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Rainbow independent sets

Theorem ]

In a colored graph with maximum degree A, there always exists
an independent set intersecting every color class of size at least
2A.
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Rainbow independent sets

Theorem ]

In a colored graph with maximum degree A, there always exists
an independent set intersecting every color class of size at least
2A.

® No known polynomial algorithm for computing such an
independent set

® No known hardness result

® From the NP perspective: polynomial problem, since answer
always ‘yes’

e Complexity class TFNP (introduced by

)
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The complexity class TENP

TFNP =~ class of function problems for which a solution is guar-
anteed to exist
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The complexity classes FP, FNP, TFNP

Function problem (aka search problem) R: given /, find s such
that (/,s) € R

R € FNP if
® (/,s) € R can be decided in polynomial time.

® (I,s) € R=|s| < f(]l]) for some polynomial f.

R € FP if R € FNP and can be solved in polynomial time.

R € TENP if R is total, i.e., for every /, there is an s such that
(I,s) € R.
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The complexity class TENP
Theorem ]

There exists an FNP-complete problem in TENP if and only if
NP = coNP.

FNP
TENP No hope to show hardness of a
/ ] \ TENP problem by showing
PPA\ /PPP PLS FNP-completeness
PPAD Existence of a TFNP-complete
\ problem is unlikely (
CLS )
FP
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The complexity class PPA

Theorem ]

If a cubic graph has a Hamiltonian cycle, then there is a second
Hamiltonian cycle.

)
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The complexity class PPA

Theorem ]

If a cubic graph has a Hamiltonian cycle, then there is a second
Hamiltonian cycle.
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The complexity class PPA, formal
definition

Problem Leaf.
Input. A graph where every vertex is of degree at most two; a

degree-one vertex
Output. Another degree-one vertex

(The graph can be potentially huge; described by a circuit.)

PPA = class of function problems that polynomially reduce to
Leaf

Introduced by Papadimitriou ( )
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Polynomial reduction

Let R, S € TFNP

R polynomially reduces to S if there exist polynomially-computable
functions f and g such that

(f(l)as)e S — (I,g(l,s))e R.

Definition still valid if R € FNP: polynomial reduction is then an
efficient proof that R is total.
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Another-Hamiltonian-Cycle

Problem Another-Hamiltonian-Cycle.
Input. A cubic graph; a Hamiltonian cycle
Output. Another Hamiltonian cycle

Another-Hamiltonian-Cycle € PPA
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The complexity class PPA, alternative
formal definition

PPA can be alternatively defined as follows ( ).

Problem 0dd-Degree-Vertex.
Input. A graph; an odd-degree vertex
Output. Another odd-degree vertex

(The graph can be potentially huge; described by a circuit.)

PPA = class of function problems that polynomially reduce to
0Odd-Degree-Vertex
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The complexity class PPAD
Problem End-0f-The-Line.
Input. A directed graph formed by vertex-disjoint directed paths
and directed cycles; a vertex u that is the origin of a path
Output. A vertex v’ that is the end of a path or the origin of
another path

(The graph can be potentially huge; described by a circuit.)

PPAD = class of function problems that can be polynomially
reduced to End-0f-The-Line

e
o« °

Introduced by Papadimitriou ( )
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Relation between PPA and PPAD

® PPAD C PPA (immediate)

e Strongly believed that the inclusion is strict
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,_[Lemma ]

(.

Sperner’'s lemma

Consider a triangulation of a triangle, whose vertices are colored
with blue, red, green. Suppose that
% the extreme points of the triangle get distinct colors.

* every vertex in a side has the color of one of the endpoints.
Then there exists a small colorful triangle.

18/35



Sperner’s lemma, proof

Problem 2D-Sperner.
Input. A triangulation of a triangle; a Sperner labeling (described

by a circuit)
Output. A small colorful triangle

2D-Sperner is in PPAD ( ).
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Sperner’s lemma, proof

Problem 2D-Sperner.
Input. A circuit {(nl, np,n3) € Z3: m+na+n3 = k}—> {1,2,3}
Output. A small colorful triangle

2D-Sperner is in PPAD ( ).
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PPAD-complete

Theorem ]

2D-Sperner is PPAD-complete. ]

The following problem is the first natural PPAD-complete problem.

Problem Bimatrix.
Input. Two m X n matrices P, Q
Output. A Nash equilibrium

Theorem ]

Bimatrix is PPAD-complete. ]
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PPAD-complete

Theorem ]

2D-Sperner is PPAD-complete. ]

The following problem is the first natural PPAD-complete problem.

Problem Bimatrix.
Input. Two m X n matrices P, Q
Output. x € A™, y € A" such that

® x"Py > (xX')TPy forall x' € AT
e x"Qy > x"Qy forally/ e A"

Theorem ]

Bimatrix is PPAD-complete. ]
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PPA-complete

Lemma ]

Consider a triangulation of a disk, whose vertices are labeled
with elements from {—1,+1,—2,+2}. Suppose that antipodal
vertices from the boundary get opposite labels. Then there exists
a complementary edge.

* in PPA (

® PPA-complete (

)
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PPA-complete

Theorem ]

Given an open necklace with t types of beads and an even number
of beads of each type, there exists a way to share it between two
thieves with at most t cuts.

® in PPA ( )

® PPA-complete (

® This is the unique natural : : :
PPA-complete problem known
so far.
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The complexity class PPA-k

Problem Bipartite-mod-k.
Input. A bipartite graph; a vertex of degree # 0 (mod k)
Output. Another vertex of degree # 0 (mod k)

(The graph can be potentially huge; described by a circuit.)

PPA-k = class of function problems that can be polynomially
reduced to Bipartite-mod-k

Introduced by Papadimitriou ( )

PPAD C N2, PPA-k ( )
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A PPA-p-complete problem

Let p be a prime number.

Problem Chevalley—Warning.

Input. fi,..., f, € Fp[Xq,...,X,] such that ), deg(fi) < n; a
common zero

Output. Another common zero

Theorem ]

Chevalley—Warning (in a slightly more general version) is PPA-p-
complete.

This is the unique natural PPA-p-complete problem known so far.

26/35



Plan

@ Open problems

27/35



Theorem )
In a colored graph with maximum degree A, there always exists
an independent set intersecting every color class of size at least
2A.

e Haxell's original proof is elementary;
proof based on a Sperner-type
argument ( )

® Polynomial algorithms for weaker
versions

® Questions: In PPAD? Hard?
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Theorem ]

Let G be a k-connected graph, vi,vs,..., v, distinct ver-
tices, and ny, no, ..., ng positive integers with ny + no + --- +
ng = |V(G)|. Then G has disjoint connected subgraphs

Gi, Gp, ..., Gk such that ‘V(G,)| =n; and v; € V(G,').

e Gydri's proof is elementary;
Lovdsz's proof relies on
topology

® Polynomial for k < 3 (
)

® Questions: In PPAD? Hard?
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A simple directed graph is clique-acyclic if every clique is acyclic.

kernel = subset of vertices that is independent and absorbing

Theorem ]

Every clique-acyclique orientation of a perfect graph has a kernel. ]

All known proofs rely on topology

Simple proof based on Sperner’s
lemma applied on the polar of
P = STAB(G) — R (

)

Questions: In PPAD? Hard?

Issue: P uses matrices with rows
indexed by all (maximal) cliques
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Theorem ]

Given an open necklace with t types of beads and a multiple of
k beads of each type, there exists a way to share it between k
thieves with at most t(k — 1) cuts.

® in PPA-p (
) when k is a prime number p

® Hard?

[
Alice ' Bob v Charlie } Bob | Charlie ' Bob ' Alice
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Takeaways

PPA, PPAD, etc. = complexity classes useful to prove
hardness results for computing objects of existential results
(TFNP)

a way to “sell” constructive proofs

at the intersection of mathematics and computer science (and
see next slide!)

many challenging open problems
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Strength of theorems

® 2D-Sperner is PPAD-complete
® 2D-Tucker is PPA-complete
® PPA = PPAD (strongly believed)

Conclusion: you cannot prove Tucker from Sperner.

Complexity theorems provide a framework where the questions like
® are these theorems equivalent?
® can you deduce this theorem from this one?

make complete sense.
Computer scientists answer questions from pure mathematicians.

E.g., the Borsuk—Ulam theorem cannot be deduced from the Hairy
Ball theorem ( ).
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THANK YOU
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