The fg + 1 problem for Newton polygons

Pascal Koiran

Lyon, April 2025

Based on joint work with: Natacha Portier, Sébastien Tavenas and Stéphan Thomassé

(and also: William Aufort, Karthik C.S.)

(日) (四) (문) (문) (문)

The Newton polygon

• Let
$$f(X, Y) = \sum_{i} \alpha_i X^{a_i} Y^{b_i}$$

- Monomials of f: Mon $(f) = \{(a_i, b_i), \alpha_i \neq 0\}$
- The Newton polygon: Newt(f) = Conv(Mon(f))
- An example: $f(X, Y) = 1 + 2X^3Y + XY^2 + XY^3$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Problem: Let f, g have (at most) t monomials each. What is the maximal number of vertices of Newt(fg + 1) ?

An obvious upper bound: $t^2 + 1$.

For Newt(*fg*):

Problem: Let f, g have (at most) t monomials each. What is the maximal number of vertices of Newt(fg + 1) ?

An obvious upper bound: $t^2 + 1$.

For Newt(fg):

Problem: Let f, g have (at most) t monomials each. What is the maximal number of vertices of Newt(fg + 1) ?

An obvious upper bound: $t^2 + 1$.

For Newt(*fg*):

Problem: Let f, g have (at most) t monomials each. What is the maximal number of vertices of Newt(fg + 1) ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

An obvious upper bound: $t^2 + 1$.

For Newt(fg): 2t is a tight upper bound.

Problem: Let f, g have (at most) t monomials each. What is the maximal number of vertices of Newt(fg + 1) ?

An obvious upper bound: $t^2 + 1$.

For Newt(fg): 2t is a tight upper bound.

▶ Lemma [Ostrowski] : Newt(fg) = Newt(f) + Newt(g). Minkowski sum: $P + Q = \{p + q, p \in P, q \in Q\}$.

Problem: Let f, g have (at most) t monomials each. What is the maximal number of vertices of Newt(fg + 1) ?

An obvious upper bound: $t^2 + 1$.

For Newt(fg): 2t is a tight upper bound.

- ▶ Lemma [Ostrowski] : Newt(fg) = Newt(f) + Newt(g). Minkowski sum: $P + Q = \{p + q, p \in P, q \in Q\}$.
- For convex polygons P, Q with p and q edges, the Minkowski sum P + Q has at most p + q edges. They are translates of the edges of P and Q.

 f(X, Y) = 1 + X³Y + XY² + XY³ et g(X, Y) = 1 + X²Y + Y²
 (fg)(X, Y) = 1 + Y² + XY² + XY³ + XY⁴ + XY⁵ + X²Y + X³Y + 2X³Y³ + X³Y⁴ + X⁵Y²

 f(X, Y) = 1 + X³Y + XY² + XY³ et g(X, Y) = 1 + X²Y + Y²
 (fg)(X, Y) = 1 + Y² + XY² + XY³ + XY⁴ + XY⁵ + X²Y + X³Y + 2X³Y³ + X³Y⁴ + X⁵Y²

 f(X, Y) = 1 + X³Y + XY² + XY³ et g(X, Y) = 1 + X²Y + Y²
 (fg)(X, Y) = 1 + Y² + XY² + XY³ + XY⁴ + XY⁵ + X²Y + X³Y + 2X³Y³ + X³Y⁴ + X⁵Y²

OL has the steepest slope among all edges of P and Q.

OL has the steepest slope among all edges of P and Q.

OL has the steepest slope among all edges of P and Q.

OL has the steepest slope among all edges of P and Q.

OL has the steepest slope among all edges of P and Q.

OL has the steepest slope among all edges of P and Q.

OL has the steepest slope among all edges of P and Q.

OL has the steepest slope among all edges of P and Q.

The fg + 1 problem

• Newt(
$$fg$$
) = Newt(f) + Newt(g)

- ▶ If f and g have t monomials, Newt(fg) has $\leq 2t$ edges.
- For Newt(fg + 1): cancellations are possible.

An example:
$$f(X, Y) = -1 + X^2Y + XY^2$$
,
 $g(X, Y) = 1 + X^4Y + XY^4$

The trivial bound: t^2

A better bound: $\mathcal{O}(t^{4/3})$

The right bound might be linear...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A complexity theoretic motivation: The τ -conjecture for Newton polygons

Conjecture: Consider $f \in \mathbb{C}[X, Y]$ of the form

$$f(X,Y) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}(X,Y)$$

where the f_{ij} have at most t monomials:

The Newton polygon of f has at most poly(kmt) vertices. **Remarks:**

- f is a "sum of products of sparse polynomials."
- ▶ Naive upper bound: at most *kt^m* vertices.
- Conjecture implies VP \neq VNP (no polynomial size arithmetic circuits for the permanent).
- Similar problems for univariate polynomials: number of real roots, multiplicities of nonzero complex roots.

A complexity theoretic motivation: The τ -conjecture for Newton polygons

Conjecture: Consider $f \in \mathbb{C}[X, Y]$ of the form

$$f(X,Y) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}(X,Y)$$

where the f_{ij} have at most t monomials:

The Newton polygon of f has at most poly(kmt) vertices. **Remarks:**

- f is a "sum of products of sparse polynomials."
- ▶ Naive upper bound: at most *kt^m* vertices.
- Conjecture implies VP \neq VNP (no polynomial size arithmetic circuits for the permanent).
- Similar problems for univariate polynomials: number of real roots, multiplicities of nonzero complex roots.

A complexity theoretic motivation: The τ -conjecture for Newton polygons

Conjecture: Consider $f \in \mathbb{C}[X, Y]$ of the form

$$f(X,Y) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}(X,Y)$$

where the f_{ij} have at most t monomials:

The Newton polygon of f has at most poly(kmt) vertices. **Remarks:**

- f is a "sum of products of sparse polynomials."
- ▶ Naive upper bound: at most *kt^m* vertices.
- Conjecture implies VP ≠ VNP (no polynomial size arithmetic circuits for the permanent).
- Similar problems for univariate polynomials: number of real roots, multiplicities of nonzero complex roots.

Consider again the case where fg has constant term -1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Observation: The vertices of Newt(fg + 1) form a convexly independent subset of Mon(f) + Mon(g).

Consider again the case where fg has constant term -1.

Observation: The vertices of Newt(fg + 1) form a convexly independent subset of Mon(f) + Mon(g).

Theorem [Eisenbrand-Pach-Rothvoß-Sopher'08]: Let A and B be sets of at most t points each. Any convexly independent subset of A + B has cardinality $O(t^{4/3})$.

Consider again the case where fg has constant term -1.

Observation: The vertices of Newt(fg + 1) form a convexly independent subset of Mon(f) + Mon(g).

Theorem [Eisenbrand-Pach-Rothvoß-Sopher'08]: Let A and B be sets of at most t points each. Any convexly independent subset of A + B has cardinality $O(t^{4/3})$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remark: This bound was shown to be optimal (2010).

Consider again the case where fg has constant term -1.

Observation: The vertices of Newt(fg + 1) form a convexly independent subset of Mon(f) + Mon(g).

Theorem [Eisenbrand-Pach-Rothvoß-Sopher'08]: Let A and B be sets of at most t points each. Any convexly independent subset of A + B has cardinality $O(t^{4/3})$.

Remark: This bound was shown to be optimal (2010).

Corollary: Newt(fg + 1) has $O(t^{4/3})$ vertices.

Open problem: Is there a linear upper bound for fg + 1?

What if Mon(f), Mon(g) are in convex position ?

Students supervised: Karthik C.S. and William Aufort. Improved result (unpublished): O(t) bound for Newt(fg + 1).

Question: Let A, B be convexly independent sets, of at most t points each. Maximal size of a convexly independent subset $S \subseteq A + B$?

Theorem[Tiwary'14]: $|S| = O(t \log t)$.

Remark 1: The right bound in Tiwary's theorem might be O(t). **Remark 2:** This question is a generalization of the unit distance problem for sets of points in convex position.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

What if Mon(f), Mon(g) are in convex position ?

Students supervised: Karthik C.S. and William Aufort. Improved result (unpublished): O(t) bound for Newt(fg + 1).

Question: Let A, B be convexly independent sets, of at most t points each. Maximal size of a convexly independent subset $S \subseteq A + B$?

Theorem[Tiwary'14]: $|S| = O(t \log t)$.

Remark 1: The right bound in Tiwary's theorem might be O(t). **Remark 2:** This question is a generalization of the unit distance problem for sets of points in convex position.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

What if Mon(f), Mon(g) are in convex position ?

Students supervised: Karthik C.S. and William Aufort. Improved result (unpublished): O(t) bound for Newt(fg + 1).

Question: Let A, B be convexly independent sets, of at most t points each. Maximal size of a convexly independent subset $S \subseteq A + B$?

Theorem[Tiwary'14]: $|S| = O(t \log t)$.

Remark 1: The right bound in Tiwary's theorem might be O(t). **Remark 2:** This question is a generalization of the unit distance problem for sets of points in convex position.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The unit distance problem

Problem: Let A be a set of t points in the plane. How many pairs of points p, q of A can be at distance 1?

- Erdös (1946): Slightly superlinear (t^{1+c/log log t}) lower bound. Distinct distances problem appears in the same paper.
- Upper bound: $O(t^{4/3})$ by Spencer-Szemerédi-Trotter (1984). If A is convex:
 - ► *O*(*t* log *t*) upper bound by Füredi (1990).

▶ arxiv preprint by Khopkar (2017) claims O(t) upper bound. **Remark:** p, q at distance $1 \Leftrightarrow p - q \in C$ (the unit circle). Hence: if A contains m pairs at distance 1, the convex set $A + (-A) \cap C$ has size m.

In particular, Tiwary (2014) reproves Füredi (1990).

The unit distance problem

Problem: Let A be a set of t points in the plane. How many pairs of points p, q of A can be at distance 1?

- Erdös (1946): Slightly superlinear (t^{1+c/log log t}) lower bound. Distinct distances problem appears in the same paper.
- Upper bound: O(t^{4/3}) by Spencer-Szemerédi-Trotter (1984).
 If A is convex:
 - O(t log t) upper bound by Füredi (1990).
 - > arxiv preprint by Khopkar (2017) claims O(t) upper bound.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remark: p, q at distance $1 \Leftrightarrow p - q \in C$ (the unit circle). Hence: if A contains m pairs at distance 1, the convex set $A + (-A) \cap C$ has size m.

In particular, Tiwary (2014) reproves Füredi (1990).

The unit distance problem

Problem: Let A be a set of t points in the plane. How many pairs of points p, q of A can be at distance 1?

- Erdös (1946): Slightly superlinear (t^{1+c/log log t}) lower bound. Distinct distances problem appears in the same paper.
- Upper bound: O(t^{4/3}) by Spencer-Szemerédi-Trotter (1984).
 If A is convex:
 - O(t log t) upper bound by Füredi (1990).
- ▶ arxiv preprint by Khopkar (2017) claims O(t) upper bound. **Remark:** p, q at distance $1 \Leftrightarrow p - q \in C$ (the unit circle). Hence: if A contains m pairs at distance 1, the convex set $A + (-A) \cap C$ has size m.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

In particular, Tiwary (2014) reproves Füredi (1990).
$S \subseteq A + B$ with A, B, S in convex position: Ingredients of Tiwary's proof

Ingredient 1: $S \subseteq A + A$ with A, S in convex position.

- ▶ $|S| \leq 5|A| 8$ [Halman-Onn-Rothblum'2007].
- ▶ Improvement by García-Marco and Knauer (2015): $|S| \le 2|A| - 2$; an example where |S| = 3|A|/2.

Ingredient 2: Decomposition of a convex polygon A into 4 *convex chains*: $A_{NW}, A_{NE}, A_{SE}, A_{SW}$.

$S \subseteq A + B$: using the two ingredients

We estimate the contribution of $A_d + B_{d'}$ to S for $d, d' \in \{NW, NE, SE, SW\}$. Lemma: If $d \neq d'$, $|(A_d + B_{d'}) \cap S| \leq 2(|A_d| + |B_{d'}|)$.

Follows from Argument 1 by translating $B_{d'}$:

$S \subseteq A + B$: using the two ingredients

We estimate the contribution of $A_d + B_{d'}$ to S for $d, d' \in \{NW, NE, SE, SW\}$. Lemma: If $d \neq d'$, $|(A_d + B_{d'}) \cap S| \leq 2(|A_d| + |B_{d'}|)$.

Follows from Argument 1 by translating $B_{d'}$:

The remaining case: $A_d + B_d$

Let $f(n) = \max$ size of convexly independent subset of $A_d + B_d$, where $|A_d| + |B_d| \le n$.

Divide and conquer argument shows:

$$f(n) \leq 2f(n/2) + O(n).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Hence $f(n) = O(n \log n)$. \Box

 $f(n) \leq 2f(n/2) + O(n)$ by divide and conquer

- ► $|A_d \cup B_d| = n/2, |A_d \cup B_d| = n/2.$
- ▶ By translation, contributions of $A_d + B_d$, $B_d + A_d$ are O(n).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Contributions of $A_d + B_d$, $A_d + B_d$ are at most f(n/2).

Back to fg + 1

- Recall that A = Mon(f), B = Mon(g) are in convex position.
- When we remove the origin, new points (S) appear.
- ▶ Wanted: bounds on the contributions

$$|(A_d+B_{d'})\cap S_{d''}|$$

of the chains of A and B to the chains of S.

• Case $d \neq d'$ already dealt with.

Lemma: If $d \neq d'$, $|(A_d + B_d) \cap S_{d'}| \leq |A_d| + |B_d|$.

- Consider the bipartite graph G = (V, E) where V = A_d ∪ B_d and (a, b) ∈ E ⇔ a + b ∈ S_{d'}
- lf a has 3 neighbors b_1 , b_2 , b_3 , they form a chain of type ...

Lemma: If $d \neq d'$, $|(A_d + B_d) \cap S_{d'}| \leq |A_d| + |B_d|$.

- Consider the bipartite graph G = (V, E) where V = A_d ∪ B_d and (a, b) ∈ E ⇔ a + b ∈ S_{d'}
- lf a has 3 neighbors b_1 , b_2 , b_3 , they form a chain of type ...

Lemma: If $d \neq d'$, $|(A_d + B_d) \cap S_{d'}| \leq |A_d| + |B_d|$.

- Consider the bipartite graph G = (V, E) where V = A_d ∪ B_d and (a, b) ∈ E ⇔ a + b ∈ S_{d'}
- lf a has 3 neighbors b_1 , b_2 , b_3 , they form a chain of type ...

• of type d since $b_i \in B_d$

Lemma: If $d \neq d'$, $|(A_d + B_d) \cap S_{d'}| \leq |A_d| + |B_d|$.

- Consider the bipartite graph G = (V, E) where V = A_d ∪ B_d and (a, b) ∈ E ⇔ a + b ∈ S_{d'}
- lf a has 3 neighbors b_1 , b_2 , b_3 , they form a chain of type ...

- of type d since $b_i \in B_d$
- of type d' as a translate of a subchain of S_{d'}

Lemma: If $d \neq d'$, $|(A_d + B_d) \cap S_{d'}| \leq |A_d| + |B_d|$.

- Consider the bipartite graph G = (V, E) where V = A_d ∪ B_d and (a, b) ∈ E ⇔ a + b ∈ S_{d'}
- lf a has 3 neighbors b_1 , b_2 , b_3 , they form a chain of type ...

- of type d since $b_i \in B_d$
- of type d' as a translate of a subchain of S_{d'}

A D N A 目 N A E N A E N A B N A C N

Lemma: If $d \neq d'$, $|(A_d + B_d) \cap S_{d'}| \leq |A_d| + |B_d|$.

- Consider the bipartite graph G = (V, E) where V = A_d ∪ B_d and (a, b) ∈ E ⇔ a + b ∈ S_{d'}
- lf a has 3 neighbors b_1 , b_2 , b_3 , they form a chain of type ...

- of type d since $b_i \in B_d$
- of type d' as a translate of a subchain of S_{d'}
- Contradiction since $d \neq d'$

A D N A 目 N A E N A E N A B N A C N

Lemma: If $d \neq d'$, $|(A_d + B_d) \cap S_{d'}| \leq |A_d| + |B_d|$.

- Consider the bipartite graph G = (V, E) where V = A_d ∪ B_d and (a, b) ∈ E ⇔ a + b ∈ S_{d'}
- lf a has 3 neighbors b_1 , b_2 , b_3 , they form a chain of type ...

- of type d since $b_i \in B_d$
- of type d' as a translate of a subchain of S_{d'}
- Contradiction since $d \neq d'$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Note: we can replace A_d by A in this proof, even if A is nonconvex.

Lemma $|(A_d + B) \cap S_d| \le |B|$ (B may be nonconvex)

- Consider the same graph G, and d = NW.
- lf *b* has 2 neighbors $a_1, a_2...$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Lemma $|(A_d + B) \cap S_d| \le |B|$ (B may be nonconvex)

- Consider the same graph G, and d = NW.
- If b has 2 neighbors $a_1, a_2...$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

slope(a₁, a₂) > slope(a₁ + b, L)

Lemma $|(A_d + B) \cap S_d| \le |B|$ (B may be nonconvex)

- Consider the same graph G, and d = NW.
- If b has 2 neighbors $a_1, a_2...$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- slope(a₁, a₂) > slope(a₁ + b, L)
- slope(a₁ + b, L) >
 slope(O, L)

Lemma $|(A_d + B) \cap S_d| \le |B|$ (B may be nonconvex)

- Consider the same graph G, and d = NW.
- ▶ If *b* has 2 neighbors *a*₁, *a*₂...
- slope(a₁, a₂) > slope(a₁ + b, L)
- slope(a₁ + b, L) >
 slope(O, L)
- Slope(O, L) ≥ slope (a₁, a₂) (OL is the steepest slope in A, B.)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Contradiction

Theorem: If Mon(f) and Mon(g) are in convex position, |Newt(fg + 1)| is of linear size. Extension to:

- Mon(f) or Mon(g) nonconvex.
- Mon(f) and Mon(g) weakly convex.
- Deletion of several points.

Some open problems

Combinatorial geometry:

- (*) Linear bound on $S \subseteq A + A$ with A, S in convex position: what is the right constant?
- (**) Unit distance problem for A in convex position.
- (***) Maximal size of $S \subseteq A + B$ for A, B, S in convex position.
- (****) Unit distance problem (Erdös'46).

Newton polygon of fg + 1:

- How to take better care of cancellations?
- Suggestion by Stéphan Thomassé: work with $f, g \in \mathbb{Z}_2[X, Y]$.

Other fg + 1 problems:

- Number of real roots of fg + 1 with $f, g \in \mathbb{R}[X]$?
- Maximum multiplicity of a nonzero root of fg + 1 with f, g ∈ C[X]?
- ► Good bounds for more general expressions $\Rightarrow \bigvee_{P} \neq \bigvee_{P} \bigvee_{P}$

Some open problems

Combinatorial geometry:

- (*) Linear bound on $S \subseteq A + A$ with A, S in convex position: what is the right constant?
- (**) Unit distance problem for A in convex position.
- (***) Maximal size of $S \subseteq A + B$ for A, B, S in convex position.
- (****) Unit distance problem (Erdös'46).

Newton polygon of fg + 1:

- How to take better care of cancellations?
- Suggestion by Stéphan Thomassé: work with $f, g \in \mathbb{Z}_2[X, Y]$.

Other fg + 1 problems:

- Number of real roots of fg + 1 with $f, g \in \mathbb{R}[X]$?
- Maximum multiplicity of a nonzero root of fg + 1 with f, g ∈ C[X]?
- ► Good bounds for more general expressions $\Rightarrow \bigvee_{P} \neq \bigvee_{P} \downarrow_{P}$

Some open problems

Combinatorial geometry:

- (*) Linear bound on $S \subseteq A + A$ with A, S in convex position: what is the right constant?
- (**) Unit distance problem for A in convex position.
- (***) Maximal size of $S \subseteq A + B$ for A, B, S in convex position.
- (****) Unit distance problem (Erdös'46).

Newton polygon of fg + 1:

- How to take better care of cancellations?
- Suggestion by Stéphan Thomassé: work with $f, g \in \mathbb{Z}_2[X, Y]$.

Other fg + 1 problems:

- ▶ Number of real roots of fg + 1 with $f, g \in \mathbb{R}[X]$?
- Maximum multiplicity of a nonzero root of fg + 1 with f, g ∈ C[X]?
- Good bounds for more general expressions $\Rightarrow VP \neq VNP$.

Onion peeling of Minkowski sums: A new problem of combinatorial geometry?

Onion peeling of a finite set $A \subseteq \mathbb{R}^2$:

- 1. First layer: compute conv(A), remove the extremal points.
- 2. Repeat until $A = \emptyset$.

Onion peeling of a Minkowski sum: Assume F, G have $\leq t$ points (and are possibly nonconvex). How many points on k-th layer of A = F + G?

Remark: There are at most 2*t* points on first layer.

A result on onion peeling, and a variation

Theorem: *k*-th layer of F + G is of size $O(kt \log t)$.

A variation: how many points on the convex hull of $(F + G) \setminus H$, if *H* is of size at most *h*?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Remark: These questions are relevant to Newt(fg - h) where f, g, h have positive coefficients.

Appendix

<□▶ <週▶ < ≧▶ < ≧▶ = ● ○ ○ ○ ○

A τ -conjecture for Newton polygons

Conjecture: Consider $f \in \mathbb{C}[X, Y]$ of the form

$$f(X,Y) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}(X,Y)$$

- f is a "sum of products of sparse polynomials."
- ▶ k = 1: Newt $(f_1 \dots f_m)$ is the Minkowski sum $\sum_{i=1}^m Newt(f_i)$.
- ▶ k = 2 is open. What about Newt $(f_1 \dots f_m + 1)$?
- ▶ Naive upper bound: at most *kt^m* vertices.
- Improved upper bound: O(kt^{2m/3}) by the convexity argument. This argument cannot take us below t^{m/3}.

A τ -conjecture for Newton polygons

Conjecture: Consider $f \in \mathbb{C}[X, Y]$ of the form

$$f(X,Y) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}(X,Y)$$

- f is a "sum of products of sparse polynomials."
- k = 1: Newt $(f_1 \dots f_m)$ is the Minkowski sum $\sum_{i=1}^m Newt(f_i)$.
- ▶ k = 2 is open. What about Newt $(f_1 \dots f_m + 1)$?
- ▶ Naive upper bound: at most *kt^m* vertices.
- Improved upper bound: O(kt^{2m/3}) by the convexity argument. This argument cannot take us below t^{m/3}.

A $\tau\text{-conjecture}$ for Newton polygons

Conjecture: Consider $f \in \mathbb{C}[X, Y]$ of the form

$$f(X,Y) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}(X,Y)$$

- f is a "sum of products of sparse polynomials."
- k = 1: Newt $(f_1 \dots f_m)$ is the Minkowski sum $\sum_{i=1}^m Newt(f_i)$.
- k = 2 is open. What about Newt $(f_1 \dots f_m + 1)$?
- ▶ Naive upper bound: at most *kt^m* vertices.
- Improved upper bound: O(kt^{2m/3}) by the convexity argument. This argument cannot take us below t^{m/3}.

A τ -conjecture for Newton polygons

Conjecture: Consider $f \in \mathbb{C}[X, Y]$ of the form

$$f(X,Y) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}(X,Y)$$

- f is a "sum of products of sparse polynomials."
- k = 1: Newt $(f_1 \dots f_m)$ is the Minkowski sum $\sum_{i=1}^m Newt(f_i)$.
- k = 2 is open. What about Newt $(f_1 \dots f_m + 1)$?
- Naive upper bound: at most kt^m vertices.
- Improved upper bound: O(kt^{2m/3}) by the convexity argument. This argument cannot take us below t^{m/3}.

A τ -conjecture for Newton polygons

Conjecture: Consider $f \in \mathbb{C}[X, Y]$ of the form

$$f(X,Y) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}(X,Y)$$

- f is a "sum of products of sparse polynomials."
- k = 1: Newt $(f_1 \dots f_m)$ is the Minkowski sum $\sum_{i=1}^m Newt(f_i)$.
- k = 2 is open. What about Newt $(f_1 \dots f_m + 1)$?
- ▶ Naive upper bound: at most *kt^m* vertices.
- Improved upper bound: O(kt^{2m/3}) by the convexity argument. This argument cannot take us below t^{m/3}.

Three "toy problems:"

1. Number of vertices for Newton polygon of fg + 1: trivial bound is $O(t^2)$, best current bound is $O(t^{4/3})$.

2. For real univariate polynomials:

 $t \text{ monomials} \Rightarrow \text{ at most } t-1 \text{ positive real roots (Descartes).}$ Number of real roots of fg + 1: trivial bound is $O(t^2)$.

3. Any non-zero (complex) root has multiplicity at most t - 1 (Hajós lemma).

Multiplicity of non-zero root of fg + 1: trivial bound is $O(t^2)$.

Three "toy problems:"

- 1. Number of vertices for Newton polygon of fg + 1: trivial bound is $O(t^2)$, best current bound is $O(t^{4/3})$.
- 2. For real univariate polynomials:

t monomials \Rightarrow at most t - 1 positive real roots (Descartes). Number of real roots of fg + 1: trivial bound is $O(t^2)$.

3. Any non-zero (complex) root has multiplicity at most t-1 (Hajós lemma).

Multiplicity of non-zero root of fg + 1: trivial bound is $O(t^2)$.

Three "toy problems:"

- 1. Number of vertices for Newton polygon of fg + 1: trivial bound is $O(t^2)$, best current bound is $O(t^{4/3})$.
- 2. For real univariate polynomials:

 $t \text{ monomials} \Rightarrow \text{at most } t-1 \text{ positive real roots (Descartes).}$ Number of real roots of fg + 1: trivial bound is $O(t^2)$.

3. Any non-zero (complex) root has multiplicity at most t - 1 (Hajós lemma). Multiplicity of non-zero root of fr + 1, twisted bound is $O(t^2)$

Multiplicity of non-zero root of fg + 1: trivial bound is $O(t^2)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Three "toy problems:"

- 1. Number of vertices for Newton polygon of fg + 1: trivial bound is $O(t^2)$, best current bound is $O(t^{4/3})$.
- 2. For real univariate polynomials:

 $t \text{ monomials} \Rightarrow \text{at most } t-1 \text{ positive real roots (Descartes).}$ Number of real roots of fg + 1: trivial bound is $O(t^2)$.

3. Any non-zero (complex) root has multiplicity at most t - 1 (Hajós lemma).

Multiplicity of non-zero root of fg + 1: trivial bound is $O(t^2)$.

Lower bounds from Newton polygons

Theorem:

 $\begin{array}{ll} \tau \text{-conjecture} & \Rightarrow & \text{no polynomial-size arithmetic circuits} \\ \text{for Newton polygons} & & \text{for the permanent (VP } \neq \text{VNP)}. \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Remark: Recall
$$f = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}$$
.
Upper bounds of the form $2^{O(m)}(kt)^{O(1)}$, or even $2^{(m+\log kt)^c}$ for some $c < 2$ are enough.

A Newton polygon with 2^n edges

For
$$f_n(X, Y) = \sum_{i=1}^{2^n} X^i Y^{i^2}$$
:
 $2^n - 1$ edges on lower hull, 1 edge on upper hull, since all vertices lie on graph of $i \mapsto i^2$.

Remarks:

Our preprint's first version uses g_n(X, Y) = \$\prod_{i=1}^{2}(X + Y^{i})\$: 2ⁿ edges on lower hull, 2ⁿ edges on upper hull.
f_n is very "explicit:" it has 0/1 coefficients and they are computable in polynomial time.

A D N A 目 N A E N A E N A B N A C N

Lower bounds from Newton polygons: A proof sketch

- 1. Assume that the permanent is easy to compute.
- 2. Express f_n as $\sum_{i=1}^k \prod_{j=1}^m f_{ij}$ with $k = n^{O(\sqrt{n})}$, $t = n^{O(\sqrt{n})}$, $m = O(\sqrt{n})$.
- Contradiction with *τ*-conjecture for Newton polygons: Newt(*f_n*) has 2ⁿ vertices.

Main ingredient: Reduction to depth 4 for arithmetic circuits.

No need for results on counting hierarchy by: [Allender, Bürgisser, Kjeldgaard-Pedersen,Miltersen'06, Bürgisser'07]. They are still relevant for the τ -conjecture for multiplicities (Hrubes).
Lower bounds from Newton polygons: A proof sketch

- 1. Assume that the permanent is easy to compute.
- 2. Express f_n as $\sum_{i=1}^k \prod_{j=1}^m f_{ij}$ with $k = n^{O(\sqrt{n})}$, $t = n^{O(\sqrt{n})}$, $m = O(\sqrt{n})$.
- Contradiction with *τ*-conjecture for Newton polygons: Newt(*f_n*) has 2ⁿ vertices.

Main ingredient: Reduction to depth 4 for arithmetic circuits.

No need for results on counting hierarchy by: [Allender, Bürgisser, Kjeldgaard-Pedersen,Miltersen'06, Bürgisser'07]. They are still relevant for the τ -conjecture for multiplicities (Hrubes).

Reduction to depth 4 [Agrawal-Vinay'08]

Theorem [Tavenas'13]:

Let C be a circuit of size s, degree d, in n variables. We assume $d, s = n^{O(1)}$.

There is an equivalent depth 4 $(\sum \prod \sum \prod)$ circuit of size $s^{O(\sqrt{d})}$, with multiplication gates of fan-in $O(\sqrt{d})$.

A D N A 目 N A E N A E N A B N A C N

The $\sum \prod$ gates compute sparse polynomials.

Reduction to depth 4 [Agrawal-Vinay'08]

Theorem [Tavenas'13]:

Let C be a circuit of size s, degree d, in n variables. We assume $d, s = n^{O(1)}$.

There is an equivalent depth 4 $(\sum \prod \sum \prod)$ circuit of size $s^{O(\sqrt{d})}$, with multiplication gates of fan-in $O(\sqrt{d})$.

Depth-4 circuit with inputs of the form X^{2^i} , Y^{2^j} , or constants

(Shallow circuit with high-powered inputs)

The $\sum \prod$ gates compute sparse polynomials.

Recall $f_n(X, Y) = \sum_{i=1}^{2^n} X^i Y^{i^2}$.

- 1. Write $f_n(X, Y) = h_n(\overline{X}, \overline{Y})$ where h_n is multilinear in the new variables $X_j = X^{2^j}$, $Y_j = Y^{2^j}$ (consider radix 2 representation of *i* and *i*²).
- 2. h_n is in VNP by Valiant's criterion, and in VP if VP = VNP.
- 3. Reduce corresponding circuit for h_n to a depth 4 circuits C_n .

Recall $f_n(X, Y) = \sum_{i=1}^{2^n} X^i Y^{i^2}$.

- 1. Write $f_n(X, Y) = h_n(\overline{X}, \overline{Y})$ where h_n is multilinear in the new variables $X_j = X^{2^j}$, $Y_j = Y^{2^j}$ (consider radix 2 representation of *i* and *i*²).
- 2. h_n is in VNP by Valiant's criterion, and in VP if VP = VNP.
- 3. Reduce corresponding circuit for h_n to a depth 4 circuits C_n .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Recall $f_n(X, Y) = \sum_{i=1}^{2^n} X^i Y^{i^2}$.

- 1. Write $f_n(X, Y) = h_n(\overline{X}, \overline{Y})$ where h_n is multilinear in the new variables $X_j = X^{2^j}$, $Y_j = Y^{2^j}$ (consider radix 2 representation of *i* and *i*²).
- 2. h_n is in VNP by Valiant's criterion, and in VP if VP = VNP.
- 3. Reduce corresponding circuit for h_n to a depth 4 circuits C_n .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Recall $f_n(X, Y) = \sum_{i=1}^{2^n} X^i Y^{i^2}$.

- 1. Write $f_n(X, Y) = h_n(\overline{X}, \overline{Y})$ where h_n is multilinear in the new variables $X_j = X^{2^j}$, $Y_j = Y^{2^j}$ (consider radix 2 representation of *i* and *i*²).
- 2. h_n is in VNP by Valiant's criterion, and in VP if VP = VNP.
- 3. Reduce corresponding circuit for h_n to a depth 4 circuits C_n .

Another Newton polygon, with 2^{n+1} edges

For
$$f_n(X, Y) = \prod_{i=1}^{2^n} (X + Y^i)$$
:
2^{*n*} edges on lower hull, 2^{*n*} edges on upper hull.

The Newton polygon of f_1 : $f_1(X, Y) = (X + Y)(X + Y^2) = X^2 + XY + XY^2 + Y^3$:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conjecture: Consider a polynomial $f \in \mathbb{R}[X]$ of the form

$$f(X) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}(X);$$

where the f_{ij} have at most monomials.

If *f* is nonzero, its number of **real roots** is polynomial in *kmt*. Remarks:

- Case k = 1 of the conjecture follows from Descartes' rule (t monomials ⇒ at most 2t − 1 real roots).
- ▶ By expanding the products, f has at most $2kt^m 1$ zeros.
- How many real solutions to f₁... f_m = 1 ? How many real solutions to fg = 1 ? Descartes' bound is O(t²) but true bound could be O(t).

Conjecture: Consider a polynomial $f \in \mathbb{R}[X]$ of the form

$$f(X) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}(X);$$

where the f_{ij} have at most monomials.

If f is nonzero, its number of **real roots** is polynomial in kmt. **Remarks:**

- Case k = 1 of the conjecture follows from Descartes' rule (t monomials ⇒ at most 2t − 1 real roots).
- ▶ By expanding the products, f has at most $2kt^m 1$ zeros.
- How many real solutions to f₁... f_m = 1 ? How many real solutions to fg = 1 ? Descartes' bound is O(t²) but true bound could be O(t).

(日)((1))

Conjecture: Consider a polynomial $f \in \mathbb{R}[X]$ of the form

$$f(X) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}(X);$$

where the f_{ij} have at most monomials.

If *f* is nonzero, its number of **real roots** is polynomial in *kmt*. **Remarks:**

- Case k = 1 of the conjecture follows from Descartes' rule (t monomials ⇒ at most 2t − 1 real roots).
- By expanding the products, f has at most $2kt^m 1$ zeros.
- How many real solutions to f₁... f_m = 1 ? How many real solutions to fg = 1 ? Descartes' bound is O(t²) but true bound could be O(t).

(日)((1))

Conjecture: Consider a polynomial $f \in \mathbb{R}[X]$ of the form

$$f(X) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}(X);$$

where the f_{ij} have at most monomials.

If *f* is nonzero, its number of **real roots** is polynomial in *kmt*. **Remarks:**

- Case k = 1 of the conjecture follows from Descartes' rule (t monomials ⇒ at most 2t − 1 real roots).
- By expanding the products, f has at most $2kt^m 1$ zeros.
- How many real solutions to f₁... f_m = 1 ?
 How many real solutions to fg = 1 ?
 Descartes' bound is O(t²) but true bound could be O(t).

Arithmetic circuits:

A model of computation for multivariate polynomials

 $\tau(f)$ = size of smallest arithmetic circuit for $f \in \mathbb{Z}[X]$ = number of +, × needed to build f from -1, X. **Conjecture:** The number of integer zeros of f is polynomially bounded in $\tau(f)$.

Theorem [Shub-Smale'95]: τ -conjecture $\Rightarrow P_{\mathbb{C}} \neq NP_{\mathbb{C}}$.

```
Theorem [Bürgisser'07]:

\tau-conjecture \Rightarrow no polynomial-size arithmetic circuits

for the permanent

(Valiant's algebraic version of P versus NP).
```

Reminder:
$$per(X) = \sum_{\sigma \in S_n} \prod_{i=1}^n X_{i\sigma(i)}$$

 $\tau(f)$ = size of smallest arithmetic circuit for $f \in \mathbb{Z}[X]$ = number of +, × needed to build f from -1, X. **Conjecture:** The number of integer zeros of f is polynomially bounded in $\tau(f)$.

Theorem [Shub-Smale'95]: τ -conjecture $\Rightarrow \mathsf{P}_{\mathbb{C}} \neq \mathsf{NP}_{\mathbb{C}}$.

 $\begin{array}{rl} \textbf{Theorem [Bürgisser'07]:} \\ \tau\text{-conjecture} & \Rightarrow & \text{no polynomial-size arithmetic circuits} \\ & \text{for the permanent} \\ & (\text{Valiant's algebraic version of P versus NP}). \end{array}$

Reminder:
$$per(X) = \sum_{\sigma \in S_n} \prod_{i=1}^n X_{i\sigma(i)}$$

 $\tau(f) =$ size of smallest arithmetic circuit for $f \in \mathbb{Z}[X]$ = number of +, × needed to build f from -1, X. **Conjecture:** The number of integer zeros of f is polynomially bounded in $\tau(f)$.

Theorem [Shub-Smale'95]: τ -conjecture $\Rightarrow P_{\mathbb{C}} \neq NP_{\mathbb{C}}$.

Theorem [Bürgisser'07]: τ -conjecture \Rightarrow no polynomial-size arithmetic circuits for the permanent (Valiant's algebraic version of P versus NP).

Reminder:
$$per(X) = \sum_{\sigma \in S_n} \prod_{i=1}^n X_{i\sigma(i)}$$

 $\tau(f)$ = size of smallest arithmetic circuit for $f \in \mathbb{Z}[X]$ = number of +, × needed to build f from -1, X. **Conjecture:**

The number of integer zeros of f is polynomially bounded in $\tau(f)$.

Theorem [Shub-Smale'95]: τ -conjecture $\Rightarrow \mathsf{P}_{\mathbb{C}} \neq \mathsf{NP}_{\mathbb{C}}$.

Theorem [Bürgisser'07]: τ -conjecture \Rightarrow no polynomial-size arithmetic circuits for the permanent (Valiant's algebraic version of P versus NP).

Reminder:
$$per(X) = \sum_{\sigma \in S_n} \prod_{i=1}^n X_{i\sigma(i)}$$