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Menu

1 Parameterized problems

2 W-hierarchy and friends → time complexity

3 XNLP → time and space complexity

4 Kernels → preprocessing complexity
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The usual suspects
Clique
Input: graph G , integer k
Goal: decide whether G has ⩾ k pairwise adjacent vertices

Independent Set
Input: graph G , integer k
Goal: decide whether G has ⩾ k pairwise non-adjacent
vertices

Vertex Cover
Input: graph G , integer k
Goal: decide whether G has ⩽ k vertices incident to all edges

Dominating Set
Input: graph G , integer k
Goal: decide whether G has ⩽ k vertices dominating all V (G)
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The usual suspects
q-Coloring
Input: graph G
Goal: decide whether V (G) can be partitioned into q independent sets
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Goal: decide whether V (G) can be partitioned into q independent sets
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Parameterized problems

Why parameterized complexity?

→ need for a “multivariate” analysis of problem hardness:

NP-hardness theory tells that for some problems, one cannot expect an algorithm
deciding if an instance x is positive in time |x |O(1)

|x | hides many different parts of the instance that might be interesting:
deciding whether G has a vertex cover of size at most k can be done in time
O(2k(n + m))
deciding whether G has a clique of size at least k can be done in time
O(nkk2)
deciding whether G has an independent set of size at least k can be done in
time O((∆ + 1)k(n + m)) if G has maximum degree ∆
deciding whether G is 3-colorable can be done in 2O(t)n if G has treewidth at
most t
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Parameterized problems
Σ = finite alphabet to encode problem inputs (ex: Σ = {0, 1})

A parameterized problem is a subset Q ⊆ Σ∗ × N
(x , k) ∈ Σ∗ × N is an instance
(x , k) ∈ Q iff it is a positive instance with parameter value k

decision problems only
In the remainder: |x | = n

Several kinds of parameters (examples for graphs):
related to the solution:

▶ finding a structure of size/weight k in a graph
→ when turning an optimization problem into a decision problem

▶ structure of the solution: ex: size of partition, property of a decomposition, ...

related to the structure of the input instance: degree, *-width, “distance” to
a known class, ...

a combination of several parameters
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Three worlds
Parameterized problems whose “unparameterized version” is NP-hard: 3 choices:
The bad:

There is a value of the parameter for which the problem is NP-hard
ex: Coloring parameterized by the number of colors (3-Coloring is NP-hard)

para-NP-hard

The ugly:

There is an algorithm running in time O(nf (k)) for a computable function f
ex: Clique parameterized by the size of the clique

XP

The good:

There is an algorithm running in time f (k)nO(1) for a computable function f
ex: Vertex Cover parameterized by the size of the vertex cover

Fixed-Parameter Tractable (FPT)
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The picture so far
FPT: solvable in deterministic f (k)nO(1) time
para-NP: solvable in non-deterministic f (k)nO(1) time
XP: solvable in deterministic nf (k) time

FPT

XPpara-NP

Known relations:
para-NP = FPT ⇔ P=NP
FPT ⊊ XP (relies on the fact that DTIME (nc) ⊊ DTIME (nc+1))
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Reduction

Parameterized reduction
Let Q, R ⊆ Σ∗ × N be two parameterized problems
Parameterized reduction from Q to R: an algorithm which maps (x , k) to (x ′, k ′)
such that:

(x , k) ∈ Q ⇔ (x ′, k ′) ∈ R
runs in time f (k)nO(1) for a computable function f
k ′ ⩽ g(k) for a computable function g

Theorem
If there is a parameterized reduction from Q to R, and R is FPT, then Q is FPT

Remark: the second condition implies that a parameterized reduction is different
from a “classical” polynomial reduction

(but most parameterized reductions run in polynomial time)
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Problems as hard as Clique
Reduction from Clique to Independent Set:
(G , k) → (G , k) (take the complement)

✓parameterized reduction

Reduction from Independent Set to Vertex Cover:
(G , k) → (G , |V (G)| − k) (C is a vertex cover ⇔ V \ C is an
independent set)

✗not a parameterized reduction

Working hypothesis: Clique, Independent Set /∈ FPT
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Some interesting reductions 1/2
Clique to Multicolored Clique (parameterized reduction)

Multicolored Clique
Input: a graph G , a partition V1, V2, . . . , Vk of V (G)
Question: is there a clique C such that |C ∩ Vi | = 1 for all i = 1...k?

k = 3

G has a clique of size k ⇔ G ′ has a multicolored clique of size k

multicolored versions of problems are convenient starting points for
parameterized reductions
taking the complement: Multicolored Independent Set is as hard as
Clique and Independent Set
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Some interesting reductions 2/2
Multicolored Independent Set to Dominating Set (parameterized
reduction)

x1 y1 x2 y2 xk yk

V1 Vk

u

v

wuv
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Some interesting reductions 2/2

Recap:
parameterized reduction from Clique to Multicolored Clique
Multicolored Clique parameterized equivalent to Multicolored
Independent Set
parameterized reduction from Multicolored Independent Set to
Dominating Set

Implies a parameterized reduction from Clique to Dominating Set
→ so, under our working hypothesis, Dominating Set /∈ FPT

Interestingly, there is no known parameterized reduction backward, from
Dominating Set to Clique
⇒ these two problems are not “equivalent” from the parameterized point of view
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The W -hierarchy: the circuit point of view
Independent Set Dominating Set

Goal: set at most k variables to 1
Distinguish between large and small nodes
Weft: maximum number of large nodes from an input to the output

Definition
A parameterized problem is in W [t] if it can be represented by a circuit of weft t
(and bounded total depth)
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The W -hierarchy
The following problems are complete for W [1]:

Weighted 2-Sat (set at most k variables to true)
Independent Set, Clique
Multicolored Independent Set, Multicolored Clique
Short Turing Machine Acceptance: decide if a non-deterministic
Turing machine halts in ⩽ k steps

The following problems are complete for W [2]:
Dominating Set
Set systems: given S1, · · · , Sm subsets of U :

▶ Set Cover: find ⩽ k sets whose union is U
▶ Hitting Set find ⩽ k elements of U intersecting each Si

Canonical W [t]-complete problem:
Weighted t-Normalized Sat: Boolean formula with t alternances of
conjunctions and disjunctions
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The picture

FPT

XPpara-NP

W [1]

W [2]

...
W [t]

W [P]

W [P]: weighted Boolean circuits (no weft restriction)
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Further intuition that FPT ̸= W [1]
FPT = W[1] contradicts the Exponential Time Hypothesis:

Theorem
An f (k)no(k) algorithm for Clique implies a 2o(n) algorithm for 3-Coloring

(which implies a 2o(n) algorithm for 3-Sat and contradicts the ETH)

Sketch of proof:

Let G with n vertices
Carefully choose k to be roughly f −1(n)
Split V (G) into k groups V1, . . . , Vk of size at most ⌈n/k⌉
build a graph H:

▶ for each i = 1...k, for each 3-coloring of Vi , add a vertex
▶ connect two vertices if the two corresponding colorings are compatible

Clearly, H has a k-clique ⇔ G has a 3-coloring
Analysis:

|V (H)| ⩽ k · 3⌈n/k⌉ = 2o(n)

check that f (k)|V (H)|o(k) is 2o(n)
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3. Some recent developments: XNLP
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Some recent developments: XNLP

Roughly, problems in W [P] are: “choose at least/at most k elements out of
n such that ...”
⇒ they have certificates of size O(k log(n))

Bandwidth
Input: a graph G = (V , E ), k ∈ N
Parameter: k
Question: is there a bijection f : V → {1, . . . , |V |} such that for every uv ∈ E ,
|f (v) − f (u)| ⩽ k?

For Bandwidth it seems that Ω(n) is needed for a certificate
so likely /∈ W [P]
Belongs to XP: dynamic programming, remember the last 2k chosen vertices

better: O(nk) time algorithm [Gurari, Sudborough, 1984]
W [t]-hard for every t ∈ N [Bodlaender, claimed in 1994, proved in 2020]
in which class does Bandwidth belong to?
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Some recent developments: XNLP

XNLP
Parameterized problems which can be solved in non-deterministic FPT time and
O(f (k) log(n)) space

Introduced by Elberfeld et al. in 2014, revisited by Bodlaender et al. in 2020
Bandwidth ∈ XNLP:

▶ at each step, guess the next vertex
▶ keep in memory the last 2k vertices with their order

→ polynomial time, n guesses, O(k log(n)) space

Bandwidth is XNLP-complete [Bodlaender et al., 2021]
(even for very restricted caterpillar graphs)

XNLP captures many parameterized problems with “linear” structure which
can be solved using dynamic programming:
XNLP-completeness implies W[t]-hardness for every t
hardness is obtained via parameterized logspace reductions (O(f (k) + log(n))
space)
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Some recent developments: XNLP
Some XNLP-complete problems:

Standard parameterization (solution):
Longest Common Subsequence
Chained version of Clique, Weighted CNF-Sat

Structural “linear” parameter:
List Coloring, Precoloring Extension parameterized by pathwidth
Independent Set, Dominating Set, Feedback Vertex Set,
5-coloring parameterized by linear mim-width

Slice-wise polynomial space conjecture
XNLP-hard problems do not admit algorithms running in nf (k) time and f (k)nO(1)

space

→ they morally have to use dynamic algorithm with tables of size nf (k)

Also: XALP class, to capture problems with tree-structured parameters
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4. Kernels
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Kernels
Definition
A kernel for a parameterized problem Q ⊆ Σ∗ × N is a polynomial-time algorithm
which transforms (x , k) into (x ′, k ′) such that:

(x , k) is a yes-instance ⇔ (x ′, k ′) is a yes-instance
k ′ ⩽ k
|x ′| ⩽ f (k) for some computable function called the size of the kernel

One way to design FPT algorithm: kernel ⇒ FPT
▶ use the kernel (x , k) to get (x ′, k ′)

poly-time

▶ brute-force (x ′, k ′)

time g(|x ′|) ⩽ g(f (k))

⇒ FPT running time

The converse also holds! FPT algorithm ⇒ kernel:
▶ Assume we have an algorithm A which solves (x , k) in time f (k)|x |c
▶ Let (x , k)

⋆ if |x | ⩽ f (k): it is already a kernel
⋆ otherwise |x | > f (k) but then A runs in polynomial-time

(output a dummy instance)
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(output a dummy instance)
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Kernels
Definition
A kernel for a parameterized problem Q ⊆ Σ∗ × N is a polynomial-time algorithm
which transforms (x , k) into (x ′, k ′) such that:

(x , k) is a yes-instance ⇔ (x ′, k ′) is a yes-instance
k ′ ⩽ k
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Kernels
The previous proof shows that all FPT problems admit a kernel

(of possibly exponential size )
Some problems admit a kernel of polynomial size

The classical example: Buss’ kernel for Vertex Cover
Let (G , k). Question: at most k vertices incident to all edges?

Observation 1: if a vertex is incident to k + 1 edges, it must be in a solution
→ remove it, decrease k by 1
Observation 2: if there is an isolated vertex, remove it (useless)

Apply the two reduction rules above as long as you can. At the end:
maximum degree at most k, no isolated vertices

Remark: if G has a vertex cover of size at most k, it has at most k2 edges
⇒ we may assume that G has ⩽ k2 edges = quadratic kernel

For some problems, only kernels of exponential size
How to rule out the existence of polynomial kernels?
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Kernels: ruling out polynomial kernels
One such problem:

Longest Path
Input: A graph G , an integer k
Parameter: k
Goal: Decide whether G has a path of length at least k

Intuition for not having a polynomial kernel:
suppose Longest Path has a kernel of size nc

take nc+1 graphs G1, . . . , Gnc+1 on n vertices for which you want to test the
existence of a path of length k
let G∗ be the disjoint union of all Gi ’s
(G∗, k) yes-instance of Longest Path ⇔ at least one Gi has a path of
length k.
apply the kernel on (G∗, k∗) → (G ′, k ′) with |G ′| ⩽ nc

→ we have “forgotten” some instances in the process!
(does not imply P=NP, but something weird)
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Kernels: ruling out polynomial kernels
Cross-composition
Let L be a problem, Q be a parameterized problem
A cross-composition from L to Q is an algorithm which takes a sequence of
instances x1, . . . , xt , all of size n, and output (y , k) such that:

it runs in polynomial time in Σt
i=1|xi |

k is polynomial in n and log(t)
(y , k) is positive for Q iff at least one xi is positive for L

Remark:
size of y can be huge (polynomial in t)
instances of the sequence can share some properties (e.g. same number of
edges)

Theorem [Bodlaender, Jansen, Kratsch, 2012]
If an NP-hard problem L cross-composes into a parameterized problem Q, then
coNP ⊆ NP/poly
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coNP ⊆ NP/poly
Weaker assumption than NP ̸= coNP:

coNP: solvable in co-nondeterministic polynomial time
→ if instance is negative, there is a computation path that rejects
→ if instance is positive, all computation paths accept
NP/poly: NP using advices of polynomial size
→ for every size n, we have access to a string Sn of size poly(n) for solving
the instance

Composition + polynomial kernel ⇒ Distillation algorithm A for a problem L
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NP/poly: NP using advices of polynomial size
→ for every size n, we have access to a string Sn of size poly(n) for solving
the instance

Composition + polynomial kernel ⇒ Distillation algorithm A for a problem L

Advice Sn: set of
poly(n) no-instances of
size N which covers all
no-instances of size n
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→ if instance is negative, there is a computation path that rejects
→ if instance is positive, all computation paths accept
NP/poly: NP using advices of polynomial size
→ for every size n, we have access to a string Sn of size poly(n) for solving
the instance

Composition + polynomial kernel ⇒ Distillation algorithm A for a problem L

Given x ∈ Σ∗, guess a tuple (x1, ..., xt) with x = xi for some i
→ Check if A(x1, . . . , xt) ∈ Sn

if x /∈ L, there is a guess which will produce an element of Sn

if x ∈ L, no guess will produce an element of Sn

→ we decide L
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Kernels: ruling out polynomial kernels

Different ways for obtaining kernel lower bounds for a problem:

Check if the problem composes to itself
▶ disjoint union
▶ + possibly some instance selector gadget

Turn the known NP-hardness reductions into compositions

Reduce from a problem with a known kernel lower bound
→ restriction of parameterized reduction (bound on size of parameter)

▶ SAT parameterized by the number of variables
▶ Colored Red-Blue Dominating Set parameterized by number of colors

+ vertices to dominate
▶ d-Hitting Set has no kernel of size O(kd−ε) (unless...)
▶ ...
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Kernels: ruling out polynomial kernels

Some variants of cross-compositions:

it can run in co-nondeterministic time (may use non-constructive results)
→ Ramsey does not have PK (unless...)

instead of encoding the OR of the input problem, it may encode the AND

if the output parameter k is ⩽ poly(n) · t1/d

⇒ no kernel of bitsize O(nd−ε)
→ Vertex Cover has no kernel of bitsize O(n2−ε) (unless...)
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Thanks! Questions?
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