Parameterized hardness

Rémi Watrigant

Université Claude Bernard Lyon 1

Journées Calamar 7, 8 avril 2025, ENS de Lyon

- Parameterized problems
- **③** XNLP \rightarrow time and space complexity
- Kernels \rightarrow preprocessing complexity

CLIQUE

Input: graph G, integer k Goal: decide whether G has $\ge k$ pairwise adjacent vertices

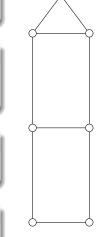
INDEPENDENT SET

Input: graph G, integer k <u>Goal</u>: decide whether G has $\geq k$ pairwise non-adjacent vertices

VERTEX COVER

Input: graph G, integer k Goal: decide whether G has $\leq k$ vertices incident to all edges

Dominating Set



CLIQUE

Input: graph G, integer k Goal: decide whether G has $\ge k$ pairwise adjacent vertices

INDEPENDENT SET

Input: graph G, integer k <u>Goal</u>: decide whether G has $\geq k$ pairwise non-adjacent vertices

VERTEX COVER

Input: graph G, integer k Goal: decide whether G has $\leq k$ vertices incident to all edges

Dominating Set

CLIQUE

Input: graph G, integer k Goal: decide whether G has $\ge k$ pairwise adjacent vertices

INDEPENDENT SET

Input: graph G, integer k <u>Goal</u>: decide whether G has $\geq k$ pairwise non-adjacent vertices

VERTEX COVER

Input: graph G, integer k Goal: decide whether G has $\leq k$ vertices incident to all edges

Dominating Set

CLIQUE

Input: graph G, integer k Goal: decide whether G has $\ge k$ pairwise adjacent vertices

INDEPENDENT SET

Input: graph G, integer k <u>Goal</u>: decide whether G has $\geq k$ pairwise non-adjacent vertices

VERTEX COVER

Input: graph G, integer k Goal: decide whether G has $\leq k$ vertices incident to all edges

Dominating Set

CLIQUE

Input: graph G, integer k Goal: decide whether G has $\ge k$ pairwise adjacent vertices

INDEPENDENT SET

Input: graph G, integer k <u>Goal</u>: decide whether G has $\geq k$ pairwise non-adjacent vertices

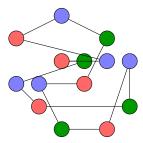
VERTEX COVER

Input: graph G, integer k Goal: decide whether G has $\leq k$ vertices incident to all edges

Dominating Set

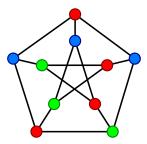
q-COLORING

Input: graph G Goal: decide whether V(G) can be partitioned into q independent sets



q-COLORING

Input: graph G Goal: decide whether V(G) can be partitioned into q independent sets



Example from Wikipedia

Why parameterized complexity?

 \rightarrow need for a "multivariate" analysis of problem hardness:

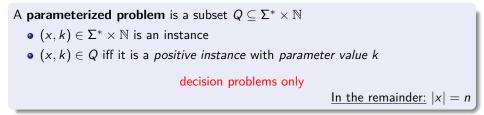
NP-hardness theory tells that for some problems, one cannot expect an algorithm deciding if an instance x is positive in time $|x|^{O(1)}$

|x| hides many different parts of the instance that might be interesting:

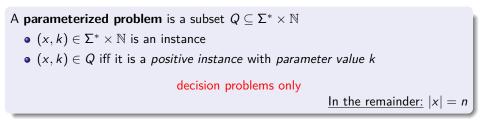
- deciding whether G has a vertex cover of size at most k can be done in time $O(2^k(n+m))$
- deciding whether G has a clique of size at least k can be done in time $O(n^k k^2)$
- deciding whether G has an independent set of size at least k can be done in time $O((\Delta + 1)^k(n + m))$ if G has maximum degree Δ
- deciding whether G is 3-colorable can be done in 2^{O(t)}n if G has treewidth at most t

• Σ = finite alphabet to encode problem inputs (ex: $\Sigma = \{0, 1\}$)

• $\Sigma=$ finite alphabet to encode problem inputs (ex: $\Sigma=\{0,1\})$



• $\Sigma=$ finite alphabet to encode problem inputs (ex: $\Sigma=\{0,1\})$



Several kinds of parameters (examples for graphs):

- related to the **solution**:
 - finding a structure of size/weight k in a graph
 - \rightarrow when turning an optimization problem into a decision problem
 - ▶ structure of the solution: ex: size of partition, property of a decomposition, ...
- related to the structure of the **input instance**: degree, *-width, "distance" to a known class, ...
- a combination of several parameters

Three worlds

Parameterized problems whose "unparameterized version" is NP-hard: 3 choices: The bad:

There is a value of the parameter for which the problem is NP-hard ex: COLORING parameterized by the number of colors (3-COLORING is NP-hard)

para-NP-hard

The ugly:

There is an algorithm running in time $O(n^{f(k)})$ for a computable function f ex: CLIQUE parameterized by the size of the clique

XP

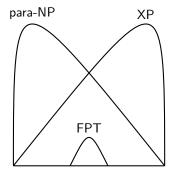
The good:

There is an algorithm running in time $f(k)n^{O(1)}$ for a computable function f ex: VERTEX COVER parameterized by the size of the vertex cover

Fixed-Parameter Tractable (FPT)

The picture so far

- **FPT**: solvable in deterministic $f(k)n^{O(1)}$ time
- **para-NP**: solvable in non-deterministic $f(k)n^{O(1)}$ time
- **XP**: solvable in deterministic $n^{f(k)}$ time



Known relations:

- para-NP = FPT \Leftrightarrow P=NP
- FPT \subsetneq XP (relies on the fact that $DTIME(n^c) \subsetneq DTIME(n^{c+1})$)

Reduction

Parameterized reduction

Let $Q, R \subseteq \Sigma^* \times \mathbb{N}$ be two parameterized problems Parameterized reduction from Q to R: an algorithm which maps (x, k) to (x', k') such that:

- $(x,k) \in Q \Leftrightarrow (x',k') \in R$
- runs in time $f(k)n^{O(1)}$ for a computable function f
- $k' \leqslant g(k)$ for a computable function g

Theorem

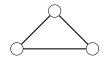
If there is a parameterized reduction from Q to R, and R is **FPT**, then Q is **FPT**

<u>Remark</u>: the second condition implies that a parameterized reduction is different from a "classical" polynomial reduction

(but most parameterized reductions run in polynomial time)

Problems as hard as CLIQUE

• Reduction from CLIQUE to INDEPENDENT SET: $(G, k) \rightarrow (\overline{G}, k)$ (take the complement)



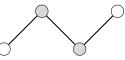
✓ parameterized reduction

Problems as hard as CLIQUE

• Reduction from CLIQUE to INDEPENDENT SET: $(G, k) \rightarrow (\overline{G}, k)$ (take the complement)

✓ parameterized reduction

• Reduction from INDEPENDENT SET to VERTEX COVER: $(G,k) \rightarrow (G,|V(G)|-k)$ (C is a vertex cover $\Leftrightarrow V \setminus C$ is an independent set)



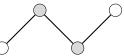
Xnot a parameterized reduction

Problems as hard as CLIQUE

• Reduction from CLIQUE to INDEPENDENT SET: $(G, k) \rightarrow (\overline{G}, k)$ (take the complement)

 \checkmark parameterized reduction

• Reduction from INDEPENDENT SET to VERTEX COVER: $(G,k) \rightarrow (G,|V(G)|-k)$ (C is a vertex cover $\Leftrightarrow V \setminus C$ is an independent set)



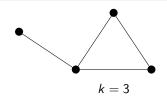
Xnot a parameterized reduction

Working hypothesis: CLIQUE, INDEPENDENT SET ∉ FPT

CLIQUE to MULTICOLORED CLIQUE (parameterized reduction)

Multicolored Clique

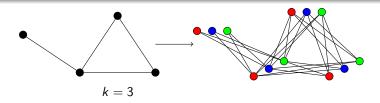
Input: a graph G, a partition V_1, V_2, \ldots, V_k of V(G)Question: is there a clique C such that $|C \cap V_i| = 1$ for all i = 1...k?



CLIQUE to MULTICOLORED CLIQUE (parameterized reduction)

Multicolored Clique

Input: a graph G, a partition V_1, V_2, \ldots, V_k of V(G)Question: is there a clique C such that $|C \cap V_i| = 1$ for all i = 1...k?

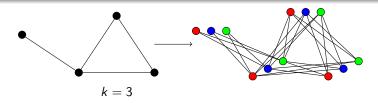


G has a clique of size $k \Leftrightarrow G'$ has a multicolored clique of size k

CLIQUE to MULTICOLORED CLIQUE (parameterized reduction)

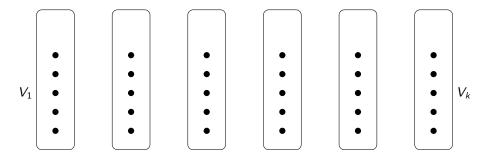
Multicolored Clique

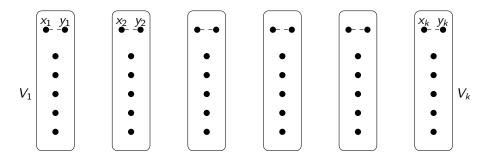
Input: a graph G, a partition V_1, V_2, \ldots, V_k of V(G)Question: is there a clique C such that $|C \cap V_i| = 1$ for all i = 1...k?

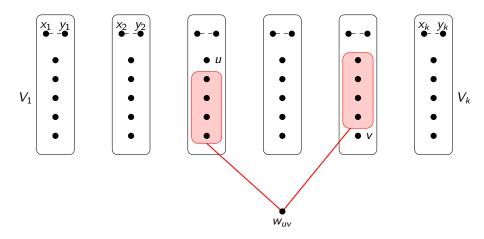


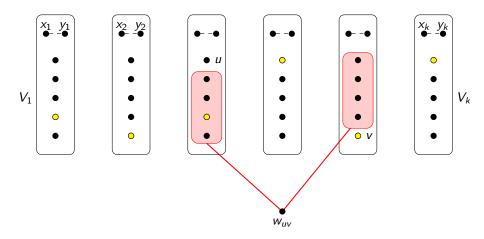
G has a clique of size $k \Leftrightarrow G'$ has a multicolored clique of size k

- multicolored versions of problems are convenient starting points for parameterized reductions
- taking the complement: MULTICOLORED INDEPENDENT SET is as hard as CLIQUE and INDEPENDENT SET









Recap:

- \bullet parameterized reduction from CLIQUE to $\operatorname{MULTICOLORED}$ CLIQUE
- MULTICOLORED CLIQUE parameterized equivalent to MULTICOLORED INDEPENDENT SET
- parameterized reduction from MULTICOLORED INDEPENDENT SET to DOMINATING SET

Recap:

- parameterized reduction from CLIQUE to MULTICOLORED CLIQUE
- MULTICOLORED CLIQUE parameterized equivalent to MULTICOLORED INDEPENDENT SET
- parameterized reduction from MULTICOLORED INDEPENDENT SET to DOMINATING SET

Recap:

- parameterized reduction from CLIQUE to MULTICOLORED CLIQUE
- MULTICOLORED CLIQUE parameterized equivalent to MULTICOLORED INDEPENDENT SET
- parameterized reduction from MULTICOLORED INDEPENDENT SET to DOMINATING SET

Interestingly, there is no known parameterized reduction backward, from Dominating Set to Clique ⇒ these two problems are not "equivalent" from the parameterized point of view

The W-hierarchy: the circuit point of view INDEPENDENT SET Dominating Set out out

- Goal: set at most k variables to 1
- Distinguish between large and small nodes
- Weft: maximum number of large nodes from an input to the output

The W-hierarchy: the circuit point of view INDEPENDENT SET Dominating Set out out

- Goal: set at most k variables to 1
- Distinguish between large and small nodes
- <u>Weft</u>: maximum number of large nodes from an input to the output

Definition

A parameterized problem is in W[t] if it can be represented by a circuit of weft t (and bounded total depth)

The W-hierarchy

The following problems are complete for W[1]:

- WEIGHTED 2-SAT (set at most k variables to true)
- INDEPENDENT SET, CLIQUE
- Multicolored Independent Set, Multicolored Clique
- SHORT TURING MACHINE ACCEPTANCE: decide if a non-deterministic Turing machine halts in ≤ k steps

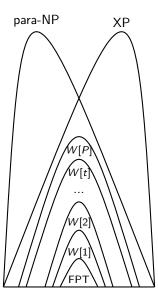
The following problems are complete for W[2]:

- Dominating Set
- Set systems: given S_1, \dots, S_m subsets of \mathcal{U} :
 - SET COVER: find $\leq k$ sets whose union is \mathcal{U}
 - HITTING SET find $\leq k$ elements of \mathcal{U} intersecting each S_i

Canonical W[t]-complete problem:

• WEIGHTED *t*-NORMALIZED SAT: Boolean formula with *t* alternances of conjunctions and disjunctions

The picture



W[P]: weighted Boolean circuits (no weft restriction)

Further intuition that $FPT \neq W[1]$

FPT = W[1] contradicts the Exponential Time Hypothesis:

Theorem

An $f(k)n^{o(k)}$ algorithm for CLIQUE implies a $2^{o(n)}$ algorithm for 3-COLORING

(which implies a $2^{o(n)}$ algorithm for 3-SAT and contradicts the ETH)

Sketch of proof:

Further intuition that $FPT \neq W[1]$

FPT = W[1] contradicts the Exponential Time Hypothesis:

Theorem

An $f(k)n^{o(k)}$ algorithm for CLIQUE implies a $2^{o(n)}$ algorithm for 3-COLORING

(which implies a $2^{o(n)}$ algorithm for 3-SAT and contradicts the ETH)

Sketch of proof: Let G with n vertices

- Carefully choose k to be roughly $f^{-1}(n)$
- Split V(G) into k groups V_1, \ldots, V_k of size at most $\lceil n/k \rceil$
- build a graph *H*:
 - for each i = 1...k, for each 3-coloring of V_i , add a vertex
 - connect two vertices if the two corresponding colorings are compatible
- Clearly, H has a k-clique \Leftrightarrow G has a 3-coloring

Further intuition that $FPT \neq W[1]$

FPT = W[1] contradicts the Exponential Time Hypothesis:

Theorem

An $f(k)n^{o(k)}$ algorithm for CLIQUE implies a $2^{o(n)}$ algorithm for 3-COLORING

(which implies a $2^{o(n)}$ algorithm for 3-SAT and contradicts the ETH)

Sketch of proof: Let G with n vertices

- Carefully choose k to be roughly $f^{-1}(n)$
- Split V(G) into k groups V_1, \ldots, V_k of size at most $\lceil n/k \rceil$
- build a graph H:
 - for each i = 1...k, for each 3-coloring of V_i , add a vertex
 - connect two vertices if the two corresponding colorings are compatible
- Clearly, H has a k-clique \Leftrightarrow G has a 3-coloring

Analysis:

- $|V(H)| \leq k \cdot 3^{\lceil n/k \rceil} = 2^{o(n)}$
- check that $f(k)|V(H)|^{o(k)}$ is $2^{o(n)}$

- Roughly, problems in W[P] are: "choose at least/at most k elements out of n such that ..."
 - \Rightarrow they have certificates of size $O(k \log(n))$

- Roughly, problems in W[P] are: "choose at least/at most k elements out of n such that ..."
 - \Rightarrow they have certificates of size $O(k \log(n))$

BANDWIDTH

```
Input: a graph G = (V, E), k \in \mathbb{N}

<u>Parameter:</u> k

<u>Question:</u> is there a bijection f : V \to \{1, ..., |V|\} such that for every uv \in E,

|f(v) - f(u)| \leq k?
```

- Roughly, problems in W[P] are: "choose at least/at most k elements out of n such that ..."
 - \Rightarrow they have certificates of size $O(k \log(n))$

BANDWIDTH

```
Input: a graph G = (V, E), k \in \mathbb{N}

Parameter: k

Question: is there a bijection f : V \to \{1, ..., |V|\} such that for every uv \in E,

|f(v) - f(u)| \leq k?
```

- For BANDWIDTH it seems that Ω(n) is needed for a certificate so likely ∉ W[P]
- Belongs to XP: dynamic programming, remember the last 2k chosen vertices better: O(n^k) time algorithm [Gurari, Sudborough, 1984]
- W[t]-hard for every $t \in \mathbb{N}$ [Bodlaender, claimed in 1994, proved in 2020]
- in which class does **BANDWIDTH** belong to?

XNLP

Parameterized problems which can be solved in non-deterministic FPT time and $O(f(k)\log(n))$ space

- Introduced by Elberfeld et al. in 2014, revisited by Bodlaender et al. in 2020
- BANDWIDTH \in XNLP:
 - at each step, guess the next vertex
 - keep in memory the last 2k vertices with their order
 - \rightarrow polynomial time, *n* guesses, $O(k \log(n))$ space

XNLP

Parameterized problems which can be solved in non-deterministic FPT time and $O(f(k)\log(n))$ space

- Introduced by Elberfeld et al. in 2014, revisited by Bodlaender et al. in 2020
- BANDWIDTH \in XNLP:
 - at each step, guess the next vertex
 - keep in memory the last 2k vertices with their order
 - \rightarrow polynomial time, *n* guesses, $O(k \log(n))$ space
- BANDWIDTH is XNLP-complete [Bodlaender et al., 2021] (even for very restricted caterpillar graphs)

XNLP

Parameterized problems which can be solved in non-deterministic FPT time and $O(f(k)\log(n))$ space

- Introduced by Elberfeld et al. in 2014, revisited by Bodlaender et al. in 2020
- BANDWIDTH \in XNLP:
 - at each step, guess the next vertex
 - keep in memory the last 2k vertices with their order
 - \rightarrow polynomial time, *n* guesses, $O(k \log(n))$ space
- BANDWIDTH is XNLP-complete [Bodlaender et al., 2021] (even for very restricted caterpillar graphs)
- XNLP captures many parameterized problems with "linear" structure which can be solved using dynamic programming:
- XNLP-completeness implies W[t]-hardness for every t
- hardness is obtained via parameterized logspace reductions $(O(f(k) + \log(n))$ space)

- Some XNLP-complete problems:
- Standard parameterization (solution):
 - Longest Common Subsequence
 - \bullet Chained version of CLIQUE, WEIGHTED CNF-SAT
- Structural "linear" parameter:
 - LIST COLORING, PRECOLORING EXTENSION parameterized by pathwidth
 - INDEPENDENT SET, DOMINATING SET, FEEDBACK VERTEX SET, 5-COLORING parameterized by linear mim-width

Some XNLP-complete problems:

Standard parameterization (solution):

- Longest Common Subsequence
- Chained version of CLIQUE, WEIGHTED CNF-SAT

Structural "linear" parameter:

- LIST COLORING, PRECOLORING EXTENSION parameterized by pathwidth
- INDEPENDENT SET, DOMINATING SET, FEEDBACK VERTEX SET, 5-COLORING parameterized by linear mim-width

Slice-wise polynomial space conjecture

XNLP-hard problems do not admit algorithms running in $n^{f(k)}$ time and $f(k)n^{O(1)}$ space

 \rightarrow they morally have to use dynamic algorithm with tables of size $n^{f(k)}$

Some XNLP-complete problems:

Standard parameterization (solution):

- Longest Common Subsequence
- \bullet Chained version of CLIQUE, WEIGHTED CNF-SAT

Structural "linear" parameter:

- LIST COLORING, PRECOLORING EXTENSION parameterized by pathwidth
- INDEPENDENT SET, DOMINATING SET, FEEDBACK VERTEX SET, 5-COLORING parameterized by linear mim-width

Slice-wise polynomial space conjecture

XNLP-hard problems do not admit algorithms running in $n^{f(k)}$ time and $f(k)n^{O(1)}$ space

- \rightarrow they morally have to use dynamic algorithm with tables of size $n^{f(k)}$
 - Also: XALP class, to capture problems with tree-structured parameters

4. Kernels

Definition

A kernel for a parameterized problem $Q \subseteq \Sigma^* \times \mathbb{N}$ is a polynomial-time algorithm which transforms (x, k) into (x', k') such that:

- (x, k) is a yes-instance $\Leftrightarrow (x', k')$ is a yes-instance
- $k' \leqslant k$
- $|x'| \leqslant f(k)$ for some computable function called the size of the kernel

Definition

A kernel for a parameterized problem $Q \subseteq \Sigma^* \times \mathbb{N}$ is a <u>polynomial-time</u> algorithm which transforms (x, k) into (x', k') such that:

- (x, k) is a yes-instance $\Leftrightarrow (x', k')$ is a yes-instance
- $k' \leqslant k$
- $|x'| \leq f(k)$ for some computable function called the size of the kernel
- \bullet One way to design FPT algorithm: kernel \Rightarrow FPT
 - use the kernel (x, k) to get (x', k')
 - brute-force (x', k')

Definition

A kernel for a parameterized problem $Q \subseteq \Sigma^* \times \mathbb{N}$ is a <u>polynomial-time</u> algorithm which transforms (x, k) into (x', k') such that:

- (x, k) is a yes-instance $\Leftrightarrow (x', k')$ is a yes-instance
- $k' \leqslant k$
- $|x'| \leq f(k)$ for some computable function called the size of the kernel
- \bullet One way to design FPT algorithm: kernel \Rightarrow FPT
 - use the kernel (x, k) to get (x', k') poly-time
 - brute-force (x', k') time $g(|x'|) \leq g(f(k))$
 - $\Rightarrow \mathsf{FPT} \text{ running time}$

Definition

A kernel for a parameterized problem $Q \subseteq \Sigma^* \times \mathbb{N}$ is a <u>polynomial-time</u> algorithm which transforms (x, k) into (x', k') such that:

- (x, k) is a yes-instance $\Leftrightarrow (x', k')$ is a yes-instance
- $k' \leqslant k$
- $|x'| \leqslant f(k)$ for some computable function called the size of the kernel
- \bullet One way to design FPT algorithm: kernel \Rightarrow FPT
 - use the kernel (x, k) to get (x', k') poly-time
 - brute-force (x', k') time $g(|x'|) \leq g(f(k))$
 - $\Rightarrow \mathsf{FPT} \text{ running time}$
- The converse also holds! FPT algorithm \Rightarrow kernel:
 - Assume we have an algorithm \mathcal{A} which solves (x, k) in time $f(k)|x|^c$
 - Let (x, k)
 - ★ if $|x| \leq f(k)$: it is already a kernel
 - ★ otherwise |x| > f(k) but then A runs in polynomial-time

(output a dummy instance)

- The previous proof shows that all FPT problems admit a kernel (of possibly exponential size)
- Some problems admit a kernel of polynomial size

• The previous proof shows that all FPT problems admit a kernel

(of possibly exponential size)

• Some problems admit a kernel of polynomial size

The classical example: Buss' kernel for $\operatorname{Vertex}\,\operatorname{Cover}\,$

Let (G, k). Question: at most k vertices incident to all edges?

- Observation 1: if a vertex is incident to k + 1 edges, it must be in a solution \rightarrow remove it, decrease k by 1
- Observation 2: if there is an isolated vertex, remove it (useless)

• The previous proof shows that all FPT problems admit a kernel

(of possibly exponential size)

• Some problems admit a kernel of polynomial size

The classical example: Buss' kernel for $\operatorname{Vertex}\,\operatorname{Cover}\,$

Let (G, k). Question: at most k vertices incident to all edges?

- Observation 1: if a vertex is incident to k + 1 edges, it must be in a solution
 → remove it, decrease k by 1
- Observation 2: if there is an isolated vertex, remove it (useless)

Apply the two reduction rules above as long as you can. At the end:

• maximum degree at most k, no isolated vertices

<u>Remark</u>: if G has a vertex cover of size at most k, it has at most k^2 edges \Rightarrow we may assume that G has $\leqslant k^2$ edges = **quadratic kernel**

• The previous proof shows that all FPT problems admit a kernel

(of possibly exponential size)

• Some problems admit a kernel of polynomial size

The classical example: Buss' kernel for $\operatorname{Vertex}\,\operatorname{Cover}\,$

Let (G, k). Question: at most k vertices incident to all edges?

- Observation 1: if a vertex is incident to k + 1 edges, it must be in a solution \rightarrow remove it, decrease k by 1
- Observation 2: if there is an isolated vertex, remove it (useless)

Apply the two reduction rules above as long as you can. At the end:

• maximum degree at most k, no isolated vertices

<u>Remark</u>: if G has a vertex cover of size at most k, it has at most k^2 edges \Rightarrow we may assume that G has $\leqslant k^2$ edges = **quadratic kernel**

• For some problems, only kernels of exponential size How to rule out the existence of polynomial kernels?

One such problem:

Longest Path Input: A graph G, an integer k Parameter: k Goal: Decide whether G has a path of length at least k

One such problem:

Longest Path

Input: A graph G, an integer k<u>Parameter:</u> k<u>Goal:</u> Decide whether G has a path of length at least k

Intuition for not having a polynomial kernel:

- suppose LONGEST PATH has a kernel of size n^c
- take n^{c+1} graphs $G_1, \ldots, G_{n^{c+1}}$ on n vertices for which you want to test the existence of a path of length k
- let G^* be the disjoint union of all G_i 's
- (G^{*}, k) yes-instance of LONGEST PATH ⇔ at least one G_i has a path of length k.
- apply the kernel on $(G^*,k^*)
 ightarrow (G',k')$ with $|G'| \leqslant n^c$
 - \rightarrow we have "forgotten" some instances in the process!

(does not imply P=NP, but something weird)

Cross-composition

Let *L* be a problem, *Q* be a parameterized problem A cross-composition from *L* to *Q* is an algorithm which takes a sequence of instances x_1, \ldots, x_t , all of size *n*, and output (y, k) such that:

- it runs in polynomial time in $\sum_{i=1}^{t} |x_i|$
- k is polynomial in n and log(t)
- (y, k) is positive for Q iff at least one x_i is positive for L

<u>Remark</u>:

- size of y can be huge (polynomial in t)
- instances of the sequence can share some properties (e.g. same number of edges)

Cross-composition

Let *L* be a problem, *Q* be a parameterized problem A cross-composition from *L* to *Q* is an algorithm which takes a sequence of instances x_1, \ldots, x_t , all of size *n*, and output (y, k) such that:

- it runs in polynomial time in $\sum_{i=1}^{t} |x_i|$
- k is polynomial in n and log(t)
- (y, k) is positive for Q iff at least one x_i is positive for L

Remark:

- size of y can be huge (polynomial in t)
- instances of the sequence can share some properties (e.g. same number of edges)

Theorem [Bodlaender, Jansen, Kratsch, 2012]

If an NP-hard problem L cross-composes into a parameterized problem Q, then ${\rm coNP}\subseteq{\rm NP}/{\rm poly}$

$\mathsf{coNP} \subseteq \mathsf{NP}/\mathsf{poly}$

Weaker assumption than NP \neq coNP:

- coNP: solvable in co-nondeterministic polynomial time
 - \rightarrow if instance is negative, there is a computation path that rejects
 - \rightarrow if instance is positive, all computation paths accept
- NP/poly: NP using advices of polynomial size

 \rightarrow for every size *n*, we have access to a string S_n of size poly(n) for solving the instance

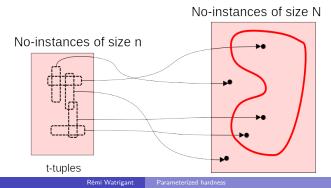
$\mathsf{coNP} \subseteq \mathsf{NP}/\mathsf{poly}$

Weaker assumption than NP \neq coNP:

- coNP: solvable in co-nondeterministic polynomial time
 - \rightarrow if instance is negative, there is a computation path that rejects
 - \rightarrow if instance is positive, all computation paths accept
- NP/poly: NP using advices of polynomial size

 \rightarrow for every size *n*, we have access to a string S_n of size poly(n) for solving the instance

Composition + polynomial kernel \Rightarrow **Distillation algorithm** A for a problem L



Advice S_n : set of poly(n) no-instances of size N which covers all no-instances of size n

$\mathsf{coNP} \subseteq \mathsf{NP}/\mathsf{poly}$

Weaker assumption than NP \neq coNP:

- coNP: solvable in co-nondeterministic polynomial time
 - \rightarrow if instance is negative, there is a computation path that rejects
 - \rightarrow if instance is positive, all computation paths accept
- NP/poly: NP using advices of polynomial size

 \rightarrow for every size *n*, we have access to a string S_n of size poly(n) for solving the instance

 $\mathsf{Composition} + \mathsf{polynomial} \ \mathsf{kernel} \Rightarrow \textbf{Distillation} \ \textbf{algorithm} \ \mathcal{A} \ \textbf{for} \ \textbf{a} \ \textbf{problem} \ L$

Given
$$x \in \Sigma^*$$
, guess a tuple $(x_1, ..., x_t)$ with $x = x_i$ for some $i \rightarrow$ Check if $\mathcal{A}(x_1, ..., x_t) \in S_n$

- if $x \notin L$, there is a guess which will produce an element of S_n
- if $x \in L$, no guess will produce an element of S_n

ightarrow we decide \overline{L}

Different ways for obtaining kernel lower bounds for a problem:

- Check if the problem composes to itself
 - disjoint union
 - + possibly some instance selector gadget
- Turn the known NP-hardness reductions into compositions
- Reduce from a problem with a known kernel lower bound
 → restriction of parameterized reduction (bound on size of parameter)
 - .
 - $\blacktriangleright~{\rm SAT}$ parameterized by the number of variables
 - COLORED RED-BLUE DOMINATING SET parameterized by number of colors + vertices to dominate
 - ► *d*-HITTING SET has no kernel of size $O(k^{d-\varepsilon})$ (unless...)

▶ ...

Some variants of cross-compositions:

- it can run in co-nondeterministic time (may use non-constructive results) \rightarrow RAMSEY does not have PK (unless...)
- instead of encoding the OR of the input problem, it may encode the AND
- if the output parameter k is $\leq poly(n) \cdot t^{1/d}$
 - $\Rightarrow \text{ no kernel of bitsize } O(n^{d-\varepsilon})$ $\rightarrow \text{ VERTEX COVER has no kernel of bitsize } O(n^{2-\varepsilon}) \text{ (unless...)}$

Thanks! Questions?