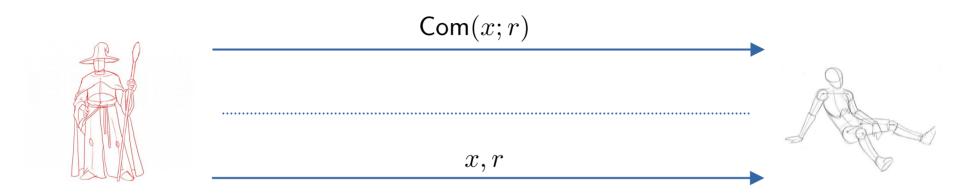
simulated transcripts and real transcripts are identically distributed

$\mathsf{BPP} \ \subseteq \ \mathsf{PZK} \ \subseteq \ \mathsf{SZK} \ \subseteq \ \mathsf{CZK} \ \subseteq \ \mathsf{IP}$

Commitment scheme

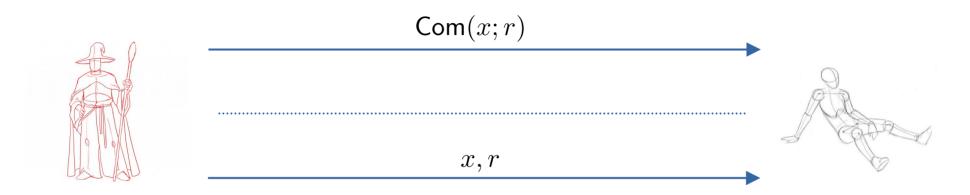






• <u>Hiding:</u>

The receiver cannot learn anything about the committed value x before it is open

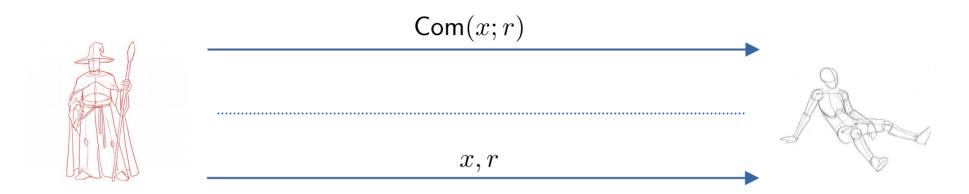


• <u>Hiding:</u>

The receiver cannot learn anything about the committed value \boldsymbol{x} before it is open

• Binding:

The sender cannot open the commitment to any other value $x' \neq x$



• <u>Hiding:</u>

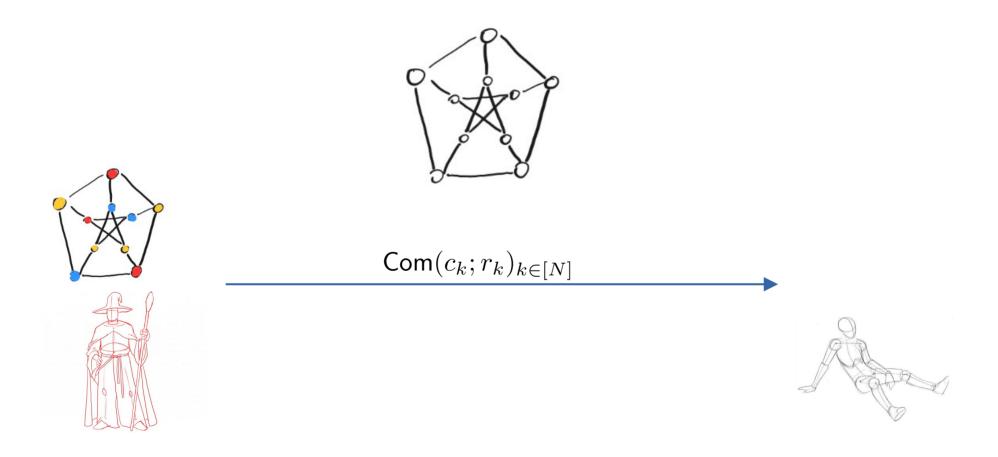
The receiver cannot learn anything about the committed value \boldsymbol{x} before it is open

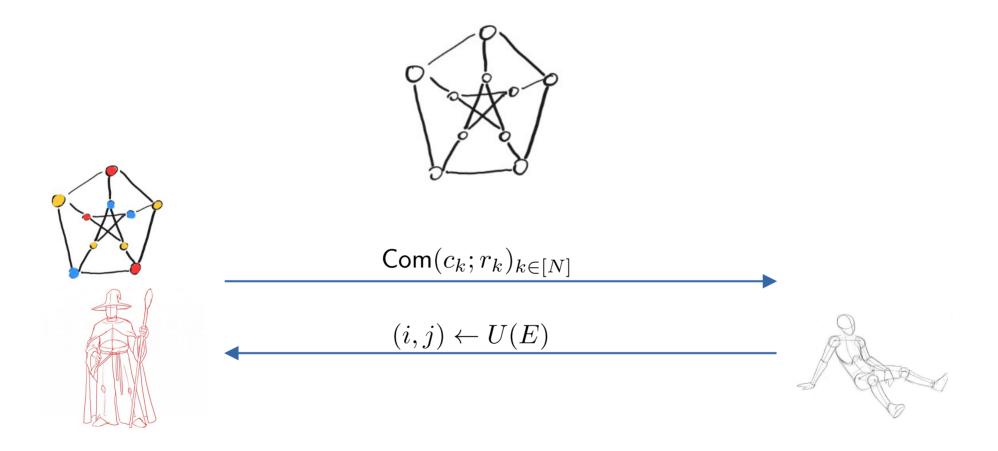
• Binding:

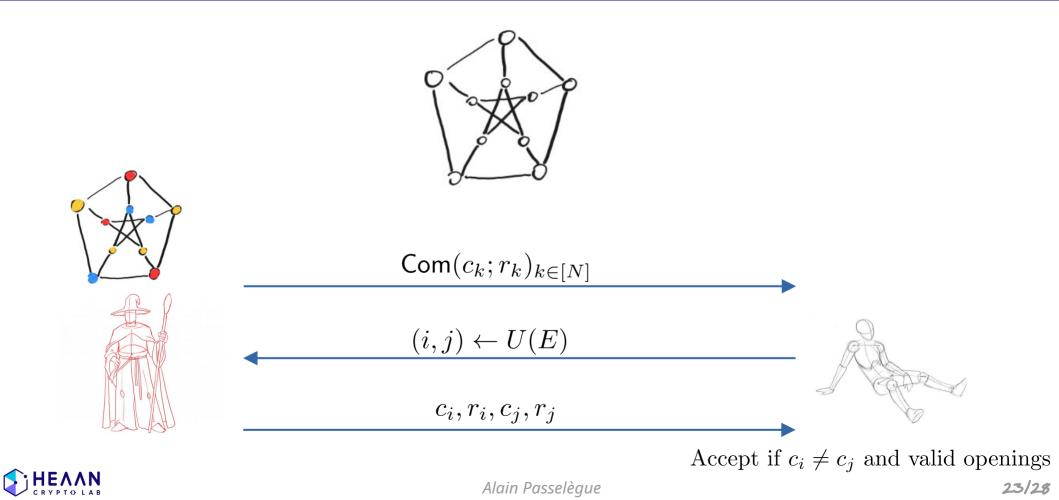
The conder cannot open the commitment to any other value $r' \neq r$

Commitment schemes with stat./comp. hiding and comp./stat. binding can be constructed assuming one-way functions exist

Alain Passelègue



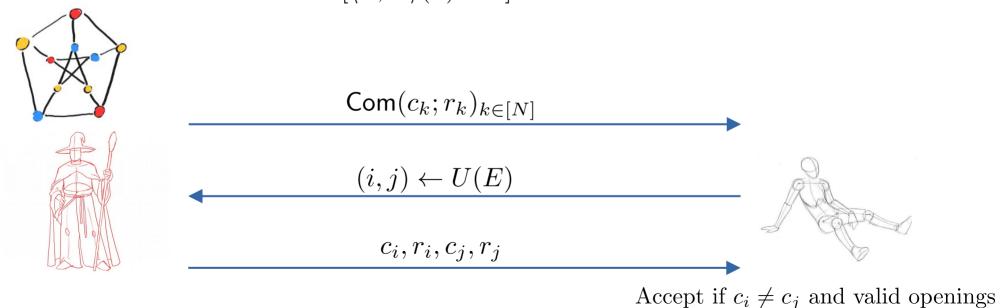




<u>Completeness:</u>

If $x \in \mathcal{L}$, then

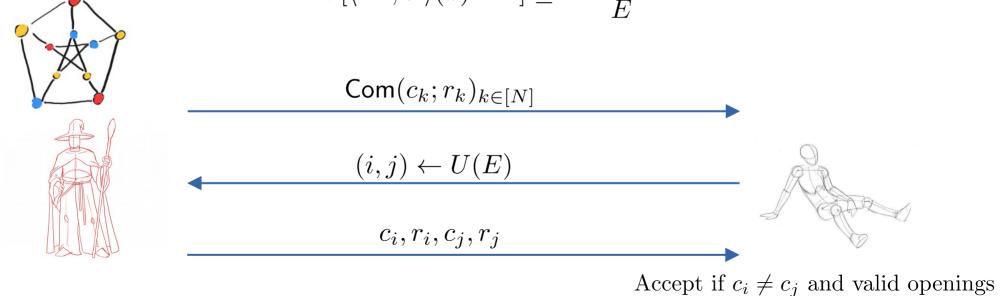
$$\Pr[\langle P,V\rangle(x)=1]=1$$



• Soundness:

If $x \notin \mathcal{L}$, then there must be an edge with the same color at both ends

$$Pr[\langle P^*, V \rangle(x) = 1] \le 1 - \frac{1}{E}$$

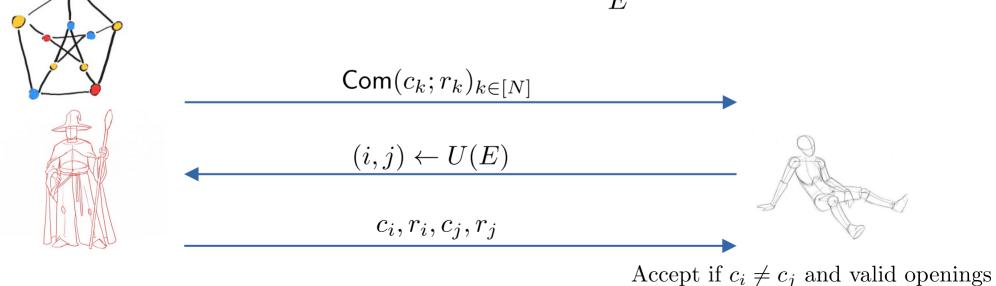


Binding: the prover has to open the two colors it committed

• Soundness:

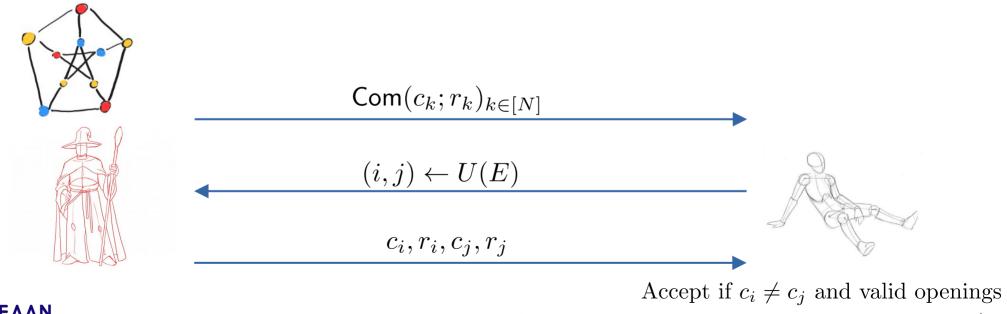
If $x \notin \mathcal{L}$, then there must be an edge with the same color at both ends

$$Pr[\langle P^*, V \rangle(x) = 1] \le 1 - \frac{1}{E}$$

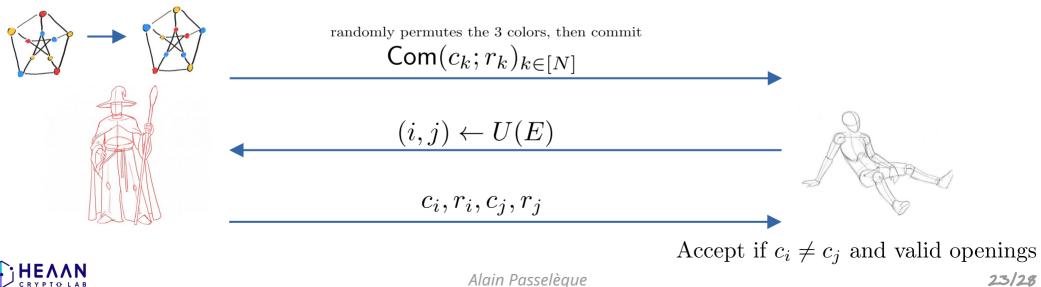


Honest-verifier zero-knowledge:

Actually, the verifier learns the color of 2 vertices at each iteration... There is an easy fix!

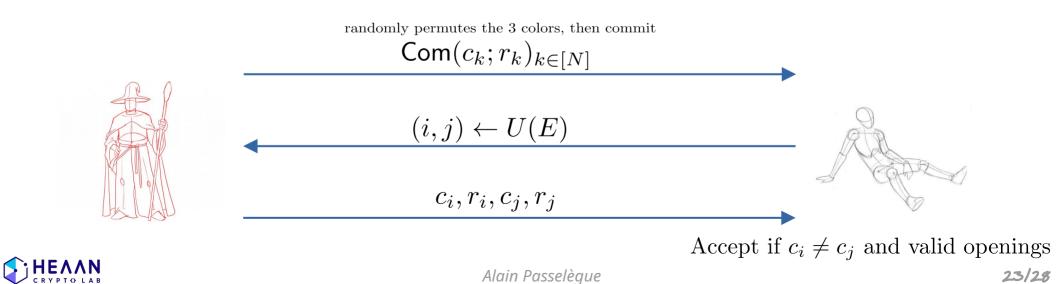


Honest-verifier zero-knowledge:

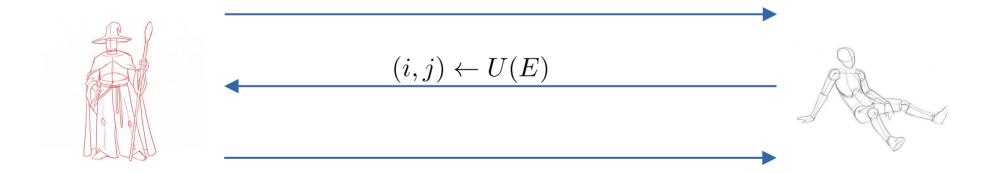


23/28

• <u>Honest-verifier zero-knowledge:</u>



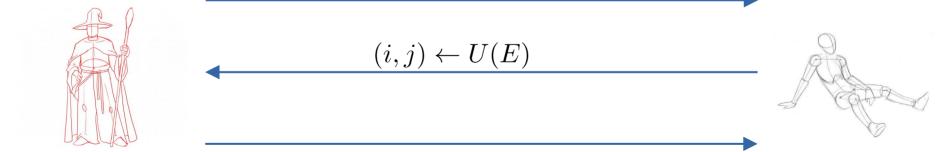
• <u>Honest-verifier zero-knowledge:</u>



Honest-verifier zero-knowledge:

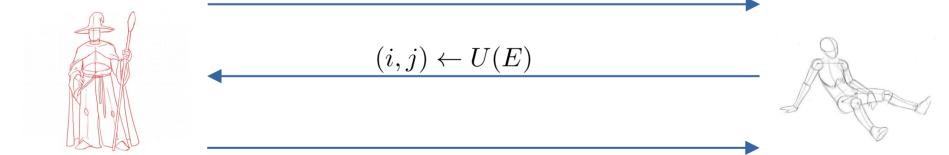
For
$$k \in [N] \setminus \{i, j\}, \operatorname{Com}(0; r_k)_k$$

 $c_i \leftarrow U(\{1, 2, 3\}), c_j \leftarrow U(\{1, 2, 3\} \setminus \{c_i\})$
 $\operatorname{Com}(c_i; r_i), \operatorname{Com}(c_j; r_j)$



• <u>Honest-verifier zero-knowledge:</u> If $x \in \mathcal{L}$, then, we construct a simula Hiding: from the verifier's perspective, non-open values look like commitments of 0

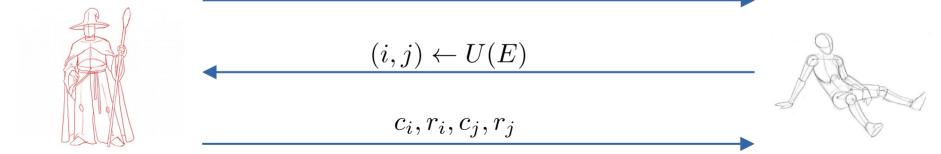
For $k \in [N] \setminus \{i, j\}, \operatorname{Com}(0; r_k)_k$ $c_i \leftarrow U(\{1, 2, 3\}), c_j \leftarrow U(\{1, 2, 3\} \setminus \{c_i\})$ $\operatorname{Com}(c_i; r_i), \operatorname{Com}(c_j; r_j)$



Honest-verifier zero-knowledge:

For
$$k \in [N] \setminus \{i, j\}, \operatorname{Com}(0; r_k)_k$$

 $c_i \leftarrow U(\{1, 2, 3\}), c_j \leftarrow U(\{1, 2, 3\} \setminus \{c_i\})$
 $\operatorname{Com}(c_i; r_i), \operatorname{Com}(c_j; r_j)$



Computational ZK

- One can actually prove that this protocol achieves computational zeroknowledge, but it is a bit more complicated ⇒ even a malicious verifier really learns nothing about the valid coloring
- It is actually a ZK proof of knowledge: if a prover convinces a verifier, then the prover has to know a valid 3-coloring ⇒ the proof reveals nothing but it would be possible to extract a valid 3-coloring from interaction with the prover
- Since 3-coloring is NP-complete, we obtain ZK-proofs for any statement in NP (assuming commitment schemes exist)...
 ⇒ NP ⊂ CZK

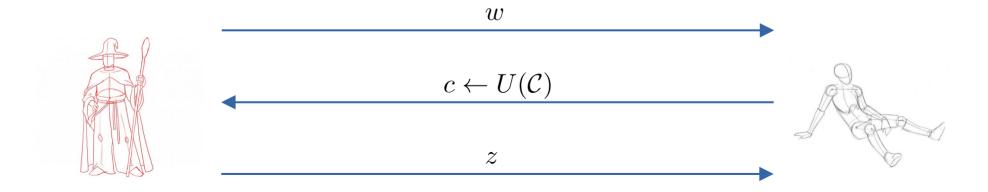
Concluding remarks.

Succinct ZK Proofs (ZK-SNARKs,)

- Combining ZK proofs with PCP lead to succinct zero-knowledge proofs (ZK-SNARKs)
- They allow to prove statements with extremely fast verification
- This is particularly useful for proving a complicated computation was honestly performed... Verification can be **much simpler** than the actual computation!

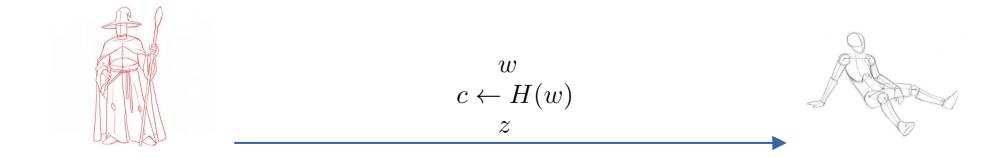
Non-Interactive Zero-Knowledge Proofs

• A lot of ZK proofs can be made non-interactive by relying on cryptographic hash functions using the Fiat-Shamir transform [Fiat-Shamir'86]



Non-Interactive Zero-Knowledge Proofs

• A lot of ZK proofs can be made non-interactive by relying on cryptographic hash functions using the Fiat-Shamir transform [Fiat-Shamir'86]

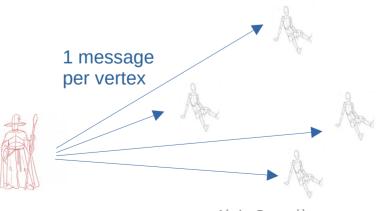


Conclusion

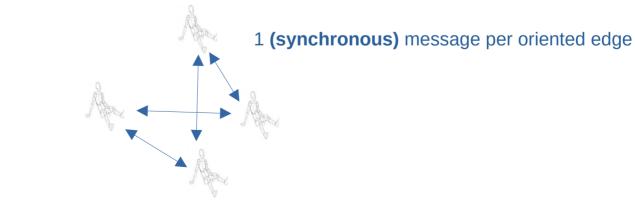
- ZK proofs are massively used in practice (they are at the core of modern digital signatures such as Schnorr or Dilithium)
- ZK proofs can be used to force honest behaviour in arbitrary scenarios
- We can prove statements about private data with ZK proofs (e.g., on encrypted data)
- There is high interest in succinct proofs for cloud computing, ML, cryptocurrencies... as they allow to certify the result of a computation at minimal cost

- To learn more:
 - → zkproof.org
 - → YouTube: Berkeley RDI Center Zero-Knowledge Proofs MOOC
 - → YouTube: ICMS Foundations and Applications of Zero-Knowledge Proofs

- To learn more:
 - zkproof.org
 - → YouTube: Berkeley RDI Center Zero-Knowledge Proofs MOOC
 - YouTube: ICMS Foundations and Applications of Zero-Knowledge Proofs
- Some interesting open problems in *https://eprint.iacr.org/2025/202.pdf* Distributed Non-Interactive ZK Proofs

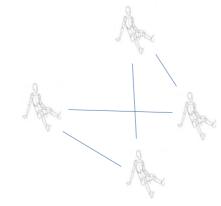


- To learn more:
 - zkproof.org
 - → YouTube: Berkeley RDI Center Zero-Knowledge Proofs MOOC
 - YouTube: ICMS Foundations and Applications of Zero-Knowledge Proofs
- Some interesting open problems in *https://eprint.iacr.org/2025/202.pdf* Distributed Non-Interactive ZK Proofs



Alain Passelègue

- To learn more:
 - zkproof.org
 - → YouTube: Berkeley RDI Center Zero-Knowledge Proofs MOOC
 - YouTube: ICMS Foundations and Applications of Zero-Knowledge Proofs
- Some interesting open problems in *https://eprint.iacr.org/2025/202.pdf* Distributed Non-Interactive ZK Proofs



Goal: convince the network of some property (e.g. triangle-freeness) in ZK, possibly in presence of coalitions of malicious nodes

- To learn more:
 - > zkproof.org
 - → YouTube: Berkeley RDI Center Zero-Knowledge Proofs MOOC
 - YouTube: ICMS Foundations and Applications of Zero-Knowledge Proofs
- Some interesting open problems in *https://eprint.iacr.org/2025/202.pdf* Distributed Non-Interactive ZK Proofs
- Non NP-complete graph problems in SZK?

- To learn more:
 - > zkproof.org
 - → YouTube: Berkeley RDI Center Zero-Knowledge Proofs MOOC
 - YouTube: ICMS Foundations and Applications of Zero-Knowledge Proofs
- Some interesting open problems in *https://eprint.iacr.org/2025/202.pdf* Distributed Non-Interactive ZK Proofs
- Non NP-complete graph problems in SZK?

Thanks!

