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Rainbow independent sets

In a colored graph with maximum degree ∆, there always exists
an independent set intersecting every color class of size at least
2∆.

Theorem Haxell 1995
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Rainbow independent sets

In a colored graph with maximum degree ∆, there always exists
an independent set intersecting every color class of size at least
2∆.

Theorem Haxell 1995

• No known polynomial algorithm for computing such an
independent set

• No known hardness result

• From the NP perspective: polynomial problem, since answer
always ‘yes’

• Complexity class TFNP (introduced by Meggido and
Papadimitriou 1989)
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The complexity class TFNP

TFNP ≃ class of function problems for which a solution is guar-
anteed to exist

examples:

• colorful independent set as in
Haxell’s theorem

• prime factorization

• Nash equilibria

• colorful Carathéodory
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The complexity classes FP, FNP, TFNP

Function problem (aka search problem) R: given I , find s such
that (I , s) ∈ R

R ∈ FNP if

• (I , s) ∈ R can be decided in polynomial time.

• (I , s) ∈ R =⇒ |s| ⩽ f (|I |) for some polynomial f .

R ∈ FP if R ∈ FNP and can be solved in polynomial time.

R ∈ TFNP if R is total, i.e., for every I , there is an s such that
(I , s) ∈ R.
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The complexity class TFNP

There exists an FNP-complete problem in TFNP if and only if
NP = coNP.

Theorem Meggido and Papadimitriou 1989

No hope to show hardness of a
TFNP problem by showing
FNP-completeness

Existence of a TFNP-complete
problem is unlikely (Meggido and
Papadimitriou 1989)

By WMarsh1 - Own work, CC BY-SA 4.0 7/35
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The complexity class PPA

If a cubic graph has a Hamiltonian cycle, then there is a second
Hamiltonian cycle.

Theorem Smith and Tutte 1946

.....
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The complexity class PPA

If a cubic graph has a Hamiltonian cycle, then there is a second
Hamiltonian cycle.

Theorem Smith and Tutte 1946
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The complexity class PPA, formal
definition

Problem Leaf.
Input. A graph where every vertex is of degree at most two; a
degree-one vertex
Output. Another degree-one vertex

(The graph can be potentially huge; described by a circuit.)

PPA = class of function problems that polynomially reduce to
Leaf

Introduced by Papadimitriou (1992)
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Polynomial reduction

Let R,S ∈ TFNP

R polynomially reduces to S if there exist polynomially-computable
functions f and g such that(

f (I ), s
)
∈ S =⇒

(
I , g(I , s)

)
∈ R .

Definition still valid if R ∈ FNP: polynomial reduction is then an
efficient proof that R is total.
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Another-Hamiltonian-Cycle

Problem Another-Hamiltonian-Cycle.
Input. A cubic graph; a Hamiltonian cycle
Output. Another Hamiltonian cycle

Another-Hamiltonian-Cycle ∈ PPA
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The complexity class PPA, alternative
formal definition

PPA can be alternatively defined as follows (Papadimitriou 1992).

Problem Odd-Degree-Vertex.
Input. A graph; an odd-degree vertex
Output. Another odd-degree vertex

(The graph can be potentially huge; described by a circuit.)

PPA = class of function problems that polynomially reduce to
Odd-Degree-Vertex
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The complexity class PPAD
Problem End-Of-The-Line.
Input. A directed graph formed by vertex-disjoint directed paths
and directed cycles; a vertex u that is the origin of a path
Output. A vertex u′ that is the end of a path or the origin of
another path

(The graph can be potentially huge; described by a circuit.)

PPAD = class of function problems that can be polynomially
reduced to End-Of-The-Line

Introduced by Papadimitriou (1992)
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Relation between PPA and PPAD

• PPAD ⊆ PPA (immediate)

• Strongly believed that the inclusion is strict
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Sperner’s lemma

Consider a triangulation of a triangle, whose vertices are colored
with blue, red, green. Suppose that
⋆ the extreme points of the triangle get distinct colors.

⋆ every vertex in a side has the color of one of the endpoints.
Then there exists a small colorful triangle.

Lemma Sperner 1928
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Sperner’s lemma, proof

Problem 2D-Sperner.
Input. A triangulation of a triangle; a Sperner labeling (described
by a circuit)
Output. A small colorful triangle

2D-Sperner is in PPAD (Scarf 1967, Papadimitriou 1992).
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Sperner’s lemma, proof

Problem 2D-Sperner.
Input. A circuit

{
(n1, n2, n3) ∈ Z3

+ : n1+n2+n3 = k
}
−→ {1, 2, 3}

Output. A small colorful triangle

2D-Sperner is in PPAD (Scarf 1967, Papadimitriou 1992).
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PPAD-complete

2D-Sperner is PPAD-complete.

Theorem Papadimitriou 1992; Chen and Deng 2009

The following problem is the first natural PPAD-complete problem.

Problem Bimatrix.
Input. Two m × n matrices P,Q
Output. A Nash equilibrium

Bimatrix is PPAD-complete.

Theorem Cheng and Deng 2009
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PPAD-complete

2D-Sperner is PPAD-complete.

Theorem Papadimitriou 1992; Chen and Deng 2009

The following problem is the first natural PPAD-complete problem.

Problem Bimatrix.
Input. Two m × n matrices P,Q
Output. x ∈ △m, y ∈ △n such that

• x⊤Py ⩾ (x ′)⊤Py ′ for all x ′ ∈ △m

• x⊤Qy ⩾ x⊤Qy ′ for all y ′ ∈ △n

Bimatrix is PPAD-complete.

Theorem Cheng and Deng 2009
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PPA-complete

Consider a triangulation of a disk, whose vertices are labeled
with elements from {−1,+1,−2,+2}. Suppose that antipodal
vertices from the boundary get opposite labels. Then there exists
a complementary edge.

Lemma Tucker 1946

• in PPA (Freund, Todd 1981,
Papadimitriou (?) 1992)

• PPA-complete (Aisenberg, Bonet,
Buss 2015)
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PPA-complete

Given an open necklace with t types of beads and an even number
of beads of each type, there exists a way to share it between two
thieves with at most t cuts.

Theorem Goldberg, West 1985

• in PPA (Papadimitriou 1992)

• PPA-complete (Filos-Ratzikas,
Goldberg 2019)

• This is the unique natural
PPA-complete problem known
so far.
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The complexity class PPA-k

Problem Bipartite-mod-k .
Input. A bipartite graph; a vertex of degree ̸= 0 (mod k)
Output. Another vertex of degree ̸= 0 (mod k)

(The graph can be potentially huge; described by a circuit.)

PPA-k = class of function problems that can be polynomially
reduced to Bipartite-mod-k

Introduced by Papadimitriou (1992)

PPAD ⊆
⋂∞

k=2 PPA-k (Johnson 2011)
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A PPA-p-complete problem

Let p be a prime number.

Problem Chevalley−Warning.
Input. f1, . . . , fm ∈ Fp[X1, . . . ,Xn] such that

∑
i deg(fi ) < n; a

common zero
Output. Another common zero

Chevalley−Warning (in a slightly more general version) is PPA-p-
complete.

Theorem Göös, Kamath, Sotiraki, Zampetakis 2020

This is the unique natural PPA-p-complete problem known so far.
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In a colored graph with maximum degree ∆, there always exists
an independent set intersecting every color class of size at least
2∆.

Theorem Haxell 1995

• Haxell’s original proof is elementary;
proof based on a Sperner-type
argument (Aharoni, Berger, Ziv 2007)

• Polynomial algorithms for weaker
versions

• Questions: In PPAD? Hard?

28/35



Let G be a k-connected graph, v1, v2, . . . , vk distinct ver-
tices, and n1, n2, . . . , nk positive integers with n1 + n2 + · · · +
nk = |V (G )|. Then G has disjoint connected subgraphs
G1,G2, . . . ,Gk such that |V (Gi )| = ni and vi ∈ V (Gi ).

Theorem Győri 1976, Lovász 1977

• Győri’s proof is elementary;
Lovász’s proof relies on
topology

• Polynomial for k ⩽ 3 (Wada
and Kawaguchi 1993)

• Questions: In PPAD? Hard?

v1

v2

v3

n1 vertices

n2 vertices

n3 vertices

G1

G2

G3
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A simple directed graph is clique-acyclic if every clique is acyclic.

kernel = subset of vertices that is independent and absorbing

Every clique-acyclique orientation of a perfect graph has a kernel.

Theorem Boros, Gurvich 1996

• All known proofs rely on topology

• Simple proof based on Sperner’s
lemma applied on the polar of
P = STAB(G )− Rn

+ (Király, Pap
2009)

• Questions: In PPAD? Hard?

• Issue: P uses matrices with rows
indexed by all (maximal) cliques
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Given an open necklace with t types of beads and a multiple of
k beads of each type, there exists a way to share it between k
thieves with at most t(k − 1) cuts.

Theorem Alon 1987

• in PPA-p (Filos-Ratzikas, Hollender, Sotiraki, Zampetakis
2021) when k is a prime number p

• Hard?

Alice AliceBob BobBobCharlie Charlie
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Takeaways

• PPA, PPAD, etc. = complexity classes useful to prove
hardness results for computing objects of existential results
(TFNP)

• a way to “sell” constructive proofs

• at the intersection of mathematics and computer science (and
see next slide!)

• many challenging open problems
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Strength of theorems

• 2D-Sperner is PPAD-complete

• 2D-Tucker is PPA-complete

• PPA ̸= PPAD (strongly believed)

Conclusion: you cannot prove Tucker from Sperner.

Complexity theorems provide a framework where the questions like

• are these theorems equivalent?

• can you deduce this theorem from this one?

make complete sense.

Computer scientists answer questions from pure mathematicians.

E.g., the Borsuk–Ulam theorem cannot be deduced from the Hairy
Ball theorem (Goldberg, Hollender 2019).
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Thank you
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