
Logarithmic space, PCP and
the hardness of approximation

Louis Esperet

CNRS, Université Grenoble Alpes

Graphs and complexity days, Lyon, 2025

Logarithmic space

Let L be the class of problems that can be solved in logarithmic space.

From the point of view of Turing machines this means that there are two
tapes: the first one contains the input and is read-only, and the second
one is the workable tape and has logarithmic size.

What graph problems can you solve in logarithmic space ?

you can store a constant number of names of vertices in memory

you can store a logarithmic number of boolean values

you can store a constant number of polynomially bounded integers
(for instance counters).

Logarithmic space

Let L be the class of problems that can be solved in logarithmic space.

From the point of view of Turing machines this means that there are two
tapes: the first one contains the input and is read-only, and the second
one is the workable tape and has logarithmic size.

What graph problems can you solve in logarithmic space ?

you can store a constant number of names of vertices in memory

you can store a logarithmic number of boolean values

you can store a constant number of polynomially bounded integers
(for instance counters).

Logarithmic space

Let L be the class of problems that can be solved in logarithmic space.

From the point of view of Turing machines this means that there are two
tapes: the first one contains the input and is read-only, and the second
one is the workable tape and has logarithmic size.

What graph problems can you solve in logarithmic space ?

you can store a constant number of names of vertices in memory

you can store a logarithmic number of boolean values

you can store a constant number of polynomially bounded integers
(for instance counters).

Logarithmic space

Let L be the class of problems that can be solved in logarithmic space.

From the point of view of Turing machines this means that there are two
tapes: the first one contains the input and is read-only, and the second
one is the workable tape and has logarithmic size.

What graph problems can you solve in logarithmic space ?

you can store a constant number of names of vertices in memory

you can store a logarithmic number of boolean values

you can store a constant number of polynomially bounded integers
(for instance counters).

Logarithmic space

Let L be the class of problems that can be solved in logarithmic space.

From the point of view of Turing machines this means that there are two
tapes: the first one contains the input and is read-only, and the second
one is the workable tape and has logarithmic size.

What graph problems can you solve in logarithmic space ?

you can store a constant number of names of vertices in memory

you can store a logarithmic number of boolean values

you can store a constant number of polynomially bounded integers
(for instance counters).

Logarithmic space

Let L be the class of problems that can be solved in logarithmic space.

From the point of view of Turing machines this means that there are two
tapes: the first one contains the input and is read-only, and the second
one is the workable tape and has logarithmic size.

What graph problems can you solve in logarithmic space ?

you can store a constant number of names of vertices in memory

you can store a logarithmic number of boolean values

you can store a constant number of polynomially bounded integers
(for instance counters).

s, t-connectivity

s, t-connectivity. Given a graph G and two vertices s and t of G , are s
and t in the same connected component of G? Or equivalently is there a
path from s to t in G?

There is a simple randomized algorithm running in logarithmic space:
perform a random walk W in G during O(n3) steps starting from s. If the
walk W meets t then answer yes, otherwise answer no.

(it can be proved that in O(n3) steps, the random walk has visited all the
vertices of the connected component of s with high probability).

s, t-connectivity

s, t-connectivity. Given a graph G and two vertices s and t of G , are s
and t in the same connected component of G? Or equivalently is there a
path from s to t in G?

There is a simple randomized algorithm running in logarithmic space:
perform a random walk W in G during O(n3) steps starting from s. If the
walk W meets t then answer yes, otherwise answer no.

(it can be proved that in O(n3) steps, the random walk has visited all the
vertices of the connected component of s with high probability).

s, t-connectivity

s, t-connectivity. Given a graph G and two vertices s and t of G , are s
and t in the same connected component of G? Or equivalently is there a
path from s to t in G?

There is a simple randomized algorithm running in logarithmic space:
perform a random walk W in G during O(n3) steps starting from s. If the
walk W meets t then answer yes, otherwise answer no.

(it can be proved that in O(n3) steps, the random walk has visited all the
vertices of the connected component of s with high probability).

s, t-connectivity

There is also a simple deterministic algorithm for s, t-connectivity running
in O(log2 n) space.

Given a constant D ≥ 1, let S(D) be the space complexity of deciding
whether two vertices u and v lie at distance at most D in G .

If D = 1 we simply check whether u and v are adjacent.

If D ≥ 2, for each vertex w , we test whether d(u,w) ≤ ⌊D/2⌋ and
d(v ,w) ≤ ⌈D/2⌉ (one after the other) and if both are true we answer yes.

The space needed is S(D) ≤ O(log n) + S(D/2), and thus

S(D) = O((log n)(logD)).

In particular, testing whether two vertices are at distance at most n takes
O(log2 n) space.

s, t-connectivity

There is also a simple deterministic algorithm for s, t-connectivity running
in O(log2 n) space.

Given a constant D ≥ 1, let S(D) be the space complexity of deciding
whether two vertices u and v lie at distance at most D in G .

If D = 1 we simply check whether u and v are adjacent.

If D ≥ 2, for each vertex w , we test whether d(u,w) ≤ ⌊D/2⌋ and
d(v ,w) ≤ ⌈D/2⌉ (one after the other) and if both are true we answer yes.

The space needed is S(D) ≤ O(log n) + S(D/2), and thus

S(D) = O((log n)(logD)).

In particular, testing whether two vertices are at distance at most n takes
O(log2 n) space.

s, t-connectivity

There is also a simple deterministic algorithm for s, t-connectivity running
in O(log2 n) space.

Given a constant D ≥ 1, let S(D) be the space complexity of deciding
whether two vertices u and v lie at distance at most D in G .

If D = 1 we simply check whether u and v are adjacent.

If D ≥ 2, for each vertex w , we test whether d(u,w) ≤ ⌊D/2⌋ and
d(v ,w) ≤ ⌈D/2⌉ (one after the other) and if both are true we answer yes.

The space needed is S(D) ≤ O(log n) + S(D/2), and thus

S(D) = O((log n)(logD)).

In particular, testing whether two vertices are at distance at most n takes
O(log2 n) space.

s, t-connectivity

There is also a simple deterministic algorithm for s, t-connectivity running
in O(log2 n) space.

Given a constant D ≥ 1, let S(D) be the space complexity of deciding
whether two vertices u and v lie at distance at most D in G .

If D = 1 we simply check whether u and v are adjacent.

If D ≥ 2, for each vertex w , we test whether d(u,w) ≤ ⌊D/2⌋ and
d(v ,w) ≤ ⌈D/2⌉ (one after the other) and if both are true we answer yes.

The space needed is S(D) ≤ O(log n) + S(D/2), and thus

S(D) = O((log n)(logD)).

In particular, testing whether two vertices are at distance at most n takes
O(log2 n) space.

s, t-connectivity

There is also a simple deterministic algorithm for s, t-connectivity running
in O(log2 n) space.

Given a constant D ≥ 1, let S(D) be the space complexity of deciding
whether two vertices u and v lie at distance at most D in G .

If D = 1 we simply check whether u and v are adjacent.

If D ≥ 2, for each vertex w , we test whether d(u,w) ≤ ⌊D/2⌋ and
d(v ,w) ≤ ⌈D/2⌉ (one after the other) and if both are true we answer yes.

The space needed is S(D) ≤ O(log n) + S(D/2), and thus

S(D) = O((log n)(logD)).

In particular, testing whether two vertices are at distance at most n takes
O(log2 n) space.

s, t-connectivity in L

Theorem (Reingold 2004). s, t-connectivity is in L

If G has degree at most d = O(1) and logarithmic diameter, then
s, t-connectivity can easily be solved in logarithmic space. It suffices to
enumerate all the paths of length O(log n) starting from s (each such path
can be described using O(log d · log n) bits).

The goal is to transform G into a graph of bounded degree and
logarithmic diameter, without changing the connected components.

We start by replacing every vertex v by a cycle a length d(v), turning G
into a subcubic graph.

For technical reasons we then attach self-loops to each vertex, turning G
into a d-regular graph for some fixed d (constant, but not too small).

s, t-connectivity in L

Theorem (Reingold 2004). s, t-connectivity is in L

If G has degree at most d = O(1) and logarithmic diameter, then
s, t-connectivity can easily be solved in logarithmic space. It suffices to
enumerate all the paths of length O(log n) starting from s (each such path
can be described using O(log d · log n) bits).

The goal is to transform G into a graph of bounded degree and
logarithmic diameter, without changing the connected components.

We start by replacing every vertex v by a cycle a length d(v), turning G
into a subcubic graph.

For technical reasons we then attach self-loops to each vertex, turning G
into a d-regular graph for some fixed d (constant, but not too small).

s, t-connectivity in L

Theorem (Reingold 2004). s, t-connectivity is in L

If G has degree at most d = O(1) and logarithmic diameter, then
s, t-connectivity can easily be solved in logarithmic space. It suffices to
enumerate all the paths of length O(log n) starting from s (each such path
can be described using O(log d · log n) bits).

The goal is to transform G into a graph of bounded degree and
logarithmic diameter, without changing the connected components.

We start by replacing every vertex v by a cycle a length d(v), turning G
into a subcubic graph.

For technical reasons we then attach self-loops to each vertex, turning G
into a d-regular graph for some fixed d (constant, but not too small).

s, t-connectivity in L

Theorem (Reingold 2004). s, t-connectivity is in L

If G has degree at most d = O(1) and logarithmic diameter, then
s, t-connectivity can easily be solved in logarithmic space. It suffices to
enumerate all the paths of length O(log n) starting from s (each such path
can be described using O(log d · log n) bits).

The goal is to transform G into a graph of bounded degree and
logarithmic diameter, without changing the connected components.

We start by replacing every vertex v by a cycle a length d(v), turning G
into a subcubic graph.

For technical reasons we then attach self-loops to each vertex, turning G
into a d-regular graph for some fixed d (constant, but not too small).

s, t-connectivity in L

Theorem (Reingold 2004). s, t-connectivity is in L

If G has degree at most d = O(1) and logarithmic diameter, then
s, t-connectivity can easily be solved in logarithmic space. It suffices to
enumerate all the paths of length O(log n) starting from s (each such path
can be described using O(log d · log n) bits).

The goal is to transform G into a graph of bounded degree and
logarithmic diameter, without changing the connected components.

We start by replacing every vertex v by a cycle a length d(v), turning G
into a subcubic graph.

For technical reasons we then attach self-loops to each vertex, turning G
into a d-regular graph for some fixed d (constant, but not too small).

Expanders

A graph is a (c , d)-expander graph if it is d-regular and for any set S of at
most |V (G)|/2 vertices, at least c |S | edges of G connect S to V (G) \ S .

We will be interested in constructing such graphs with c and d fixed, and
|V (G)| → ∞.

A crucial property of expander graphs is that they have logarithmic
diameter.

Proving the existence of these graphs is easy (take a random d-regular
graph), but constructing them (strongly) explicitly is difficult.

Example. for p → ∞, p prime, look at the graph with vertex set Zp, in
which each x is adjacent to x + 1, x − 1, and x−1.

Expanders

A graph is a (c , d)-expander graph if it is d-regular and for any set S of at
most |V (G)|/2 vertices, at least c |S | edges of G connect S to V (G) \ S .

We will be interested in constructing such graphs with c and d fixed, and
|V (G)| → ∞.

A crucial property of expander graphs is that they have logarithmic
diameter.

Proving the existence of these graphs is easy (take a random d-regular
graph), but constructing them (strongly) explicitly is difficult.

Example. for p → ∞, p prime, look at the graph with vertex set Zp, in
which each x is adjacent to x + 1, x − 1, and x−1.

Expanders

A graph is a (c , d)-expander graph if it is d-regular and for any set S of at
most |V (G)|/2 vertices, at least c |S | edges of G connect S to V (G) \ S .

We will be interested in constructing such graphs with c and d fixed, and
|V (G)| → ∞.

A crucial property of expander graphs is that they have logarithmic
diameter.

Proving the existence of these graphs is easy (take a random d-regular
graph), but constructing them (strongly) explicitly is difficult.

Example. for p → ∞, p prime, look at the graph with vertex set Zp, in
which each x is adjacent to x + 1, x − 1, and x−1.

Expanders

A graph is a (c , d)-expander graph if it is d-regular and for any set S of at
most |V (G)|/2 vertices, at least c |S | edges of G connect S to V (G) \ S .

We will be interested in constructing such graphs with c and d fixed, and
|V (G)| → ∞.

A crucial property of expander graphs is that they have logarithmic
diameter.

Proving the existence of these graphs is easy (take a random d-regular
graph), but constructing them (strongly) explicitly is difficult.

Example. for p → ∞, p prime, look at the graph with vertex set Zp, in
which each x is adjacent to x + 1, x − 1, and x−1.

Expanders

A graph is a (c , d)-expander graph if it is d-regular and for any set S of at
most |V (G)|/2 vertices, at least c |S | edges of G connect S to V (G) \ S .

We will be interested in constructing such graphs with c and d fixed, and
|V (G)| → ∞.

A crucial property of expander graphs is that they have logarithmic
diameter.

Proving the existence of these graphs is easy (take a random d-regular
graph), but constructing them (strongly) explicitly is difficult.

Example. for p → ∞, p prime, look at the graph with vertex set Zp, in
which each x is adjacent to x + 1, x − 1, and x−1.

Improving the expansion

We start with our d-regular graph with very poor expansion, and we
repeat the following two steps log n times.

take a small power of the current graph (say add edges between any
two vertices at distance 8). The expansion improves significantly but
the degree jumps to d8.

take the zig-zag product of our current graph with a small (fixed)
expander. The expansion decreases slightly but the degree goes back
to d .

Improving the expansion

We start with our d-regular graph with very poor expansion, and we
repeat the following two steps log n times.

take a small power of the current graph (say add edges between any
two vertices at distance 8). The expansion improves significantly but
the degree jumps to d8.

take the zig-zag product of our current graph with a small (fixed)
expander. The expansion decreases slightly but the degree goes back
to d .

Improving the expansion

We start with our d-regular graph with very poor expansion, and we
repeat the following two steps log n times.

take a small power of the current graph (say add edges between any
two vertices at distance 8). The expansion improves significantly but
the degree jumps to d8.

take the zig-zag product of our current graph with a small (fixed)
expander. The expansion decreases slightly but the degree goes back
to d .

The zig-zag product

a
√
d-regular

d8 vertices
expander on

a large
d8-regular
graph

Improving the expansion

We start with our d-regular graph with very poor expansion, and we
repeat the following two steps log n times.

take a small power of the current graph (say add edges between any
two vertices at distance 8). The expansion improves significantly but
the degree jumps to d8.

take the zig-zag product of our current graph with a small (fixed)
expander. The expansion decreases slightly but the degree goes back
to d .

Improving the expansion

We start with our d-regular graph with very poor expansion, and we
repeat the following two steps log n times.

take a small power of the current graph (say add edges between any
two vertices at distance 8). The expansion improves significantly but
the degree jumps to d8.

take the zig-zag product of our current graph with a small (fixed)
expander. The expansion decreases slightly but the degree goes back
to d .

After log n iterations the graph still has size polynomial in n, and it is a
(c, d)-expander for some constant c. So the graph has logarithmic
diameter and we can solve s, t-connectivity in this graph in logarithmic
space.

Consequences

A problem is in L if and only if it is log-space reducible to
s, t-connectivity.

L contains exactly the problems expressible in first-order logic with an
additional transitive closure operator (in graphs: an operator that
turns any connected component into a clique).

k-vertex-disjoint paths: are there k internally vertex-disjoint paths
between two vertices s, t?

Given a graph, is there a cycle containing a given edge?

Is a given graph bipartite?

Do two graphs have the same number of connected components?

Does a graph have an even number of connected components?

Consequences

A problem is in L if and only if it is log-space reducible to
s, t-connectivity.

L contains exactly the problems expressible in first-order logic with an
additional transitive closure operator (in graphs: an operator that
turns any connected component into a clique).

k-vertex-disjoint paths: are there k internally vertex-disjoint paths
between two vertices s, t?

Given a graph, is there a cycle containing a given edge?

Is a given graph bipartite?

Do two graphs have the same number of connected components?

Does a graph have an even number of connected components?

Consequences

A problem is in L if and only if it is log-space reducible to
s, t-connectivity.

L contains exactly the problems expressible in first-order logic with an
additional transitive closure operator (in graphs: an operator that
turns any connected component into a clique).

k-vertex-disjoint paths: are there k internally vertex-disjoint paths
between two vertices s, t?

Given a graph, is there a cycle containing a given edge?

Is a given graph bipartite?

Do two graphs have the same number of connected components?

Does a graph have an even number of connected components?

Consequences

A problem is in L if and only if it is log-space reducible to
s, t-connectivity.

L contains exactly the problems expressible in first-order logic with an
additional transitive closure operator (in graphs: an operator that
turns any connected component into a clique).

k-vertex-disjoint paths: are there k internally vertex-disjoint paths
between two vertices s, t?

Given a graph, is there a cycle containing a given edge?

Is a given graph bipartite?

Do two graphs have the same number of connected components?

Does a graph have an even number of connected components?

Consequences

A problem is in L if and only if it is log-space reducible to
s, t-connectivity.

L contains exactly the problems expressible in first-order logic with an
additional transitive closure operator (in graphs: an operator that
turns any connected component into a clique).

k-vertex-disjoint paths: are there k internally vertex-disjoint paths
between two vertices s, t?

Given a graph, is there a cycle containing a given edge?

Is a given graph bipartite?

Do two graphs have the same number of connected components?

Does a graph have an even number of connected components?

Consequences

A problem is in L if and only if it is log-space reducible to
s, t-connectivity.

L contains exactly the problems expressible in first-order logic with an
additional transitive closure operator (in graphs: an operator that
turns any connected component into a clique).

k-vertex-disjoint paths: are there k internally vertex-disjoint paths
between two vertices s, t?

Given a graph, is there a cycle containing a given edge?

Is a given graph bipartite?

Do two graphs have the same number of connected components?

Does a graph have an even number of connected components?

Consequences

A problem is in L if and only if it is log-space reducible to
s, t-connectivity.

L contains exactly the problems expressible in first-order logic with an
additional transitive closure operator (in graphs: an operator that
turns any connected component into a clique).

k-vertex-disjoint paths: are there k internally vertex-disjoint paths
between two vertices s, t?

Given a graph, is there a cycle containing a given edge?

Is a given graph bipartite?

Do two graphs have the same number of connected components?

Does a graph have an even number of connected components?

Conclusion on L

It is known that L ⊆ P (more generally problems that can be solved in
space s(n) can be solved in time n · 2s(n)+log s(n)).

It is not known whether L ̸= P, or even whether L ̸= NP.

Every problem in P is log-space reducible to the evaluation of a given
circuit on a given input (which is in P). This implies that L ̸= P if and
only if evaluating a given circuit on a given imput is not in L.

It is not known whether RL = L (i.e. whether randomized logarithmic
space can be completely derandomized).

Conclusion on L

It is known that L ⊆ P (more generally problems that can be solved in
space s(n) can be solved in time n · 2s(n)+log s(n)).

It is not known whether L ̸= P, or even whether L ̸= NP.

Every problem in P is log-space reducible to the evaluation of a given
circuit on a given input (which is in P). This implies that L ̸= P if and
only if evaluating a given circuit on a given imput is not in L.

It is not known whether RL = L (i.e. whether randomized logarithmic
space can be completely derandomized).

Conclusion on L

It is known that L ⊆ P (more generally problems that can be solved in
space s(n) can be solved in time n · 2s(n)+log s(n)).

It is not known whether L ̸= P, or even whether L ̸= NP.

Every problem in P is log-space reducible to the evaluation of a given
circuit on a given input (which is in P). This implies that L ̸= P if and
only if evaluating a given circuit on a given imput is not in L.

It is not known whether RL = L (i.e. whether randomized logarithmic
space can be completely derandomized).

Conclusion on L

It is known that L ⊆ P (more generally problems that can be solved in
space s(n) can be solved in time n · 2s(n)+log s(n)).

It is not known whether L ̸= P, or even whether L ̸= NP.

Every problem in P is log-space reducible to the evaluation of a given
circuit on a given input (which is in P). This implies that L ̸= P if and
only if evaluating a given circuit on a given imput is not in L.

It is not known whether RL = L (i.e. whether randomized logarithmic
space can be completely derandomized).

The PCP theorem

Recall that NP is the class of problems for which positive instances have
certificates that can be checked in polynomial time.

The PCP theorem (1998) states that problems in NP have another useful
type of certificates, still of polynomial size:

The verifier starts by looking at the instance and using some
randomized algorithm (which only relies on O(log n) random bits)
decides a constant number of random locations.

The prover presents a certificate of polynomial size, and the verifier
only checks the constant number of locations it chose, and based only
on this constant number of bits, decides to accept or reject the proof.

If the instance is positive, then the verifier must accept, and if the
instance is negative, then the verifier must reject with probability at
least 1

2 , for any certificate.

The PCP theorem

Recall that NP is the class of problems for which positive instances have
certificates that can be checked in polynomial time.

The PCP theorem (1998) states that problems in NP have another useful
type of certificates, still of polynomial size:

The verifier starts by looking at the instance and using some
randomized algorithm (which only relies on O(log n) random bits)
decides a constant number of random locations.

The prover presents a certificate of polynomial size, and the verifier
only checks the constant number of locations it chose, and based only
on this constant number of bits, decides to accept or reject the proof.

If the instance is positive, then the verifier must accept, and if the
instance is negative, then the verifier must reject with probability at
least 1

2 , for any certificate.

The PCP theorem

Recall that NP is the class of problems for which positive instances have
certificates that can be checked in polynomial time.

The PCP theorem (1998) states that problems in NP have another useful
type of certificates, still of polynomial size:

The verifier starts by looking at the instance and using some
randomized algorithm (which only relies on O(log n) random bits)
decides a constant number of random locations.

The prover presents a certificate of polynomial size, and the verifier
only checks the constant number of locations it chose, and based only
on this constant number of bits, decides to accept or reject the proof.

If the instance is positive, then the verifier must accept, and if the
instance is negative, then the verifier must reject with probability at
least 1

2 , for any certificate.

The PCP theorem

Recall that NP is the class of problems for which positive instances have
certificates that can be checked in polynomial time.

The PCP theorem (1998) states that problems in NP have another useful
type of certificates, still of polynomial size:

The verifier starts by looking at the instance and using some
randomized algorithm (which only relies on O(log n) random bits)
decides a constant number of random locations.

The prover presents a certificate of polynomial size, and the verifier
only checks the constant number of locations it chose, and based only
on this constant number of bits, decides to accept or reject the proof.

If the instance is positive, then the verifier must accept, and if the
instance is negative, then the verifier must reject with probability at
least 1

2 , for any certificate.

The PCP theorem

Recall that NP is the class of problems for which positive instances have
certificates that can be checked in polynomial time.

The PCP theorem (1998) states that problems in NP have another useful
type of certificates, still of polynomial size:

The verifier starts by looking at the instance and using some
randomized algorithm (which only relies on O(log n) random bits)
decides a constant number of random locations.

The prover presents a certificate of polynomial size, and the verifier
only checks the constant number of locations it chose, and based only
on this constant number of bits, decides to accept or reject the proof.

If the instance is positive, then the verifier must accept, and if the
instance is negative, then the verifier must reject with probability at
least 1

2 , for any certificate.

Hardness of approximation

A clique in a graph is a set of pairwise adjacent vertices, and the clique
number of G , denoted by ω(G), is the maximum size of a clique in G .

There exist constants 0 < a < b < 1 such that given an n-vertex graph
G for which
(1) ω(G) ≤ an, or

(2) ω(G) ≥ bn,
there is no polynomial time algorithm distinguishing between the two
cases (1) and (2), unless P = NP.

The PCP theorem (clique approximation version)

In particular, we cannot approximate the clique number in polynomial time
within a factor c < b/a unless P = NP.

(by c-approximation algorithm, we mean an algorithm that returns a value
between ω(G)/c and ω(G).)

Hardness of approximation

A clique in a graph is a set of pairwise adjacent vertices, and the clique
number of G , denoted by ω(G), is the maximum size of a clique in G .

There exist constants 0 < a < b < 1 such that given an n-vertex graph
G for which
(1) ω(G) ≤ an, or

(2) ω(G) ≥ bn,
there is no polynomial time algorithm distinguishing between the two
cases (1) and (2), unless P = NP.

The PCP theorem (clique approximation version)

In particular, we cannot approximate the clique number in polynomial time
within a factor c < b/a unless P = NP.

(by c-approximation algorithm, we mean an algorithm that returns a value
between ω(G)/c and ω(G).)

Hardness of approximation

A clique in a graph is a set of pairwise adjacent vertices, and the clique
number of G , denoted by ω(G), is the maximum size of a clique in G .

There exist constants 0 < a < b < 1 such that given an n-vertex graph
G for which
(1) ω(G) ≤ an, or

(2) ω(G) ≥ bn,
there is no polynomial time algorithm distinguishing between the two
cases (1) and (2), unless P = NP.

The PCP theorem (clique approximation version)

In particular, we cannot approximate the clique number in polynomial time
within a factor c < b/a unless P = NP.

(by c-approximation algorithm, we mean an algorithm that returns a value
between ω(G)/c and ω(G).)

Hardness of approximation

A clique in a graph is a set of pairwise adjacent vertices, and the clique
number of G , denoted by ω(G), is the maximum size of a clique in G .

There exist constants 0 < a < b < 1 such that given an n-vertex graph
G for which
(1) ω(G) ≤ an, or

(2) ω(G) ≥ bn,
there is no polynomial time algorithm distinguishing between the two
cases (1) and (2), unless P = NP.

The PCP theorem (clique approximation version)

In particular, we cannot approximate the clique number in polynomial time
within a factor c < b/a unless P = NP.

(by c-approximation algorithm, we mean an algorithm that returns a value
between ω(G)/c and ω(G).)

Connection between the two versions

Recall that in 3-SAT, we have a formula of the type
(x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ ¬x4 ∨ ¬x5) ∧ . . ., where there are 3 literals per
clause and the xi ’s are boolean variables, and the goal is to decide whether
the formula can be satisfied (so all clauses have to be satisfied) by some
assignment of values to the xi ’s.

Connection between the two versions

The clique approximation version of the PCP theorem is equivalent to the
statement that there is some ε > 0 such that if we are given a 3-SAT
formula in which

(1) all clauses can be satisfied, or

(2) only a fraction of at most 1− ε of the clauses can be satisfied,

then no polynomial time algorithm can make the distinction between (1)
and (2), unless P = NP.

Connection between the two versions

The clique approximation version of the PCP theorem is equivalent to the
statement that there is some ε > 0 such that if we are given a 3-SAT
formula in which

(1) all clauses can be satisfied, or

(2) only a fraction of at most 1− ε of the clauses can be satisfied,

then no polynomial time algorithm can make the distinction between (1)
and (2), unless P = NP.

Now any problem in NP can be reduced to this gap version of 3-SAT, and
this version has a simple probabilistically checkable certificate, consisting
of the values of the variables xi .

Connection between the two versions

The clique approximation version of the PCP theorem is equivalent to the
statement that there is some ε > 0 such that if we are given a 3-SAT
formula in which

(1) all clauses can be satisfied, or

(2) only a fraction of at most 1− ε of the clauses can be satisfied,

then no polynomial time algorithm can make the distinction between (1)
and (2), unless P = NP.

Now any problem in NP can be reduced to this gap version of 3-SAT, and
this version has a simple probabilistically checkable certificate, consisting
of the values of the variables xi .

The verifier just checks a constant number of clauses selected uniformy at
random and says that the formula is satisfiable if all these clauses are
satisfied.

Gap amplification

There exist constants 0 < a < b < 1 such that given an n-vertex graph
G for which
(1) ω(G) ≤ an, or

(2) ω(G) ≥ bn,
there is no polynomial time algorithm distinguishing between the two
cases (1) and (2), unless P = NP.

The PCP theorem

In particular, we cannot approximate the clique number in polynomial time
within a factor c < b/a unless P = NP.

(recall that by c-approximation algorithm, we mean an algorithm that
returns a value between ω(G)/c and ω(G)).

Gap amplification

The PCP theorem easily implies that for any c > 1, we cannot approximate
the clique number in polynomial time within a factor c unless P = NP.

Proof. Consider G ∗ k , the graph whose vertices are the k-tuples of vertices
of G , with adjacency between two k-tuples if their union is a clique of G .

It is not hard to check that ω(G ∗ k) = ω(G)k .

Now any c1-approximation algorithm A1 for the clique number can be
turned into a c2-approximation algorithm A2 with 1 < c2 < c1 by defining
A2(G) = (A1(G ∗ k))1/k for sufficiently large (but constant) k , because:

ω(G)/c2 ≤ ω(G)/c
1/k
1 = (ω(G ∗ k)/c1)1/k ≤ A2(G) ≤ ω(G),

Gap amplification

The PCP theorem easily implies that for any c > 1, we cannot approximate
the clique number in polynomial time within a factor c unless P = NP.

Proof. Consider G ∗ k , the graph whose vertices are the k-tuples of vertices
of G , with adjacency between two k-tuples if their union is a clique of G .

It is not hard to check that ω(G ∗ k) = ω(G)k .

Now any c1-approximation algorithm A1 for the clique number can be
turned into a c2-approximation algorithm A2 with 1 < c2 < c1 by defining
A2(G) = (A1(G ∗ k))1/k for sufficiently large (but constant) k , because:

ω(G)/c2 ≤ ω(G)/c
1/k
1 = (ω(G ∗ k)/c1)1/k ≤ A2(G) ≤ ω(G),

Gap amplification

The PCP theorem easily implies that for any c > 1, we cannot approximate
the clique number in polynomial time within a factor c unless P = NP.

Proof. Consider G ∗ k , the graph whose vertices are the k-tuples of vertices
of G , with adjacency between two k-tuples if their union is a clique of G .

It is not hard to check that ω(G ∗ k) = ω(G)k .

Now any c1-approximation algorithm A1 for the clique number can be
turned into a c2-approximation algorithm A2 with 1 < c2 < c1 by defining
A2(G) = (A1(G ∗ k))1/k for sufficiently large (but constant) k , because:

ω(G)/c2 ≤ ω(G)/c
1/k
1 = (ω(G ∗ k)/c1)1/k ≤ A2(G) ≤ ω(G),

Gap amplification

The PCP theorem easily implies that for any c > 1, we cannot approximate
the clique number in polynomial time within a factor c unless P = NP.

Proof. Consider G ∗ k , the graph whose vertices are the k-tuples of vertices
of G , with adjacency between two k-tuples if their union is a clique of G .

It is not hard to check that ω(G ∗ k) = ω(G)k .

Now any c1-approximation algorithm A1 for the clique number can be
turned into a c2-approximation algorithm A2 with 1 < c2 < c1 by defining
A2(G) = (A1(G ∗ k))1/k for sufficiently large (but constant) k , because:

ω(G)/c2 ≤ ω(G)/c
1/k
1 = (ω(G ∗ k)/c1)1/k ≤ A2(G) ≤ ω(G),

Gap amplification II

There is ε > 0 such that there is no polynomial time nε-approximation
algorithm for the clique number in n-vertex graphs, unless P = NP.

Theorem

Let G be an n-vertex graph, and let F be a (c , d)-expander graph on the
same vertex set as G . For some integer t, we define a new graph H whose
vertices are the t + 1-vertex walks x0, . . . , xt in F , and in which two walks
are adjacent if and only if their union is contained in some clique of G .

Note that H has N = nd t vertices, which is nO(1) when t = O(log n).

We claim that

if ω(G) ≤ an, then ω(H) ≤ (a+ o(1))tN.

if ω(G) ≥ bn, then ω(H) ≥ (b − o(1))tN.

With t = log n, the ratio between the two bounds is close to (b/a)t which
is polynomial in n (and N).

Gap amplification II

There is ε > 0 such that there is no polynomial time nε-approximation
algorithm for the clique number in n-vertex graphs, unless P = NP.

Theorem

Let G be an n-vertex graph, and let F be a (c , d)-expander graph on the
same vertex set as G . For some integer t, we define a new graph H whose
vertices are the t + 1-vertex walks x0, . . . , xt in F , and in which two walks
are adjacent if and only if their union is contained in some clique of G .

Note that H has N = nd t vertices, which is nO(1) when t = O(log n).

We claim that

if ω(G) ≤ an, then ω(H) ≤ (a+ o(1))tN.

if ω(G) ≥ bn, then ω(H) ≥ (b − o(1))tN.

With t = log n, the ratio between the two bounds is close to (b/a)t which
is polynomial in n (and N).

Gap amplification II

There is ε > 0 such that there is no polynomial time nε-approximation
algorithm for the clique number in n-vertex graphs, unless P = NP.

Theorem

Let G be an n-vertex graph, and let F be a (c , d)-expander graph on the
same vertex set as G . For some integer t, we define a new graph H whose
vertices are the t + 1-vertex walks x0, . . . , xt in F , and in which two walks
are adjacent if and only if their union is contained in some clique of G .

Note that H has N = nd t vertices, which is nO(1) when t = O(log n).

We claim that

if ω(G) ≤ an, then ω(H) ≤ (a+ o(1))tN.

if ω(G) ≥ bn, then ω(H) ≥ (b − o(1))tN.

With t = log n, the ratio between the two bounds is close to (b/a)t which
is polynomial in n (and N).

Gap amplification II

There is ε > 0 such that there is no polynomial time nε-approximation
algorithm for the clique number in n-vertex graphs, unless P = NP.

Theorem

Let G be an n-vertex graph, and let F be a (c , d)-expander graph on the
same vertex set as G . For some integer t, we define a new graph H whose
vertices are the t + 1-vertex walks x0, . . . , xt in F , and in which two walks
are adjacent if and only if their union is contained in some clique of G .

Note that H has N = nd t vertices, which is nO(1) when t = O(log n).

We claim that

if ω(G) ≤ an, then ω(H) ≤ (a+ o(1))tN.

if ω(G) ≥ bn, then ω(H) ≥ (b − o(1))tN.

With t = log n, the ratio between the two bounds is close to (b/a)t which
is polynomial in n (and N).

Gap amplification II

There is ε > 0 such that there is no polynomial time nε-approximation
algorithm for the clique number in n-vertex graphs, unless P = NP.

Theorem

Let G be an n-vertex graph, and let F be a (c , d)-expander graph on the
same vertex set as G . For some integer t, we define a new graph H whose
vertices are the t + 1-vertex walks x0, . . . , xt in F , and in which two walks
are adjacent if and only if their union is contained in some clique of G .

Note that H has N = nd t vertices, which is nO(1) when t = O(log n).

We claim that

if ω(G) ≤ an, then ω(H) ≤ (a+ o(1))tN.

if ω(G) ≥ bn, then ω(H) ≥ (b − o(1))tN.

With t = log n, the ratio between the two bounds is close to (b/a)t which
is polynomial in n (and N).

Random walks in expander graphs

We only need to show that

if ω(G) ≤ an, then ω(H) ≤ (a+ o(1))tN.

if ω(G) ≥ bn, then ω(H) ≥ (b − o(1))tN.

This is an immediate consequence of the following theorem, which says
that random walks in expander graphs behave like random sampling.

Let G be a (c , d)-expander graph on n vertices.
Suppose we take a vertex x0 uniformly at random in G , and then perform
a random walk x0, . . . , xt of length t starting at x0.
Then for any subset S ⊆ V (G), the probability that x0, x1, . . . , xt are
all in S is at most (|S |/n + o(1))t and at least (|S |/n − o(1))t .

Random walks in expander graphs

Random walks in expander graphs

We only need to show that

if ω(G) ≤ an, then ω(H) ≤ (a+ o(1))tN.

if ω(G) ≥ bn, then ω(H) ≥ (b − o(1))tN.

This is an immediate consequence of the following theorem, which says
that random walks in expander graphs behave like random sampling.

Let G be a (c , d)-expander graph on n vertices.
Suppose we take a vertex x0 uniformly at random in G , and then perform
a random walk x0, . . . , xt of length t starting at x0.
Then for any subset S ⊆ V (G), the probability that x0, x1, . . . , xt are
all in S is at most (|S |/n + o(1))t and at least (|S |/n − o(1))t .

Random walks in expander graphs

Random walks in expander graphs

We only need to show that

if ω(G) ≤ an, then ω(H) ≤ (a+ o(1))tN.

if ω(G) ≥ bn, then ω(H) ≥ (b − o(1))tN.

This is an immediate consequence of the following theorem, which says
that random walks in expander graphs behave like random sampling.

Let G be a (c , d)-expander graph on n vertices.
Suppose we take a vertex x0 uniformly at random in G , and then perform
a random walk x0, . . . , xt of length t starting at x0.
Then for any subset S ⊆ V (G), the probability that x0, x1, . . . , xt are
all in S is at most (|S |/n + o(1))t and at least (|S |/n − o(1))t .

Random walks in expander graphs

	Main Talk

