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Physical seminars in 2025...?

Why are we still organizing live seminars...? 
...to ask random questions!
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Looks correct

Proof π 



Example 1: Graph Isomorphism
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Example 2: 3-coloring
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Classical proofs

Prover
Verifier

Statement x 

Proof π 
knows a witness w able to verify if the 

proof is valid or not

(unbounded)
(computationally bounded)

(short)

6/28Alain Passelègue

Language x 



Formalizing proofs

A language L ⊆ {0,1}*  is efficiently verifiable if there exists a poly-time 

verifier V  such that:
● Completeness: 

If x ∈ L , there exists a witness w ∈ {0,1}* with |w| = poly(|x|) such that 

V(x,w) = 1
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● Completeness: 

If x ∈ L , there exists a witness w ∈ {0,1}* with |w| = poly(|x|) such that 

V(x,w) = 1

● Soundness: 
If x ∉ L , then for all poly(|x|)-size witnesses w ∈{0,1}* , we have:

 V(x,w) = 0
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An alternative definition of NP

A language L ⊆ {0,1}*  is in NP if there exists a poly-time verifier V such that:

● Completeness: 
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An alternative definition of NP

A language L ⊆ {0,1}*  is in NP if there exists a poly-time verifier V such that:

● Completeness: 
If x ∈ L , there exists a witness w ∈ {0,1}* with |w| = poly(|x|) such that 

V(x,w) = 1

● Soundness: 
If x ∉ L , then for all poly(|x|)-size witnesses w ∈{0,1}* , we have:

 V(x,w) = 0
V = the poly-time NDTM

w = choices such that V(x) = 1
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Are we stuck with NP?

Convince me of something I cannot check



What made it possible?

● Interaction: 
the verifier and the prover interacts in a series of questions/responses

● Randomness:
questions cannot be predicted by the prover:

➔ for x∈L , it can always find the good answer

➔ for x ∉ L , it fails with some probability
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the verifier and the prover interacts in a series of questions/responses

● Randomness:
questions cannot be predicted by the prover:

➔ for x∈L , it can always find the good answer

➔ for x ∉ L , it fails with some probability

Both are required!
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What made it possible?

● Interaction: 
the verifier and the prover interacts in a series of questions/responses

● Randomness:
questions cannot be predicted by the prover:

➔ for x∈L , it can always find the good answer

➔ for x ∉ L , it fails with some probability

⇒ The verifier can only be convinced up to 
some (possibly very large) probability
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Interactive proofs.



Prover
Verifier

Statement x 

Proof π 

knows a witness w 

(unbounded)
(computationally bounded)

Interactive proofs

accept/reject

[Goldwasser-Micali-Rackhoff'86]
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A formal definition of IP

A language L ⊆ {0,1}*  admits an interactive proof system if there exists an 

unbounded prover P  and a probabilistic poly-time verifier V  such that:

● Soundness: 
If x ∉ L , then

● Completeness: 
If x ∈ L , then 
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A formal definition of IP

A language L ⊆ {0,1}*  admits an interactive proof system if there exists an 

unbounded prover P  and a probabilistic poly-time verifier V  such that:

● Soundness: 
If x ∉ L , then

● Completeness: 
If x ∈ L , then 

One can amplify the bounds by iterating the 
process... This exponentially converges
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A formal definition of IP

A language L ⊆ {0,1}*  admits an interactive proof system if there exists an 

unbounded prover P  and a probabilistic poly-time verifier V  such that:

● Soundness: 
If x ∉ L , then

● Completeness: 
If x ∈ L , then 

IP = languages that admit 
an interative proof system
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A formal definition of IP

A language L ⊆ {0,1}*  admits an interactive proof system if there exists an 

unbounded prover P  and a probabilistic poly-time verifier V  such that:

● Soundness: 
If x ∉ L , then

● Completeness: 
If x ∈ L , then If we want perfect soundness, we are stuck 

with classical (NP) proofs
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Actual definition of IP

A language L ⊆ {0,1}*  admits an interactive proof system if there exists an 

unbounded prover P  and a probabilistic poly-time verifier V  such that:

● Soundness: 
If x ∉ L , then for any unbounded prover P  * 

● Completeness: 
If x ∈ L , then 
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Benefits of interactive proofs

Interactive proofs can offer:

● Simpler verification

● Proofs for languages beyond NP

● Additional properties, such as zero-knowledge
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Back to example 1: Graph Isomorphism
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Back to example 1: Graph Isomorphism

● Soundness: 
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answer the challenge with probability at least 1/2 
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Back to example 1: Graph Isomorphism

● Soundness: 
If x ∉ L , whatever a cheating prover does to sample H, it fails to 

answer the challenge with probability at least 1/2 
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Example 2: Graph Non-Isomorphism

GNI is in co-NP, but it is conjectured that GNI is not in NP:
- polynomial hierarchy would collapse at level 2 [Schöning'88]

- GNI is in QP [Babai'16]

Only exponential-size classical (= non-interactive) proofs known
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Example 2: Graph Non-Isomorphism

● Completeness: 
If x ∈ L , then 
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Example 2: Graph Non-Isomorphism

● Soundness: 
If x ∉ L , then G0 ≡ G1 and the distribution of the verifier's message is 

independent of b. The prover fails to guess b with probability 1/2 
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So, what can we prove with IP?

Classical proofs Interactive proofs

NP
∃ solution

co-NP
∀ 

#P
178 solutions

PSPACE
∃ ∀ ∃ ... ∀ 

?
?
?
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So, what can we prove with IP?

Classical proofs Interactive proofs

NP
∃ solution

co-NP
∀ 

#P
178 solutions

PSPACE
∃ ∀ ∃ ... ∀ 

?
?
?

 Thm: [Fortnow-Karloff-Lund-Nissan'89, Shamir'89]

IP = PSPACE
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More about interactive proofs

● Our GNI proof requires private coins for the verifier

● What about public-coin protocols? (Arthur-Merlin classes, AM)

● AM = IP [Goldwasser-Sipser'86]

● Proof relies on the “Set lower bound” AM protocol

17/28Alain Passelègue



  

Zero-knowledge proofs.



Back to example 1 again: Graph Isomorphism
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Back to example 1 again: Graph Isomorphism

What does the verifier learn about 
the witness?
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The view of the verifier
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The view of the verifier
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The view of the verifier
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The view of the verifier

19/28Alain Passelègue



Zero-knowledge interactive proofs

An interactive proof system (P, V  ) is:

● Honest-verifier zero-knowledge: 
if for x ∈ L, there exists a probabilistic, poly-time simulator       

such that we have:
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Zero-knowledge interactive proofs

An interactive proof system (P, V  ) is:

● Honest-verifier zero-knowledge: 
if for x ∈ L, there exists a probabilistic, poly-time simulator       

such that we have:

The (honest) verifier learns nothing more than 
what it could get from the statement itself
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Zero-knowledge interactive proofs

● Zero-knowledge: 
If for x ∈ L, for any (possibly malicious) verifier V  *, there exists a 

probabilistic, poly-time simulator       such that we have:

An interactive proof system (P, V  ) is:
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Zero-knowledge interactive proofs

● Zero-knowledge: 
If for x ∈ L, for any (possibly malicious) verifier V  *, there exists a 

probabilistic, poly-time simulator       such that we have:

An interactive proof system (P, V  ) is:

Whatever it does, a verifier learns nothing more 
than what it could get from the statement itself
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Different flavours of zero-knowledge

● Computational zero-knowledge 
simulated transcripts are hard to distinguish from real ones by PPT adversaries

● Statistical zero-knowledge 
an unbounded adversary learns nothing except with negligible probability

● Perfect zero-knowledge
simulated transcripts and real transcripts are identically distributed
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Different flavours of zero-knowledge
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Different flavours of zero-knowledge

● Computational zero-knowledge = CZK
simulated transcripts are hard to distinguish from real ones by PPT adversaries

● Statistical zero-knowledge = SZK
an unbounded adversary learns nothing except with negligible probability

● Perfect zero-knowledge = PZK
simulated transcripts and real transcripts are identically distributed

BPP PZK SZK CZK IP
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NP ⊆  CZK  



Commitment scheme
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● Hiding:
The receiver cannot learn anything about the committed value x before it is open
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Commitment scheme

● Hiding:
The receiver cannot learn anything about the committed value x before it is open

● Binding:
The sender cannot open the commitment to any other value 

Commitment schemes with stat./comp. hiding and comp./stat. 
binding can be constructed assuming one-way functions exist

22/28Alain Passelègue



A zero-knowledge proof for 3-coloring
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A zero-knowledge proof for 3-coloring

● Soundness: 
If x ∉ L , then there must be an edge with the same color at both ends 
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A zero-knowledge proof for 3-coloring

Binding: the prover has to open the 
two colors it committed● Soundness: 

If x ∉ L , then there must be an edge with the same color at both ends 
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A zero-knowledge proof for 3-coloring

● Honest-verifier zero-knowledge: 
Actually, the verifier learns the color of 2 vertices at each iteration... 
There is an easy fix!
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A zero-knowledge proof for 3-coloring

● Honest-verifier zero-knowledge: 
If x ∈ L, then, we construct a simulator as:

Hiding: from the verifier's 
perspective, non-open values look 

like commitments of 0
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A zero-knowledge proof for 3-coloring

● Honest-verifier zero-knowledge: 
If x ∈ L, then, we construct a simulator as:
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Computational ZK

● One can actually prove that this protocol achieves computational zero-
knowledge, but it is a bit more complicated ⇒ even a malicious verifier really 
learns nothing about the valid coloring

● It is actually a ZK proof of knowledge: if a prover convinces a verifier, 
then the prover has to know a valid 3-coloring ⇒ the proof reveals nothing but 
it would be possible to extract a valid 3-coloring from interaction with the prover

● Since 3-coloring is NP-complete, we obtain ZK-proofs for any statement 
in NP (assuming commitment schemes exist)... 

⇒ NP ⊆ CZK 
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Concluding remarks.



Succinct ZK Proofs (ZK-SNARKs, ....)

● Combining ZK proofs with PCP lead to succinct zero-knowledge proofs 
(ZK-SNARKs)

● They allow to prove statements with extremely fast verification

● This is particularly useful for proving a complicated computation was 
honestly performed... Verification can be much simpler than the actual 
computation!
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Non-Interactive Zero-Knowledge Proofs

● A lot of ZK proofs can be made non-interactive by relying on cryptographic 
hash functions using the Fiat-Shamir transform [Fiat-Shamir'86]

26/28Alain Passelègue



Non-Interactive Zero-Knowledge Proofs
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● A lot of ZK proofs can be made non-interactive by relying on cryptographic 
hash functions using the Fiat-Shamir transform [Fiat-Shamir'86]



Conclusion

● ZK proofs are massively used in practice (they are at the core of modern digital 
signatures such as Schnorr or Dilithium)

● ZK proofs can be used to force honest behaviour in arbitrary scenarios

● We can prove statements about private data with ZK proofs (e.g., on encrypted data)

● There is high interest in succinct proofs for cloud computing, ML, cryptocurrencies... as 
they allow to certify the result of a computation at minimal cost
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Some material and open problems

● To learn more: 
➔ zkproof.org
➔ YouTube: Berkeley RDI Center - Zero-Knowledge Proofs MOOC
➔ YouTube: ICMS - Foundations and Applications of Zero-Knowledge Proofs
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Some material and open problems

● To learn more: 
➔ zkproof.org
➔ YouTube: Berkeley RDI Center - Zero-Knowledge Proofs MOOC
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Distributed Non-Interactive ZK Proofs
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Goal: convince the network of some 
property (e.g. triangle-freeness) in ZK, 
possibly in presence of coalitions of 
malicious nodes
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Some material and open problems
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● Non NP-complete graph problems in SZK?
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Thanks!

https://eprint.iacr.org/2025/202.pdf
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