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Why should I care?

The Existential Theory of the Reals is

1 The problem of finding whether a set of polynomial (in)equations has a solution over the
reals.

2 The complexity of deciding whether a pseudo-line arrangement can be stretched.
3 The computational counterpart of the Mnëv universality theorem.

This is all true but this is not the good way to start.
The actual “definition”
The Existential Theory of the Reals (∃R) is the complexity class that appears naturally for nice
discrete problems that

look like they should be in NP
but there are annoying precision or algebraic issues to bound the size of the certificate.



Why should I care?

The Existential Theory of the Reals is

1 The problem of finding whether a set of polynomial (in)equations has a solution over the
reals.

2 The complexity of deciding whether a pseudo-line arrangement can be stretched.
3 The computational counterpart of the Mnëv universality theorem.

This is all true but this is not the good way to start.

The actual “definition”
The Existential Theory of the Reals (∃R) is the complexity class that appears naturally for nice
discrete problems that

look like they should be in NP
but there are annoying precision or algebraic issues to bound the size of the certificate.



Why should I care?

The Existential Theory of the Reals is

1 The problem of finding whether a set of polynomial (in)equations has a solution over the
reals.

2 The complexity of deciding whether a pseudo-line arrangement can be stretched.
3 The computational counterpart of the Mnëv universality theorem.

This is all true but this is not the good way to start.
The actual “definition”
The Existential Theory of the Reals (∃R) is the complexity class that appears naturally for nice
discrete problems that

look like they should be in NP
but there are annoying precision or algebraic issues to bound the size of the certificate.



Example 1: Unit disk graphs

Unit Disk Graph Recognition
Input: A graph G .
Output: Is G the intersection graph of unit disks in the plane?

How can you certify that a graph is a unit disk graph?

Easy! You can “just” give the coordinates of the centers of the disks.

Theorem (Kang-Muller ’11)
Unit Disk Graph Recognition is ∃R-complete.
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Example 2: Matrix Rank problems

Minimum Matrix Rank
Input: A matrix with 0, 1 entries and some unknowns (x1, . . . , xn)
and an integer k.
Output: Can one find real values for (x1, . . . , xn) so that the matrix
has rank at most k?
How to certify low-rank completion of matrices?

1 0 x1

x3 x2 x2

0 1 1

Easy! You can “just” give the values of the missing entries.

Theorem (Buss-Frandsen-Shallit ’99)
Minimum Matrix Rank is ∃R-complete.
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Example 3: Crossing Numbers

Rectilinear Crossing Number
Input: A graph G and an integer k .
Output: Is there a straight-line drawing of G with at most k cross-
ings?

How can you certify that there is a drawing with few crossings?

Easy! You can “just” give the vertex coordinates.

Theorem (Bienstock ’91)
Rectilinear Crossing Number is ∃R-complete.

Corollary
The crossing number and the rectilinear crossing number of a graph can be different (if ∃R ̸= NP).
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Example 4: The AI slide

Training Neural Networks
Input: A set of data points, a neural network architecture, a cost
function, a threshold.
Output: Are there biases and weights such that the total error is
below the threshold?
How can you certify that there is a good choice of weights and
biases?

Easy! You can “just” give them.

Theorem (Abrahamsen-Kleist-Miltzow ’21, BHJMW ’22)
Training Neural Networks is ∃R-complete.
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Back to the first slide

The Existential Theory of the Reals is

1 The problem of finding whether a set of polynomial (in)equations has a solution over the
reals.

2 The complexity of deciding whether a pseudo-line arrangement can be stretched.
3 The computational counterpart of the Mnëv universality theorem.



Plan of the talk

The plan of the talk is

1 Algebraic aspects (a.k.a. how to prove ∃R-membership).

2 Stretchability (a.k.a. how to prove ∃R-hardness).
3 Some more things to know about ∃R.



1. Algebraic aspects

Existential Theory of the Reals (ETR)

Input: A system of polynomial (in)equations.
Output: Is there a solution over the reals?

The complexity of the equations (degree, size of the coefficients,
number of summands) is counted in the input.

x4 + y2 + 24 ≥ 0
x3 + z = 22

x4 + x7 + x5 = 5

The Existential Theory of the Reals as a complexity class

The Existential Theory of the Reals (∃R) is the complexity class made of all problems that can
be (many-to-one) reduced to the Existential Theory of the Reals (ETR).

Intuitively, ∃R is the set of problems that can be encoded as the real solutions of polynomial
inequations.



1. Algebraic aspects

Existential Theory of the Reals (ETR)

Input: A system of polynomial (in)equations.
Output: Is there a solution over the reals?

The complexity of the equations (degree, size of the coefficients,
number of summands) is counted in the input.

x4 + y2 + 24 ≥ 0
x3 + z = 22

x4 + x7 + x5 = 5

The Existential Theory of the Reals as a complexity class

The Existential Theory of the Reals (∃R) is the complexity class made of all problems that can
be (many-to-one) reduced to the Existential Theory of the Reals (ETR).

Intuitively, ∃R is the set of problems that can be encoded as the real solutions of polynomial
inequations.



1. Algebraic aspects

Existential Theory of the Reals (ETR)

Input: A system of polynomial (in)equations.
Output: Is there a solution over the reals?

The complexity of the equations (degree, size of the coefficients,
number of summands) is counted in the input.

x4 + y2 + 24 ≥ 0
x3 + z = 22

x4 + x7 + x5 = 5

The Existential Theory of the Reals as a complexity class

The Existential Theory of the Reals (∃R) is the complexity class made of all problems that can
be (many-to-one) reduced to the Existential Theory of the Reals (ETR).

Intuitively, ∃R is the set of problems that can be encoded as the real solutions of polynomial
inequations.

Corollary
The Existential Theory of the Reals is complete for the Existential Theory of the Reals.
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Where is ∃R? (1)

Theorem

NP ⊆ ∃R.

Proof:
We encode 3-SAT variables as 0 or 1.
We enforce these values with equations x(x − 1) = 0.
We encode variable negation with y = 1 − x .
We encode 3-SAT clauses x ∨ y ∨ z as x + y + z ≥ 1

That’s it.
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Where is ∃R? (2)

Theorem

∃R ⊆ PSPACE.

Wait, what? I was told in high school that we cannot solve equations like x4 + x7 + x5 = 5!

Theorem (Abel-Ruffini)
There is no solution in radicals (square roots, cubic roots, etc.) to general polynomial
equations of degree five or higher.

But ETR is not about finding solutions, just about deciding if there is one.
For example, ax2 + bx + c = 0 with a ̸= 0 has a real solution if and only if b2 − 4ac ≥ 0.
Note that this involves no radicals.
We have reduced the existential equation ∃x , ax2 + bx + c = 0 to the quantifier-free
equation b2 − 4ac ≥ 0.
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Quantifier elimination

The simple degree-two example generalizes completely:

Theorem (Tarski-Seideberg quantifier elimination)
Any formula construction with polynomial equations, inequations, logical connections ∨, ∧, ¬
and quantifiers ∃ and ∀ is equivalent to a similar formula without quantifiers.

The proof is constructive, and therefore reduces ETR to computing a single algebraic
expression (as in b2 − 4ac ≥ 0).

The best algorithms for this rely on cylindrical algebraic decomposition and run in
double-exponential time.
When there are only existential quantifiers, which is the case for ETR, the complexity
improves to PSPACE [Canny ’88].
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Quantifier elimination

The simple degree-two example generalizes completely:

Theorem (Tarski-Seideberg quantifier elimination)
Any formula construction with polynomial equations, inequations, logical connections ∨, ∧, ¬
and quantifiers ∃ and ∀ is equivalent to a similar formula without quantifiers.

The proof is constructive, and therefore reduces ETR to computing a single algebraic
expression (as in b2 − 4ac ≥ 0).
The best algorithms for this rely on cylindrical algebraic decomposition and run in
double-exponential time.
When there are only existential quantifiers, which is the case for ETR, the complexity
improves to PSPACE [Canny ’88].

Be careful
Quantifier elimination may turn equalities into inequalities.



So, where is ∃R?

Theorem

NP ⊆ ∃R ⊆ PSPACE.

It is widely conjectured that the two inclusions are strict, but nothing is known about that.



How to prove ∃R membership?

By definition, to prove ∃Rmembership, it suffices to encode the problem as a set of algebraic
(in)equations.

Example: Unit Disk Graph Recognition
Given a graph G = (V ,E ):

For each vertex vi , use a pair of unknowns (xi , yi ).
For each edge e = (vi , vj), use an equation
(xi − xj)

2 + (yi − yj)
2 ≤ 1.

For each non-edge ¬e = (vi , vj), use an equation
(xi − xj)

2 + (yi − yj)
2 > 1.

Theorem
Unit Disk Graph Recognition ∈ ∃R.



How to prove ∃R membership faster?

When proving NP-membership, we generally do not write a SAT-formula encoding the
problem. Instead, we prove that it is easy to certify a solution, i.e., that it can recognized
by a non-deterministic Turing machine in polynomial time.

Likewise:

Theorem (Erickson, van der Hoog, Miltzow ’20)
∃R membership is equivalent to being able to verify a solution in polynomial time on a Real
RAM machine.

Intuitively, a real RAM machine is like a word RAM model (or a Turing machine) that is
allowed to

manipulate real numbers, and
operations on them (addition, multiplication, substraction, division, square roots)

in constant time.

It is unwise to allow downcasting reals to integers (e.g., allowing the floor function ⌊x⌋).
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2. Proving ∃R-hardness

As for every complexity class, one proves ∃R-hardness of a problem P by reducing an
∃R-complete problem to it.
Recall that ETR is ∃R-complete. This is not impractical and for example can be used to
prove ∃R-hardness of

Example 2: Minimum Matrix Rank
Example 4: Training Neural Networks

But for most problems, in particular for those of a geometric nature, it is more common
to reduce from another problem: Stretchability.
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Stretchability of pseudoline arrangements

A pseudoline arrangement is a collection of x-monotone curves in
the plane that each cross pairwise exactly once.
Stretchability
Input: A pseudoline arrangement (for example described with
polygonal lines).
Output: Is it homeomorphic to an arrangement of straight lines?

What an oddly specific problem.

Who cares??
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Parenthesis on abstract data structures in computational geometry

Computational geometry investigates algorithms with
geometric input.

Example: Given a set of points in R2, compute their convex hull.

Most of these problems do not actually rely on the coordinates of the points, but only on
orientation predicates: is A to the left, on or to the right of the line (BC )?
So it makes sense to use these predicates as the data structure to work with. This is
called a chirotope, or abstract order type, or oriented matroid of rank 3.
Then the question arises: given a chirotope, does it correspond to an actual set of points?
Via the duality (a, b) 7→ ax − b mapping points to lines, this is equivalent to the
Stretchability problem.
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∃R-completeness of Stretchability

Theorem (Mnëv ’88, Shor ’91)
Stretchability is ∃R-complete.

The key insight comes from the von Staudt constructions, allowing to encode algebraic
operations in line arrangements.

Parallel lines are handled with projective transformations.
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Using these gadgets, the solvability of an ETR formula translates into the stretchability of
some line arrangement, but there are many tricky details.



3. A few more things to know about ∃R: Precision issues

How precise do you need to be if you actually want to describe
the coordinates of a unit disk graph?

∃R-complete problems generally require doubly exponential precision.

This comes from the fact that one can encode numbers of size 22n or 22−n
with only n

equations.
Conversely, real algebraic geometric theorems shows that for open sets, doubly
exponential precision is generally enough.
Similarly, for closed sets, irrational numbers are generally required.



3. A few more things to know about ∃R: Universality

Conjecture (Ringel ’56)
If two line arrangements have the same chirotope, then they are isotopic, i.e., one can be
deformed into the other.

Seems intuitive...

but

Theorem (Mnëv ’86)
Any semi-algebraic variety is stably equivalent to the realization space of some pseudoline
arrangement.

A semi-algebraic variety is just a set of solutions of an ETR formula.
Stable equivalence would bring us beyond the scope of this tutorial, but ...
... in a nutshell, universality means that the solution space of ∃R-complete problems is
generally horribly complicated from an algebraic, geometric and topological point of view.
In particular, it is in general not connected, nor simply connected, nor contractible or
anything like that.
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3. A few more things to know about ∃R: Problems that are not
∃R-complete

The actual “definition”
The Existential Theory of the Reals (∃R) is the complexity class that appears naturally for nice
discrete problems that

look like they should be in NP
but there are annoying precision or algebraic issues to bound the size of the certificate.

Some non-examples:
Problems that are overconstrained : for example, deciding whether a weighted graph
represents distances in Rd is ∃R-complete, but not if the graph is complete.
Problems easy to optimize. For example, computing the geometric median (point that
minimizes sums of distances) of points in Rd runs into algebraic issues, but it is probably
not ∃R-complete.
In particular, the famous Sum of Square Roots Problem: given integers a1, . . . , an
and k , is

∑√
ai ≥ k? is not believed to be ∃R-complete.



Some concluding words

There are a lot of very different ∃R-complete problems.
Still a lof of open questions.
Many topics I have not touched on, among them:

∀∃R-completeness and higher levels of the hierarchy,
connections to Blum-Shub-Smale models,
∃Z (undecidable), ∃C (easier), ∃Q (unknown decidability),
actual algorithms to solve systems of polynomial inequations,
...

To learn more about this topic: read
The Existential Theory of the Reals as a Complexity Class: A Compendium, by Schaefer,
Cardinal and Miltzow
Segment intersections graphs and ∃R, by Matoušek

Thank you! Any questions?

https://arxiv.org/abs/2407.18006
https://arxiv.org/abs/1406.2636
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