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The Newton polygon

▶ Let f (X ,Y ) =
∑

i αiX
aiY bi

▶ Monomials of f : Mon(f ) = {(ai , bi ), αi ̸= 0}
▶ The Newton polygon: Newt(f ) = Conv(Mon(f ))

▶ An example: f (X ,Y ) = 1 + 2X 3Y + XY 2 + XY 3

•

•

•

•



The Newton polygon of fg + 1: a little puzzle

Problem: Let f , g have (at most) t monomials each.
What is the maximal number of vertices of Newt(fg + 1) ?

An obvious upper bound: t2 + 1.

For Newt(fg):

2t is a tight upper bound.

▶ Lemma [Ostrowski] : Newt(fg) = Newt(f ) + Newt(g).
Minkowski sum: P + Q = {p + q, p ∈ P, q ∈ Q}.

▶ For convex polygons P,Q with p and q edges,
the Minkowski sum P + Q has at most p + q edges.
They are translates of the edges of P and Q.
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Connection to Minkowski sums
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OL has the steepest slope among all edges of P and Q.

▶ f (X ,Y ) = 1 + X 3Y + XY 2 + XY 3 et
g(X ,Y ) = 1 + X 2Y + Y 2

▶ (fg)(X ,Y ) = 1 + Y 2 + XY 2 + XY 3 + XY 4 + XY 5 + X 2Y +
X 3Y + 2X 3Y 3 + X 3Y 4 + X 5Y 2
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The fg + 1 problem

▶ Newt(fg) = Newt(f ) + Newt(g)

▶ If f and g have t monomials, Newt(fg) has ≤ 2t edges.

▶ For Newt(fg + 1): cancellations are possible.

▶ An example: f (X ,Y ) = −1 + X 2Y + XY 2,
g(X ,Y ) = 1 + X 4Y + XY 4
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The trivial bound: t2

A better bound: O(t4/3)

The right bound might be linear...



A complexity theoretic motivation:
The τ -conjecture for Newton polygons

Conjecture: Consider f ∈ C[X ,Y ] of the form

f (X ,Y ) =
k∑

i=1

m∏
j=1

fij(X ,Y )

where the fij have at most t monomials:
The Newton polygon of f has at most poly(kmt) vertices.
Remarks:

▶ f is a “sum of products of sparse polynomials.”

▶ Naive upper bound: at most ktm vertices.

▶ Conjecture implies VP ̸= VNP
(no polynomial size arithmetic circuits for the permanent).

▶ Similar problems for univariate polynomials:
number of real roots, multiplicities of nonzero complex roots.
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The Newton polygon of fg + 1:
A convexity argument

Consider again the case where fg has constant term −1.

Observation: The vertices of Newt(fg + 1) form
a convexly independent subset of Mon(f ) +Mon(g).

Theorem [Eisenbrand-Pach-Rothvoß-Sopher’08]:
Let A and B be sets of at most t points each.
Any convexly independent subset of A+ B has cardinality O(t4/3).

Remark: This bound was shown to be optimal (2010).

Corollary: Newt(fg + 1) has O(t4/3) vertices.

Open problem: Is there a linear upper bound for fg + 1?
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What if Mon(f ),Mon(g) are in convex position ?

Students supervised: Karthik C.S. and William Aufort.
Improved result (unpublished): O(t) bound for Newt(fg + 1).

Question: Let A, B be convexly independent sets,
of at most t points each.
Maximal size of a convexly independent subset S ⊆ A+ B?

Theorem[Tiwary’14]: |S | = O(t log t).

Remark 1: The right bound in Tiwary’s theorem might be O(t).
Remark 2: This question is a generalization of the unit distance
problem for sets of points in convex position.
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The unit distance problem

Problem: Let A be a set of t points in the plane.
How many pairs of points p, q of A can be at distance 1?

▶ Erdös (1946): Slightly superlinear (t1+c/ log log t) lower bound.
Distinct distances problem appears in the same paper.

▶ Upper bound: O(t4/3) by Spencer-Szemerédi-Trotter (1984).

If A is convex:

▶ O(t log t) upper bound by Füredi (1990).

▶ arxiv preprint by Khopkar (2017) claims O(t) upper bound.

Remark: p, q at distance 1 ⇔ p − q ∈ C (the unit circle).
Hence: if A contains m pairs at distance 1,
the convex set A+ (−A) ∩ C has size m.

In particular, Tiwary (2014) reproves Füredi (1990).
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S ⊆ A+ B with A,B , S in convex position:
Ingredients of Tiwary’s proof

Ingredient 1: S ⊆ A+ A with A,S in convex position.

▶ |S | ≤ 5|A| − 8 [Halman-Onn-Rothblum’2007].

▶ Improvement by Garćıa-Marco and Knauer (2015):
|S | ≤ 2|A| − 2; an example where |S | = 3|A|/2.

Ingredient 2:
Decomposition of a convex polygon A into 4 convex chains:
ANW ,ANE ,ASE ,ASW .

•

•

•
•

•

•
•

•

NW
NE

SE



S ⊆ A+ B : using the two ingredients
We estimate the contribution of Ad + Bd ′ to S
for d , d ′ ∈ {NW ,NE , SE ,SW }.
Lemma: If d ̸= d ′, |(Ad + Bd ′) ∩ S | ≤ 2(|Ad |+ |Bd ′ |).

Follows from Argument 1 by translating Bd ′ :

•

•

•
•

Ad

•
•

•

•

Bd ′

•
•

•

•

•
•

•

•

Bd ′

Bd ′ + u⃗
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The remaining case: Ad + Bd

Let f (n) = max size of convexly independent subset of Ad + Bd ,
where |Ad |+ |Bd | ≤ n.

Divide and conquer argument shows:

f (n) ≤ 2f (n/2) + O(n).

Hence f (n) = O(n log n). □



f (n) ≤ 2f (n/2) + O(n) by divide and conquer

Ad : low slope segments

Ad : high slope segments

Bd : low slope segments

Bd : high slope segments

▶ |Ad ∪ Bd | = n/2, |Ad ∪ Bd | = n/2.

▶ By translation, contributions of Ad + Bd , Bd + Ad are O(n).

▶ Contributions of Ad + Bd , Ad + Bd are at most f (n/2).



Back to fg + 1
▶ Recall that A = Mon(f ), B = Mon(g) are in convex position.

▶ When we remove the origin, new points (S) appear.

▶ Wanted: bounds on the contributions

|(Ad + Bd ′) ∩ Sd ′′ |

of the chains of A and B to the chains of S .

▶ Case d ̸= d ′ already dealt with.

•

•

•
•

•

•
•

•

NW
NE

SE

•O

•L

•R
SNW

SSW

SSE



Different Chains

Lemma: If d ̸= d ′, |(Ad + Bd) ∩ Sd ′ | ≤ |Ad |+ |Bd |.
▶ Consider the bipartite graph G = (V ,E ) where V = Ad ∪ Bd

and (a, b) ∈ E ⇔ a+ b ∈ Sd ′

▶ If a has 3 neighbors b1, b2, b3, they form a chain of type ...

•

•

•

b1

b2

b3

Bd
•

•
•

a+ b1

a+ b2

a+ b3

Sd ′

•

•
•

•

•
•

b1

b2

b3

▶ of type d since bi ∈ Bd

▶ of type d ′ as a translate of a
subchain of Sd ′

▶ Contradiction since d ̸= d ′

▶ Note: we can replace Ad by A in this proof,
even if A is nonconvex.
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The slope argument

Lemma
|(Ad + B) ∩ Sd | ≤ |B| (B may be nonconvex)

•

•

•

•

•

O

L

a1 + b

a2 + b

▶ Consider the same graph G ,
and d = NW .

▶ If b has 2 neighbors a1, a2...

▶ slope(a1, a2) >
slope(a1 + b, L)

▶ slope(a1 + b, L) >
slope(O, L)

▶ slope(O, L) ≥ slope (a1, a2)
(OL is the steepest slope in
A,B.)

▶ Contradiction
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What we have shown

Theorem: If Mon(f ) and Mon(g) are in convex position,
|Newt(fg + 1)| is of linear size.
Extension to:

▶ Mon(f ) or Mon(g) nonconvex.

▶ Mon(f ) and Mon(g) weakly convex.

▶ Deletion of several points.



Some open problems
Combinatorial geometry:

(*) Linear bound on S ⊆ A+ A with A, S in convex position:
what is the right constant?

(**) Unit distance problem for A in convex position.

(***) Maximal size of S ⊆ A+ B for A,B,S in convex position.

(****) Unit distance problem (Erdös’46).

Newton polygon of fg + 1:

▶ How to take better care of cancellations?

▶ Suggestion by Stéphan Thomassé: work with f , g ∈ Z2[X ,Y ].

Other fg + 1 problems:

▶ Number of real roots of fg + 1 with f , g ∈ R[X ]?

▶ Maximum multiplicity of a nonzero root of fg + 1
with f , g ∈ C[X ]?

▶ Good bounds for more general expressions ⇒ VP ̸= VNP.
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Onion peeling of Minkowski sums:
A new problem of combinatorial geometry?

Onion peeling of a finite set A ⊆ R2:

1. First layer: compute conv(A), remove the extremal points.

2. Repeat until A = ∅.

Onion peeling of a Minkowski sum:
Assume F ,G have ≤ t points (and are possibly nonconvex).
How many points on k-th layer of A = F + G?

Remark: There are at most 2t points on first layer.



A result on onion peeling, and a variation

Theorem: k-th layer of F + G is of size O(kt log t).

A variation: how many points on the convex hull of (F + G ) \ H,
if H is of size at most h?

Remark: These questions are relevant to Newt(fg − h)
where f , g , h have positive coefficients.



Appendix



A τ -conjecture for Newton polygons

Conjecture: Consider f ∈ C[X ,Y ] of the form

f (X ,Y ) =
k∑

i=1

m∏
j=1

fij(X ,Y )

where the fij have at most t monomials:
The Newton polygon of f has at most poly(kmt) vertices.
Remarks:

▶ f is a “sum of products of sparse polynomials.”

▶ k = 1: Newt(f1 . . . fm) is the Minkowski sum
∑m

i=1Newt(fi ).

▶ k = 2 is open. What about Newt(f1 . . . fm + 1)?

▶ Naive upper bound: at most ktm vertices.

▶ Improved upper bound: O(kt2m/3) by the convexity argument.
This argument cannot take us below tm/3.
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The curse of fg + 1

Three “toy problems:”

1. Number of vertices for Newton polygon of fg + 1:
trivial bound is O(t2), best current bound is O(t4/3).

2. For real univariate polynomials:
t monomials ⇒ at most t − 1 positive real roots (Descartes).
Number of real roots of fg + 1: trivial bound is O(t2).

3. Any non-zero (complex) root has multiplicity at most t − 1
(Hajós lemma).
Multiplicity of non-zero root of fg + 1: trivial bound is O(t2).

Optimal bound might be O(t) for these 3 problems.
For fg rather than fg + 1, an O(t) bound holds true.
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Lower bounds from Newton polygons

Theorem:
τ -conjecture ⇒ no polynomial-size arithmetic circuits
for Newton polygons for the permanent (VP ̸= VNP).

Remark: Recall f =
k∑

i=1

m∏
j=1

fij .

Upper bounds of the form 2O(m)(kt)O(1),
or even 2(m+log kt)c for some c < 2 are enough.



A Newton polygon with 2n edges

For fn(X ,Y ) =
2n∑
i=1

X iY i2 :

2n − 1 edges on lower hull, 1 edge on upper hull,
since all vertices lie on graph of i 7→ i2.

Remarks:

▶ Our preprint’s first version uses gn(X ,Y ) =
2n∏
i=1

(X + Y i ):

2n edges on lower hull, 2n edges on upper hull.

▶ fn is very “explicit:” it has 0/1 coefficients
and they are computable in polynomial time.



Lower bounds from Newton polygons:
A proof sketch

1. Assume that the permanent is easy to compute.

2. Express fn as
∑k

i=1

∏m
j=1 fij

with k = nO(
√
n), t = nO(

√
n), m = O(

√
n).

3. Contradiction with τ -conjecture for Newton polygons:
Newt(fn) has 2

n vertices.

Main ingredient: Reduction to depth 4 for arithmetic circuits.

No need for results on counting hierarchy by:
[Allender, Bürgisser, Kjeldgaard-Pedersen,Miltersen’06,
Bürgisser’07].
They are still relevant for the τ -conjecture for multiplicities
(Hrubes).
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Reduction to depth 4 [Agrawal-Vinay’08]

Theorem [Tavenas’13]:
Let C be a circuit of size s, degree d , in n variables.
We assume d , s = nO(1).

There is an equivalent depth 4 (
∑∏∑∏

) circuit of size sO(
√
d),

with multiplication gates of fan-in O(
√
d).

Depth-4 circuit with inputs of the form X 2i , Y 2j , or constants

(Shallow circuit with high-powered inputs)

⇕
Sum of Products of Sparse Polynomials

The
∑∏

gates compute sparse polynomials.
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Reduction to depth 4 and Newton polygons:
Completing the argument.

Recall fn(X ,Y ) =
∑2n

i=1 X
iY i2 .

1. Write fn(X ,Y ) = hn(X ,Y ) where hn is multilinear

in the new variables Xj = X 2j , Yj = Y 2j

(consider radix 2 representation of i and i2).

2. hn is in VNP by Valiant’s criterion, and in VP if VP = VNP.

3. Reduce corresponding circuit for hn to a depth 4 circuits Cn.

4. Substitute Xj 7→ X 2j , Yj 7→ Y 2j in Cn to express fn
as a “small” sum of products of sparse polynomials.
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Another Newton polygon, with 2n+1 edges

For fn(X ,Y ) =
2n∏
i=1

(X + Y i ):

2n edges on lower hull, 2n edges on upper hull.

The Newton polygon of f1:
f1(X ,Y ) = (X + Y )(X + Y 2) = X 2 + XY + XY 2 + Y 3:

Points of Mon(f1)



The real τ -conjecture

Conjecture: Consider a polynomial f ∈ R[X ] of the form

f (X ) =
k∑

i=1

m∏
j=1

fij(X );

where the fij have at most monomials.
If f is nonzero, its number of real roots is polynomial in kmt.
Remarks:

▶ Case k = 1 of the conjecture follows from Descartes’ rule
(t monomials ⇒ at most 2t − 1 real roots).

▶ By expanding the products, f has at most 2ktm − 1 zeros.

▶ How many real solutions to f1 . . . fm = 1 ?
How many real solutions to fg = 1 ?
Descartes’ bound is O(t2) but true bound could be O(t).
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Arithmetic circuits:
A model of computation for multivariate polynomials



Shub and Smale’s τ -conjecture

τ(f ) = size of smallest arithmetic circuit for f ∈ Z[X ]
= number of +,× needed to build f from −1,X .

Conjecture:
The number of integer zeros of f is polynomially bounded in τ(f ).

Theorem [Shub-Smale’95]: τ -conjecture ⇒ PC ̸= NPC.

Theorem [Bürgisser’07]:
τ -conjecture ⇒ no polynomial-size arithmetic circuits

for the permanent
(Valiant’s algebraic version of P versus NP).

Reminder: per(X ) =
∑
σ∈Sn

n∏
i=1

Xiσ(i)



Shub and Smale’s τ -conjecture

τ(f ) = size of smallest arithmetic circuit for f ∈ Z[X ]
= number of +,× needed to build f from −1,X .

Conjecture:
The number of integer zeros of f is polynomially bounded in τ(f ).

Theorem [Shub-Smale’95]: τ -conjecture ⇒ PC ̸= NPC.

Theorem [Bürgisser’07]:
τ -conjecture ⇒ no polynomial-size arithmetic circuits

for the permanent
(Valiant’s algebraic version of P versus NP).

Reminder: per(X ) =
∑
σ∈Sn

n∏
i=1

Xiσ(i)



Shub and Smale’s τ -conjecture

τ(f ) = size of smallest arithmetic circuit for f ∈ Z[X ]
= number of +,× needed to build f from −1,X .

Conjecture:
The number of integer zeros of f is polynomially bounded in τ(f ).

Theorem [Shub-Smale’95]: τ -conjecture ⇒ PC ̸= NPC.

Theorem [Bürgisser’07]:
τ -conjecture ⇒ no polynomial-size arithmetic circuits

for the permanent
(Valiant’s algebraic version of P versus NP).

Reminder: per(X ) =
∑
σ∈Sn

n∏
i=1

Xiσ(i)



Shub and Smale’s τ -conjecture

τ(f ) = size of smallest arithmetic circuit for f ∈ Z[X ]
= number of +,× needed to build f from −1,X .

Conjecture:
The number of integer zeros of f is polynomially bounded in τ(f ).

Theorem [Shub-Smale’95]: τ -conjecture ⇒ PC ̸= NPC.

Theorem [Bürgisser’07]:
τ -conjecture ⇒ no polynomial-size arithmetic circuits

for the permanent
(Valiant’s algebraic version of P versus NP).

Reminder: per(X ) =
∑
σ∈Sn

n∏
i=1

Xiσ(i)


