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The Newton polygon

> Let £(X,Y) =3, a;iX? Y

» Monomials of f : Mon(f) = {(aj, bi), i # 0}

» The Newton polygon: Newt(f) = Conv(Mon(f))
» An example: f(X,Y)=1+2X3Y 4+ XY? + XY3




The Newton polygon of fg + 1: a little puzzle

Problem: Let f, g have (at most) t monomials each.
What is the maximal number of vertices of Newt(fg + 1) ?
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The Newton polygon of fg + 1: a little puzzle

Problem: Let f, g have (at most) t monomials each.
What is the maximal number of vertices of Newt(fg + 1) ?

An obvious upper bound: 2 + 1.

For Newt(fg): 2t is a tight upper bound.
» Lemma [Ostrowski] : Newt(fg) = Newt(f) + Newt(g).
Minkowski sum: P+ Q ={p+q,p € P,q € Q}.
» For convex polygons P, @ with p and g edges,
the Minkowski sum P 4+ @ has at most p + g edges.
They are translates of the edges of P and Q.



Connection to Minkowski sums

> F(X,Y)=1+X3Y + XY2 + XY3 et
g(X,Y)=1+X2Y + Y?

> (fg)(X,Y) =14 Y24+ XY2 £ XY3 + XY* + XY® + X2Y +
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OL has the steepest slope among all edges of P and Q.



The fg + 1 problem

» Newt(fg) = Newt(f) + Newt(g)
» If f and g have t monomials, Newt(fg) has < 2t edges.
» For Newt(fg + 1): cancellations are possible.
» An example: f(X,Y) = -1+ X2Y + XY?,
g(X,Y) =14 X*Y + XY*

The trivial bound: t?
A better bound: O(t*/3)

\ The right bound might be linear...




A complexity theoretic motivation:
The 7-conjecture for Newton polygons

Conjecture: Consider f € C[X, Y] of the form

f(X,Y) ZHfU(X Y)

i=1 j=1

where the f; have at most t monomials:
The Newton polygon of f has at most poly(kmt) vertices.
Remarks:

» fis a “sum of products of sparse polynomials.”



A complexity theoretic motivation:
The 7-conjecture for Newton polygons

Conjecture: Consider f € C[X, Y] of the form

k m
FXY)=> T]fi(X.Y)

i=1 j=1

where the f; have at most t monomials:
The Newton polygon of f has at most poly(kmt) vertices.
Remarks:

» fis a “sum of products of sparse polynomials.”

» Naive upper bound: at most kt™ vertices.



A complexity theoretic motivation:
The 7-conjecture for Newton polygons

Conjecture: Consider f € C[X, Y] of the form

k m
FXY)=> T]fi(X.Y)

i=1 j=1

where the f; have at most t monomials:
The Newton polygon of f has at most poly(kmt) vertices.
Remarks:
» fis a “sum of products of sparse polynomials.”
» Naive upper bound: at most kt™ vertices.
» Conjecture implies VP # VNP
(no polynomial size arithmetic circuits for the permanent).

» Similar problems for univariate polynomials:
number of real roots, multiplicities of nonzero complex roots.



The Newton polygon of fg + 1:
A convexity argument

Consider again the case where fg has constant term —1.

Observation: The vertices of Newt(fg + 1) form
a convexly independent subset of Mon(f) + Mon(g).
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The Newton polygon of fg + 1:
A convexity argument

Consider again the case where fg has constant term —1.

Observation: The vertices of Newt(fg + 1) form
a convexly independent subset of Mon(f) + Mon(g).

Theorem [Eisenbrand-Pach-RothvoB-Sopher’'08]:

Let A and B be sets of at most t points each.

Any convexly independent subset of A+ B has cardinality O(t4/3).
Remark: This bound was shown to be optimal (2010).

Corollary: Newt(fg + 1) has O(t*/3) vertices.

Open problem: Is there a linear upper bound for fg + 17
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Students supervised: Karthik C.S. and William Aufort.
Improved result (unpublished): O(t) bound for Newt(fg + 1).

Question: Let A, B be convexly independent sets,
of at most t points each.
Maximal size of a convexly independent subset S C A+ B?
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What if Mon(f), Mon(g) are in convex position ?

Students supervised: Karthik C.S. and William Aufort.
Improved result (unpublished): O(t) bound for Newt(fg + 1).

Question: Let A, B be convexly independent sets,
of at most t points each.
Maximal size of a convexly independent subset S C A+ B?

Theorem[Tiwary'14]: |S| = O(tlogt).
Remark 1: The right bound in Tiwary's theorem might be O(t).

Remark 2: This question is a generalization of the unit distance
problem for sets of points in convex position.



The unit distance problem

Problem: Let A be a set of t points in the plane.
How many pairs of points p, g of A can be at distance 17
> Erdds (1946): Slightly superlinear (t!*</1°€18t) Jower bound.
Distinct distances problem appears in the same paper.

» Upper bound: O(t*/3) by Spencer-Szemerédi-Trotter (1984).
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The unit distance problem

Problem: Let A be a set of t points in the plane.
How many pairs of points p, g of A can be at distance 17

> Erdds (1946): Slightly superlinear (t!*</1°€18t) Jower bound.
Distinct distances problem appears in the same paper.

» Upper bound: O(t*/3) by Spencer-Szemerédi-Trotter (1984).
If Ais convex:

» O(tlogt) upper bound by Fiiredi (1990).

» arxiv preprint by Khopkar (2017) claims O(t) upper bound.

Remark: p, g at distance 1 < p — g € C (the unit circle).
Hence: if A contains m pairs at distance 1,
the convex set A+ (—A) N C has size m.

In particular, Tiwary (2014) reproves Fiiredi (1990).



S C A+ B with A, B, S in convex position:
Ingredients of Tiwary's proof
Ingredient 1: S C A+ A with A, S in convex position.
» |S| < 5|A] — 8 [Halman-Onn-Rothblum'2007].

» Improvement by Garcia-Marco and Knauer (2015):
|S| < 2|A|] — 2; an example where |S| = 3|A]|/2.

Ingredient 2:
Decomposition of a convex polygon A into 4 convex chains:

Anw, ANE, Ase, Asw .

NE
NW




S C A+ B: using the two ingredients
We estimate the contribution of Ay + By to S
for d,d’ € {NW, NE,SE, SW}.
Lemma: If d # d', ‘(Ad + Bd/) N 5‘ < 2(’Ad‘ + ‘Bd/’).

Follows from Argument 1 by translating By::

Bd/
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The remaining case: Ay + By

Let f(n) = max size of convexly independent subset of Ay + By,
where |Ag4| + [Bg| < n.

Divide and conquer argument shows:
f(n) <2f(n/2) + O(n).

Hence f(n) = O(nlogn). O



f(n) <2f(n/2) + O(n) by divide and conquer

Ag: high slope segments

By: high slope segments

Ag: low slope segment
By: low slope segments

> |Ad U Bd| = n/2, |Ad @) Bd| = n/2.
» By translation, contributions of Ay + By, By + Ay are O(n).
» Contributions of Ay + By, Ag + By are at most f(n/2).



Back to fg + 1
» Recall that A= Mon(f), B = Mon(g) are in convex position.
» When we remove the origin, new points (S) appear.

» Wanted: bounds on the contributions
’(Ad + Bd’) N Sd”|

of the chains of A and B to the chains of S.
» Case d # d’ already dealt with.

‘ NE
NW
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Lemma: If d # d', |(Ag + Ba) N Sar| < |Ag| + |Bal.
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Different Chains

Lemma: If d # d’, |(Ag+ Bg) N Sar| < |Ag| + |Bdl.
» Consider the bipartite graph G = (V, E) where V = Ay U By
and (a,b) € E = a+be Sy

» If a has 3 neighbors by, by, b3, they form a chain of type ...

» of type d since b; € By

b » of type d’ as a translate of a
/ subchain of Sy

b2 » Contradiction since d # d’

b3

» Note: we can replace Ay by A in this proof,
even if A is nonconvex.
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The slope argument

Lemma
|(Ag + B) N S4| < |B| (B may be nonconvex)

» Consider the same graph G,
- and d = NW.
» If b has 2 neighbors aj, a5...

L > slope(ay, a2) >

slope(a; + b, L
a + b P(l )

ai+b



The slope argument

Lemma
|(Ag + B) N S4| < |B| (B may be nonconvex)

» Consider the same graph G,
- and d = NW.

» If b has 2 neighbors aj, a5...

L > slope(ay, a2) >
b slope(a; + b, L)
270, » slope(a; + b, L) >
slope(O, L)
ai+b



The slope argument

Lemma

|(Ag + B) N S4| < |B| (B may be nonconvex)

>
>
L >
az—i-b/ >
ai+b >

0
>

Consider the same graph G,
and d = NW.

If b has 2 neighbors aj, a5...
slope(ay, az) >

slope(a; + b, L)

slope(a; + b, L) >

slope(O, L)

slope(O, L) > slope (a1, a2)
(OL is the steepest slope in
A B.)

Contradiction



What we have shown

Theorem: If Mon(f) and Mon(g) are in convex position,
|[Newt(fg + 1)| is of linear size.
Extension to:

» Mon(f) or Mon(g) nonconvex.
» Mon(f) and Mon(g) weakly convex.

» Deletion of several points.



Some open problems
Combinatorial geometry:

(*) Linear bound on S C A+ A with A, S in convex position:
what is the right constant?

(**) Unit distance problem for A in convex position.

(***) Maximal size of S C A+ B for A, B, S in convex position.
(****) Unit distance problem (Erdds'46).
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Some open problems
Combinatorial geometry:

(*) Linear bound on S C A+ A with A, S in convex position:
what is the right constant?

(**) Unit distance problem for A in convex position.
(***) Maximal size of S C A+ B for A, B, S in convex position.
(****) Unit distance problem (Erdds'46).

Newton polygon of fg + 1:
> How to take better care of cancellations?
» Suggestion by Stéphan Thomassé: work with f, g € Z»[X, Y].

Other fg + 1 problems:
» Number of real roots of fg + 1 with f, g € R[X]?

> Maximum multiplicity of a nonzero root of fg + 1
with f, g € C[X]?

» Good bounds for more general expressions = VP # VNP.



Onion peeling of Minkowski sums:
A new problem of combinatorial geometry?

Onion peeling of a finite set A C R?:
1. First layer: compute conv(A), remove the extremal points.
2. Repeat until A = (.

Onion peeling of a Minkowski sum:
Assume F, G have < t points (and are possibly nonconvex).
How many points on k-th layer of A= F + G?

Remark: There are at most 2t points on first layer.



A result on onion peeling, and a variation

Theorem: k-th layer of F + G is of size O(kt logt).

A variation: how many points on the convex hull of (F 4+ G) \ H,
if H is of size at most h?

Remark: These questions are relevant to Newt(fg — h)
where f, g, h have positive coefficients.



Appendix
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A T-conjecture for Newton polygons

Conjecture: Consider f € C[X, Y] of the form

k m
FX,Y)=> T[fi(X,Y)

i=1 j=1

where the f; have at most t monomials:
The Newton polygon of f has at most poly(kmt) vertices.
Remarks:

» fisa “sum of products of sparse polynomials.”

» k =1: Newt(fi...fy) is the Minkowski sum "7, Newt(f;).
» k =2 is open. What about Newt(f; ... f, +1)7?

» Naive upper bound: at most kt™ vertices.
>

Improved upper bound: O(kt>™/3) by the convexity argument.
This argument cannot take us below t™/3.
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The curse of fg + 1

Three “toy problems:”

1. Number of vertices for Newton polygon of fg + 1:
trivial bound is O(t?), best current bound is O(t*/3).

2. For real univariate polynomials:
t monomials = at most t — 1 positive real roots (Descartes).
Number of real roots of fg + 1: trivial bound is O(t?).

3. Any non-zero (complex) root has multiplicity at most t — 1
(Hajés lemma).
Multiplicity of non-zero root of fg + 1: trivial bound is O(t?).
Optimal bound might be O(t) for these 3 problems.
For fg rather than fg + 1, an O(t) bound holds true.



Lower bounds from Newton polygons

Theorem:
T-conjecture = no polynomial-size arithmetic circuits
for Newton polygons for the permanent (VP # VNP).

k m
Remark: Recall f =Y [ #;.
i=1 j=1

Upper bounds of the form 2O(m)(kt)o(1),
or even 2(mtlogkt) for some ¢ < 2 are enough.



A Newton polygon with 2" edges

For f,(X,Y) ZXY’

2" — 1 edges on Iower hull, 1 edge on upper hull,
since all vertices lie on graph of i — i2.

Remarks:
2!7

» Our preprint’s first version uses g,(X,Y) = H(X +Y'):
i=1
2" edges on lower hull, 2" edges on upper hull.
> f,is very “explicit:" it has 0/1 coefficients
and they are computable in polynomial time.



Lower bounds from Newton polygons:
A proof sketch

1. Assume that the permanent is easy to compute.
2. Express f, as Sk Lty
with k = nOn t = nOWn ' m = O(y/n).

3. Contradiction with T-conjecture for Newton polygons:
Newt(f,) has 2" vertices.



Lower bounds from Newton polygons:
A proof sketch

1. Assume that the permanent is easy to compute.

2. Express f, as Sk Lty
with k = nOn t = nOWn ' m = O(y/n).

3. Contradiction with 7-conjecture for Newton polygons:
Newt(f,) has 2" vertices.

Main ingredient: Reduction to depth 4 for arithmetic circuits.

No need for results on counting hierarchy by:

[Allender, Biirgisser, Kjeldgaard-Pedersen,Miltersen'06,
Biirgisser'07].

They are still relevant for the 7-conjecture for multiplicities
(Hrubes).



Reduction to depth 4 [Agrawal-Vinay'08]

Theorem [Tavenas’13]:
Let C be a circuit of size s, degree d, in n variables.
We assume d, s = n°(1),

There is an equivalent depth 4 (3" [[>_]]) circuit of size sO(Vd),
with multiplication gates of fan-in O(v/d).



Reduction to depth 4 [Agrawal-Vinay'08]

Theorem [Tavenas’13]:
Let C be a circuit of size s, degree d, in n variables.
We assume d, s = n°(1),

There is an equivalent depth 4 (3" [[>_]]) circuit of size sO(Vd),
with multiplication gates of fan-in O(v/d).

Depth-4 circuit with inputs of the form X2, Y? or constants

(Shallow circuit with high-powered inputs)

I

‘Sum of Products of Sparse PonnomiaIs‘

The > [] gates compute sparse polynomials.



Reduction to depth 4 and Newton polygons:
Completing the argument.

Recall f,(X,Y) =%, X'Y?”.
1. Write fo(X, Y) = hy(X,Y) where hy, is multilinear
in the new variables X; = X2j, Y, = y?
(consider radix 2 representation of i and i?).
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Reduction to depth 4 and Newton polygons:
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Reduction to depth 4 and Newton polygons:
Completing the argument.

Recall f,(X,Y) = 32, X'Y7”,
1. Write f,(X, Y) = hy(X,Y) where hj, is multilinear
in the new variables X; = X?, Yi = y?
(consider radix 2 representation of i and i?).
2. hpis in VNP by Valiant's criterion, and in VP if VP = VNP.
3. Reduce corresponding circuit for h, to a depth 4 circuits C,,.
4. Substitute Xj — X2j, Y — Y? in C, to express f,
as a “small” sum of products of sparse polynomials.



Another Newton polygon, with 2"*! edges

For f,(X,Y) = ﬁ(x + Yy

2" edges on lower hull, 2" edges on upper hull.

The Newton polygon of fi:
AX,Y)=(X+Y)X+Y?) =X+ XY +XY2 4+ Y3

e Points of Mon(f;)
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k m
Fx)= S TLH;
i=1j=1

where the f;; have at most monomials.
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The real 7-conjecture

Conjecture: Consider a polynomial f € R[X] of the form

k m
Fx)= S TLH;

i=1 j=1

where the f;; have at most monomials.
If f is nonzero, its number of real roots is polynomial in kmt.
Remarks:

» Case k = 1 of the conjecture follows from Descartes’ rule
(t monomials = at most 2t — 1 real roots).
» By expanding the products, f has at most 2kt™ — 1 zeros.
» How many real solutions to fi...f, =17
How many real solutions to fg =17
Descartes’ bound is O(t?) but true bound could be O(t).



Arithmetic circuits:
A model of computation for multivariate polynomials
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Shub and Smale’s 7-conjecture

7(f) = size of smallest arithmetic circuit for f € Z[X]
= number of +, X needed to build f from —1, X.
Conjecture:
The number of integer zeros of f is polynomially bounded in 7(f).

Theorem [Shub-Smale’95]: 7-conjecture = P¢ # NPc.

Theorem [Biirgisser’07]:
T-conjecture  =- no polynomial-size arithmetic circuits
for the permanent
(Valiant's algebraic version of P versus NP).

Reminder: per(X) = Z HXio(i)
o€S, i=1



