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Abstract

A dynamic coloring of a graph is a proper coloring of its vertices such that every
vertex of degree more than one has at least two neighbors with distinct colors. The
least number of colors in a dynamic coloring of G, denoted by χ2(G), is called the
dynamic chromatic number of G. The least integer k, such that if every vertex of G
is assigned a list of k colors, then G has a proper (resp. dynamic) coloring in which
every vertex receives a color from its own list, is called the choice number of G,
denoted ch(G) (resp. the dynamic choice number, denoted ch2(G)). It was recently
conjectured [S. Akbari et al., On the list dynamic coloring of graphs, Discrete Appl.
Math. (2009)] that for any graph G, ch2(G) = max(ch(G), χ2(G)). In this short
note we disprove this conjecture. We first give an example of a small planar bipartite
graph G with ch(G) = χ2(G) = 3 and ch2(G) = 4. Then, for any integer k ≥ 5, we
construct a bipartite graph Gk such that ch(Gk) = χ2(Gk) = 3 and ch2(G) ≥ k.
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For a graph G, the incidence graph of G, denoted G⋆, is the graph obtained from G by
subdividing each of its edges exactly once (i.e. by replacing each edge by a path of length
two). The new vertices are called the middle vertices of G⋆ and the other vertices are
called the original vertices. We first remark that for any graph G, we have χ2(G

⋆) ≥ χ(G)
and ch2(G

⋆) ≥ ch(G): since the middle vertices of G⋆ have degree two, their neighbors
(the end-vertices of an edge of G) must receive distinct colors in any dynamic coloring of
G⋆. Among other consequences, there exist bipartite graphs with arbitrarily large dynamic
chromatic number (take the incidence graphs of complete graphs, for instance).

Consider a (possibly improper) coloring of the edges of G such that the set of edges
incident to any vertex of degree more than one contains at least two distinct colors. We
use ch∗

2(G) to denote the smallest integer k such that if every edge of G is given a list of
k colors, G has such a coloring with the additional property that every edge is assigned a
color from its list. The following lemma relates ch(G), ch∗

2(G), and ch2(G
⋆):
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Lemma 1. For any graph G, ch2(G
⋆) ≤ max(ch(G), ch∗

2(G) + 2). In particular, ch(G) ≤
ch2(G

⋆) ≤ max(5, ch(G)).

Proof. Let L be an assignment of lists of colors to the vertices of G⋆ so that for any
original vertex u, |L(u)| ≥ ch(G), and for any middle vertex v, |L(v)| ≥ ch∗

2(G) + 2. Let
c be a proper coloring of G such that for any vertex u ∈ G, c(u) ∈ L(u) (such a coloring
exists by the definition of ch(G)). For any middle vertex w of G⋆ with neighbors u, v, set
L′(w) = L(w) \ {c(u), c(v)}. By the definition of L and L′, we have |L′(u)| ≥ ch∗

2(G) for
any middle vertex u, so we can extend c to the middle vertices of G⋆, in such way that
every original vertex u is adjacent to two middle vertices v and w with c(v) 6= c(w). Hence,
we obtain a dynamic coloring c of G⋆ such that for any vertex v, c(v) ∈ L(v).

We now prove that for any graph G, ch∗

2(G) ≤ 3. Given a list assignment of 3 colors to
every edge of G, we greedily color the edges of G in the following way: for any non-colored
edge uv, pick a color different from one of the colors appearing on the edges incident with
u, and from one of the colors appearing on the edges incident with v (if such colors exist,
otherwise pick an arbitrary color in the list of uv). Since the list of uv contains three colors,
this is always possible, and the coloring obtained is such that vertices with degree more
than one have at least two distinct colors among the edges they are incident with.

Similarly, we can prove that χ(G) ≤ χ2(G
⋆) ≤ max(χ(G), ch∗

2(G) + 2) ≤ max(5, χ(G)).
On the other hand χ2(G) and χ2(G

⋆) are not necessarily close: if G = K⋆
n, then as remarked

above χ2(G) = n, but χ2(G
⋆) ≤ 4. However we can prove the following lemma:

Lemma 2. For any graph G with 2 ≤ χ2(G) ≤ 3, we have χ2(G
⋆) = 3.

Proof. Since χ2(G) ≥ 2, G contains at least one edge and so χ2(G
⋆) ≥ 3. Consider now

a dynamic 3-coloring c of G, and define the dynamic 3-coloring c⋆ of G⋆ as follows: for
any original vertex v of G⋆, set c⋆(v) = c(v) and for any middle vertex w corresponding
to an edge uv of G, set c⋆(w) = i, where {i} = {1, 2, 3} \ {c(u), c(v)} (this is well-defined
since c is a proper coloring of G). Such a coloring is proper and since middle vertices
have two neighbors of distinct colors, we only have to check that this is also the case for
every original vertex u of degree at least two. But since c is a dynamic coloring, u has two
neighbors v and w in G with c(v) 6= c(w). By the definition of c⋆, the middle vertices on
uv and uw also have distinct colors, and they are both neighbors of u in G⋆.

We now use Lemmas 1 and 2 to construct a small bipartite planar graph G (on 65
vertices), such that ch(G) = χ2(G) = 3 and ch2(G) = 4. Consider the graph Hij of
Figure 1, and observe that if the vertices uij and vij are colored with colors i > 1 and
j > 1, such that i 6= j, then this coloring does not extend to xij and yij if they are both
given the list 1ij. Take 9 copies of Hij for (i, j) ∈ {2, 3, 4} × {5, 6, 7}, and identify all the
vertices uij into a single vertex u∗, and all the vertices vij into a single vertex v∗. This new
graph is called H. Using the observation above, if u∗ and v∗ are given the lists 234 and
456 respectively, and if xij and yij , (i, j) ∈ {2, 3, 4} × {5, 6, 7}, are given the list 1ij, then
H cannot be properly colored with these lists. As a consequence, H is not 3-choosable.
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Figure 1: The graphs Hij and H⋆
ij.

On the other hand it is easy to see that H is 4-choosable (since it is 3-degenerate), so
ch(H) = 4.

Set G = H⋆. Since G is bipartite and planar, ch(G) ≤ 3 by a result of Alon and
Tarsi [2]. It is not difficult to check that G is not 2-choosable (using [3] for instance) so
ch(G) = 3. We now prove that χ2(G) = 3. Using Lemma 2 it is enough to prove that
χ2(H) ≤ 3. But since every vertex of H is in a triangle, χ2(H) = χ(H), and since H is
3-colorable, we have χ2(G) = 3.

Since ch(H) = 4, we have ch2(G) ≥ 4 and in order to conclude, it is sufficient
to prove that ch2(G) ≤ 4. By properly coloring the edges of each 4-cycle uijxijvijyij ,
(i, j) ∈ {2, 3, 4} × {5, 6, 7}, and giving arbitrary colors to the edges xijyij, we see that
ch∗

2(H) = 2. Hence, by Lemma 1, ch2(G) ≤ 4. As a consequence, G is a bipartite planar
graph on 65 vertices such that ch(G) = χ2(G) = 3 and ch2(G) = 4.

Gutner [4] constructed a 3-colorable but not 4-choosable planar graph H ′ on 75 vertices
and 219 edges. Its incidence graph G′ = H ′⋆ is a bipartite planar graph on 294 vertices
and using the same ideas as above, we can show that χ2(G

′) = ch(G′) = 3 and ch2(G
′) = 5.

Let k ≥ 5 be an integer. We will now generalize the ideas of the previous paragraphs
to construct a bipartite graph Gk such that χ2(Gk) = ch(Gk) = 3 and ch2(Gk) ≥ k. Let
K−

ℓ,ℓ be the graph obtained from the complete bipartite graph Kℓ,ℓ by removing an edge.

Observe that for any ℓ ≥ 1, we have ch(K−

ℓ+1,ℓ+1
) ≤ ch(K−

ℓ,ℓ) + 1. To see this, assume that

each vertex of K−

ℓ+1,ℓ+1
has a list of at least ch(K−

ℓ,ℓ) + 1 ≥ 2 colors. Choose two adjacent

vertices u, v of degree ℓ+1 in K−

ℓ+1,ℓ+1
, and color them with distinct colors from their lists.

Now, remove the color of u (resp. v) from the lists of the neighbors of u (resp. v), and
complete the coloring by observing that the graph obtained from K−

ℓ+1,ℓ+1
by removing u

and v is precisely K−

ℓ,ℓ and that each vertex has a list of size at least ch(K−

ℓ,ℓ).
Erdős et al. [3] constructed complete bipartite graphs with arbitrarily large choice

number. Combining this result with the previous remark, we obtain that the function
t : k 7→ min{ℓ | ch(K−

ℓ,ℓ) = k} is well-defined for integers k ≥ 2. Consider the bipartite
graph Hk depicted in Figure 2. It is obtained from the complete bipartite graph Kℓ,ℓ,
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Figure 2: The graph Hk.

ℓ = t(k), by removing an edge between two vertices and adding a path of length three
between them. The coloring described in Figure 2 shows that χ2(Hk) ≤ 3. Using Lemma 2,
the graph Gk = H⋆

k satisfies χ2(Gk) = 3. The graph Gk is easily seen to be 3-choosable
(assign to its original vertices arbitrary colors from their lists, and assign to the middle
vertices colors distinct from their two neighbors) but not 2-choosable (see [3]), which implies
χ2(Gk) = ch(Gk) = 3.

We now prove that ch2(Gk) = k. By definition, ch(K−

ℓ,ℓ) = k, and since colorings of

K−

ℓ,ℓ can be extended to Hk, we also have ch(Hk) = k. Hence, ch2(Gk) ≥ k. On the other
hand, Lemma 1 implies that ch2(Gk) ≤ k. As a consequence, Gk is a bipartite graph such
that χ2(Gk) = ch(Gk) = 3 and ch2(Gk) = k.

However, since the function t is not precisely known, we can only prove the exis-
tence of such a graph. Nevertheless, we can construct a bipartite graph Gk such that
χ2(Gk) = ch(Gk) = 3 and ch2(Gk) ≥ k by taking ℓ =

(

2k−3

k−1

)

+ 1. It can be proved [3] that

in this case ch(K−

ℓ,ℓ) ≥ ch(Kℓ−1,ℓ−1) ≥ k and the result follows.

We conclude with a remark on the parameter ch∗

2 introduced before Lemma 1. In the
proof of this lemma, it is shown that for any graph G, we have ch∗

2(G) ≤ 3. On the other
hand, the construction of the bipartite planar graph G proved the existence of graphs with
ch∗

2(G) = 2. A larger class of graphs with this property includes the graphs obtained
from a bipartite Eulerian graph by repeatedly adding vertices of degree at least two (and
all the supergraphs of graphs constructed this way, since adding edges to a graph G with
minimum degree two and ch∗

2(G) = 2 leaves ch∗

2 unchanged). A natural question is whether
the recognition of graphs G with ch∗

2(G) = 2 is polynomial or not.

Additional remarks I would like to thank Frédéric Maffray for interesting discussions
about the question above, after this paper was originally submitted. Let χ∗

2(G) be the least
number of colors in a (possibly improper) coloring of the edges of G such that no vertex
of degree at least two has all the edges incident to it colored the same. We clearly have
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χ∗

2(G) ≤ ch∗

2(G). As a partial answer to the previous question, we proved that χ∗

2(G) ≤ 2
precisely if G has no component isomorphic to an odd cycle. The idea of the proof is to
either color a perfect matching with color 1 and the remaining edges with color 2, or (if
the graph has no perfect matching) to use Tutte’s theorem together with an appropriate
edge-coloring. However, the proof does not seem to extend to a precise characterization of
the graphs G satisfying ch∗

2(G) = 2.
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[3] P. Erdős, A.L. Rubin and H. Taylor, Choosability in graphs, Congr. Numer. 26 (1979),
125–157.

[4] S. Gutner, The complexity of planar graph choosability, Discrete Math. 159 (1996),
119–130.

5


