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Abstract

This paper studies the game chromatic number and game colouring number of the square
of graphs. In particular, we prove that if G is a forest of maximum degree ∆ ≥ 9, then
χg(G

2) ≤ colg(G
2) ≤ ∆+3, and there are forests G with colg(G

2) = ∆+3. It is also proved
that for an outerplanar graph G of maximum degree ∆, χg(G

2) ≤ colg(G
2) ≤ 2∆ + 14,

and for a planar graph G of maximum degree ∆, χg(G
2) ≤ colg(G

2) ≤ 23∆ + 75.

1 Introduction

The game chromatic number of a graph is defined through a two-player game: let G be a
graph and C be a set of colours. Alice and Bob take turns colouring uncoloured vertices of
G, with Alice having the first move. Each move colours one uncoloured vertex, subject to the
condition that two adjacent vertices cannot be coloured with the same colour. Alice wins the
game if eventually every vertex is coloured. Bob wins the game if some uncoloured vertex x
cannot be coloured anymore (each colour in C has been assigned to some neighbour of x).
The game chromatic number χg(G) of G is the minimum k for which Alice has a winning
strategy with a set of k colours in this game.

The game chromatic number has been widely studied over the last decade. Upper and
lower bounds for the game chromatic number of many classes of graphs have been obtained.
For a class K of graphs, let

χg(K) = max{χg(G) : G ∈ K}.

We denote by F the family of forests, by P the family of planar graphs, by Q the family of
outerplanar graphs. It is known that χg(F) = 4 [6], 6 ≤ χg(Q) ≤ 7 [7, 9], 8 ≤ χg(P) ≤ 17
[9, 13]. For two graphs G,G′, the Cartesian product G2G′ has vertex set {(x, x′) : x ∈
V (G), x′ ∈ V (G′)} and (x, x′) is adjacent to (y, y′) if either x = y and x′y′ ∈ E(G′) or
xy ∈ E(G) and x′ = y′. The game chromatic number of the Cartesian product of graphs was
studied in [1, 14]. For two classes K,K′ of graphs, K2K′ = {G2G′ : G ∈ K, G′ ∈ K′}. It was
proved in [14] that χg(F2F) ≤ 10 and χg(P2P) ≤ 105.
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In this paper, we are interested in the game chromatic number of the square of graphs.
Suppose G = (V,E) is a graph. The square of G, denoted by G2, is a graph with vertex
set V in which two distinct vertices x, y are adjacent if dG(x, y) ≤ 2, i.e., either xy ∈ E or
x, y have common neighbour. Hence, χg(G

2) can be equivalently defined as the minimum
number of colours such that Alice has a winning strategy in a variation of the game where
the requirement is that at any step, vertices at distance at most two in G cannot be coloured
by the same colour. Section 2 gives an upper bound on χg(G

2) in terms of ∆(G) and the
game colouring number of G. Section 3 discusses the game chromatic number of the square of
forests. Section 4 considers the square of outerplanar graphs. Section 5 studies pseudo-partial
2-trees.

2 Game colouring number

The game colouring number of a graph is a variation of the game chromatic number, first
formally introduced in [11] as a tool in the study of game chromatic number. It is also
defined through a two-player game: Alice and Bob take turns marking the vertices of G.
Each move marks one unmarked vertex. The game ends if all vertices of G are marked. The
game colouring number of G, colg(G) is the least integer k such that Alice has a strategy for
the marking game so that at any moment, any unmarked vertex has at most k − 1 marked
neighbours. It is obvious that for any graph G, χg(G) ≤ colg(G). For a class K of graphs,
let colg(K) = max{colg(G) : G ∈ K}. For many classes K of graphs, the best known upper
bound for χg(K) are obtained by considering colg(K). In this paper, we shall also obtain
upper bounds for the game chromatic number of squares of graphs by studying their game
colouring number. Observe that colg(G

2) can be equivalently defined as the least integer k
such that Alice has a strategy for the marking game so that at any moment, any unmarked
vertex has at most k − 1 marked vertices at distance at most 2 in G.

Theorem 2.1 If G has game colouring number k and maximum degree ∆, then χg(G
2) ≤

colg(G
2) ≤ (k − 1)(2∆ − k + 1) + 1.

Proof Assume that Alice has a strategy for the marking game on G to ensure that at any
moment of the game, any unmarked vertex has at most k − 1 marked neighbours in G. We
shall show that by using the same strategy, Alice can ensure that at any moment of the
game, any unmarked vertex has at most (k − 1)(2∆ − k + 1) marked vertices at distance
at most 2 in G. Indeed, if v is an unmarked vertex, then let NM (v) be the set of marked
neighbours of v in G, and NU (v) be the set of unmarked neighbours of v in G. Each vertex
of NM (v) has at most ∆− 1 marked neighbours, and each vertex of NU (v) has at most k − 1
marked neighbours. Hence, v has at most |NM (v)|(∆ − 1) + |NM (v)| + (k − 1)|NU (v)| ≤
∆(k− 1) + |NM (v)|(∆− k + 1) marked vertices at distance at most two. As |NM (v)| ≤ k− 1,
there are at most (k − 1)(2∆ − k + 1) such vertices. 2

3 Game colouring of the square of forests

For special classes of graphs, the upper bound for χg(G
2) in Theorem 2.1 can usually be

improved. This section proves a better upper bound for χg(G
2) when G is a forest.
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Theorem 3.1 If G is a forest with maximum degree ∆ ≥ 9, then ∆ + 1 ≤ χg(G
2) ≤

colg(G
2) ≤ ∆ + 3.

For any forest G, ω(G2) = ∆ + 1. Therefore χg(G
2) ≥ ∆ + 1. Assume G = (V,E) is a forest

with ∆ ≥ 9. To prove that colg(G
2) ≤ ∆+3, we shall give a strategy for Alice for the marking

game on G2, so that at any moment of the game, each unmarked vertex has at most ∆ + 2
marked neighbours in G2.

If G is not a tree, then we may add some edges to G to obtain a tree. Thus we may
assume that G is a tree. Alice’s strategy is a variation of the activation strategy, which is
widely used in the study of colouring games and marking games. She keeps track of a set
Va ⊆ V of active vertices, which always induces a subtree of G. When a vertex v is added to
Va, we say that v is activated. Vertices in Va are called active vertices, and other vertices are
called inactive.

Choose a vertex r of G as the root, and view G as a rooted tree. For a vertex x, f1(x)
(abbreviated as f(x)) is the father of x and for i ≥ 2, let f i(x) = f(f i−1(x)). For convenience,
we let f(r) = r. The vertices in {f i(x) : i ≥ 1} are called the ancestors of x. Let S(x) be the
set of sons of x, and let S2(x) = ∪y∈S(x)S(y) be the set of grandsons of x.

Alice’s strategy:

• Initially she sets Va = {r}, and marks r.

• Assume Bob has just marked a vertex x and there are still unmarked vertices. Let Px

be the unique path from x to the nearest ancestor y of x that is Va. In particular, if
x ∈ Va, then x = y and Px consists of the single vertex x. Alice adds all the vertices of
Px to Va, and marks the first unmarked vertex from the sequence: f2(y), f(y), y, z∗, v,
where v is an unmarked vertex with no unmarked ancestors, and z∗ is defined as follows:
Let Z = {z ∈ S(y) : z is unmarked and |(S(z) ∪ S2(z)) ∩ Va| is maximum among all
unmarked sons of y}. Let M be the set of marked vertices. Then z∗ is a vertex in Z for
which |(S(z∗) ∪ S2(z∗)) ∩M | is maximum. In case Z = ∅, then ignore the vertex z∗ in
the sequence.

This completes the description of Alice’s strategy. In the following, we shall show that by
using this strategy, each unmarked vertex has at most ∆ + 2 marked neighbours in G2 (or
equivalently, each unmarked vertex has at most ∆ + 2 marked vertices at distance one or two
in G).

For each vertex x marked by Bob, there is a path Px defined as above. We say that a
vertex w made a contribution to f(w) and f(w) received a contribution from w, if one of the
following holds:

1. (w, f(w)) is an edge in Px for some x.

2. w = x′ is the last vertex of Px for some x and Alice marked f(x′) or f2(x′) in that step.

3. w = f(x′) is the father of the last vertex x′ of Px for some x and Alice marked f2(x′) =
f(w) in that step.

Lemma 3.2 Assume Alice has just finished a move and y has two active sons. Then f2(y)
is marked.
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Proof When the first son of y is activated, then y and all its ancestors are activated. When
the second son of y is activated, then the corresponding path Px ends at y, and by the strategy,
Alice marks f2(y), provided that f2(y) was not marked earlier. 2

Lemma 3.3 Assume Alice has just finished a move, and one of y, f(y) is an unmarked vertex.
Then the following holds:

(1) y has at most 3 active sons.

(2) S(y) ∪ S2(y) contains at most 6 active vertices. Moreover, if S(y) ∪ S2(y) does contain
6 active vertices, then y has 3 active sons, each of which has one active son.

Proof The first contribution to y ensures that y, f(y) and f2(y) are all active, and each
further contribution marks at least one of these three vertices (as long as y is unmarked).
Since y or f(y) is unmarked, y received at most three contributions. During each of the three
corresponding moves of Alice, at most one vertex of S(y) and at most one vertex of S2(y) are
activated. So S(y) contains at most three active vertices and S2(y) contains at most three
active vertices. In case S(y) ∪ S2(y) does contain 6 active vertices, then y has three active
sons, each of which has one active son. 2

Lemma 3.4 Assume Alice has just finished a move, and one of y, f(y) is an unmarked vertex.
Then y has at most one unmarked son x such that S(x) ∪ S2(x) contains more than 2 active
vertices.

Proof Assume to the contrary that y and f(y) are not both marked and y has two unmarked
sons x1, x2 such that for each j = 1, 2, S(xj) ∪ S2(xj) contains more than 2 active vertices.
For j = 1, 2, if a vertex in S(xj) ∪ S2(xj) is activated, the corresponding path Px ends at
xj or a vertex z ∈ S(xj). Hence xj receives a contribution. Since xj is unmarked, xj passes
the contribution to y. As S(xj) ∪ S2(xj) contains more than 2 active vertices, there are at
least two steps in which some vertex in S(xj)∪S2(xj) is activated. Hence y received at least
4 contributions. As remarked in the proof of Lemma 3.3, if y received 4 contributions, then
both y, f(y) are marked. 2

Lemma 3.5 Assume Alice has just finished a move. Then the following holds:

• y has at most two unmarked sons x for which S(x)∪S2(x) contains more than 2 active
vertices.

• If y has 3 active sons, then y has at most one unmarked son x for which S(x) ∪ S2(x)
contains more than 2 active vertices. If y has 4 or more active sons, then for each
unmarked x ∈ S(y), S(x) ∪ S2(x) contains at most two active vertices and contains at
most one marked vertex.

Proof By Lemma 3.4, before y and f(y) are both marked, y has at most one unmarked son
x such that S(x) ∪ S2(x) contains more than 2 active vertices. Therefore at the moment the
last of the two vertices y and f(y) is marked, y has at most two unmarked sons x for which
S(x) ∪ S2(x) has more than 2 active vertices. Moreover, if y does have two unmarked sons
x for which S(x) ∪ S2(x) contains more than 2 active vertices, then y has only two active
unmarked sons.
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Figure 1: A tree T with colg(T
2) = ∆ + 3.

Assume that at the moment that the last of the two vertices y and f(y) is marked, y
has two unmarked sons, say x1 and x2, such that S(xi) ∪ S2(xi) contains more than 2 active
vertices (i = 1, 2). By Lemma 3.2, f2(y) is marked.

Suppose the third son x3 of y is activated. Since f2(y), f(y), y are all marked, by the
strategy, one of x1 and x2, say x1, will be marked. At the time x3 is activated, S(x3)∪S2(x3)
contains at most two active vertices and at most one marked vertex. If one more vertex of
S(x3) ∪ S2(x3) is activated or marked, then Alice should have marked x3. When the fourth
son x4 of y is activated, Alice should have marked x2. Once both x1 and x2 are marked, then
for any son x of y, if S(x)∪S2(x) contains more than 2 active vertices or contains more than
one marked vertex, Alice should have marked x. 2

Lemma 3.6 Assume ∆(G) ≥ 9. If Alice has just finished a move and x is an unmarked
vertex, then there are at most ∆ + 1 marked vertices at distance at most 2 (in G) from x.

Proof By Lemma 3.3, S(x) ∪ S2(x) contains at most 6 active vertices, and so at most 6
marked vertices since after any of Alice’s moves all the marked vertices are active. The other
marked vertices at distance at most 2 from x are f(x) and the neighbours of f(x). By Lemma
3.5, if S(x) ∪ S2(x) contains at least 2 two marked vertices then f(x) has at most 3 active
sons (including x), hence the set N [f(x)] − {x} contains at most 4 marked vertices : f(x),
f2(x), and two sons of f(x). So in this case there are at most 4 + 6 = 10 ≤ ∆ + 1 marked
vertices at distance at most 2 from x. If S(x) ∪ S2(x) contains at most one marked vertex,
then again there are at most ∆ + 1 marked vertices at distance at most 2 from x. 2

After Bob’s move, an unmarked vertex x has at most ∆ + 2 active vertices that are of
distance at most 2 from x. This proves that the game colouring number of the square of a
forest F is at most ∆ + 3.

The bound colg(G
2) ≤ ∆ + 3 is tight for trees. To see this, consider the graph depicted

in Figure 1. By symmetry, we can assume that Alice does not mark x or xi during her first
move. Let X = {xi, 1 ≤ i ≤ t}, Yi = {yi, y

′
i}, and Y =

⋃
1≤i≤t Yi. We say that Yi has been

marked if any of yi and y′i has been marked. Bob’s strategy is the following : if there is an
unmarked vertex xi, such that Yi is not marked, Bob marks yi. Otherwise he just marks any
uj , vj , or v′j.

We now prove that if Bob follows this strategy, some unmarked vertex will be adjacent to
at least ∆ + 2 marked vertices in T 2 at some point of the game.
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After Bob’s first move, the number of marked Yi’s is one more than the number of marked
xi’s. If Alice marks an xi whenever Bob marks Yi, then eventually x will have too many
marked neighbours in T 2. So before all the xi’s are marked, Alice needs to mark x at a
certain move. Then before all the xi’s are marked, if Bob has just finished a move, the
number of marked Yi’s is at least two more than the number of marked xi’s.

Let xi and xj be the last vertices of X to be marked. Before xi, xj are marked, Bob has
already marked yi and yj. Without loss of generality, assume that Alice chooses to mark xi

first, then Bob marks y′j and after his move, xj is unmarked and has at least ∆+2 neighbours

in T 2.

4 Outerplanar graphs

A graph G is an outerplanar graph if G can be embedded in the plane in such a way that all
the vertices of G lie on the boundary of the infinite face. This section gives an upper bound
for χg(G

2) for outerplanar graphs.

Theorem 4.1 Let G be an outerplanar graph with maximum degree ∆, then χg(G
2) ≤

colg(G
2) ≤ 2∆ + 14.

Let G = (V,E) be an outerplanar graph with maximum degree ∆, and let H = (V,E′) be
a maximal outerplanar graph containing G. Since H is a 2-tree, there exists an orientation
~H of H such that:

• every vertex of ~H has out-degree at most two;

• the two out-neighbours of any vertex, if they exist, are adjacent.

If a vertex x of H has two out-neighbours y, z, and −→yz is an arc of H, then we say that z is
the major parent of x, x is a major son of z, y is the minor parent of x, and x is a minor son
of z. If x has only one out-neighbour z, then z is the major parent of x and x is a major son
of z. For a vertex x, we denote by f(x) (resp. l(x)) its major (resp. minor) parent, if it exists.
We also define S(x) as the set of in-neighbours of x and S2(x) as the set of in-neighbours of
the vertices of S(x).

Observation 4.2 For every vertex x ∈ ~H, at most two in-neighbours of x are minor sons of
x. The minor sons of x, if any, are major sons of f(x) or l(x).

This observation is an easy consequence of the definition of ~H (see Figure 2, where only
x1 and xt may be minor sons of x).

Let
−→
T be the directed tree defined by the arcs {

−−−→
xf(x), x ∈ ~H}. As in the previous section,

Alice’s strategy is a variation of the activation strategy and she will keep track of a set Va of
active vertices.

Alice’s strategy

• At her first move, Alice will mark the root r of ~T , and set Va = {r}.
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Figure 2: The neighbourhood of a vertex x in ~H. The dashed arcs may not be there in the
graph.

• Assume Bob just marked a vertex x. Let Px be the path constructed as follows: At
the beginning Px = {x}. Let z be the last vertex of Px. If z is inactive, then add f(z)
to Px. Otherwise if l(z) is inactive, add l(z) to Px. Eventually the procedure will stop
and the last vertex y of Px, as well as its parents, are all active (note that if z is active
then f(z) must be active). Alice adds all the vertices of Px to Va and marks the first
unmarked vertex from the sequence f(y), l(y), y, v, where v is an unmarked vertex with
no unmarked ancestors.

Lemma 4.3 Let x be an unmarked vertex after a move of Alice, then there are at most
2∆ + 12 active vertices at distance one or two from x in G.

Proof Assume to the contrary that after a move of Alice, there are at least 2∆ + 13 active
vertices at distance one or two from an unmarked vertex x in G. Let f(x), l(x) be the major
and minor parents of x, and x1, . . . , xt are the sons of x (see Figure 2), where x1 and xt are
minor sons of x. Let v1 be the minor son of x1 that is a major son of f(x), and vt be the
minor son of xt that is a major son of l(x). (some of the vertices f(x), l(x), x1, xt, v1, vt may
not exist. In that case ignore them in the following discussion.)

Among these 2∆ + 13 vertices, 2∆ of them may be f(x), l(x) and their neighbours (other
than x). The other 13 are contained in S(x) ∪ S2(x). Hence S(x) ∪ S2(x) − {x1, xt, v1, vt}
contains at least 9 active vertices. In each of Alice’s move, at most two vertices in S(x)∪S2(x)
are activated. So there are at least 5 moves of Alice, in which some vertices in S(x)∪S2(x)−
{x1, xt, v1, vt} are activated.

In the first of such a move, if the activated vertex of S(x) ∪ S2(x) − {x1, xt, v1, vt} is not
a major son of xt, then f(x) is activated (unless f(x) is activated before this move). If the
activated vertex of S(x) ∪ S2(x) − {x1, xt, v1, vt} is a major son of xt, then l(x) is activated
(unless l(x) is activated before this move).

After the second of such a move, f(x) and l(x) are both activated (by the previous
paragraph, at least one of these two vertices is activated before this move).

After the third and the fourth of such moves, f(x) and l(x) are marked and x is activated
(the latest time for x to be activated is in the third of such a move). In the fifth of these
moves, x will be marked, in contrary to our assumption. 2

After Bob’s move, an unmarked vertex has at most 2∆ + 13 active vertices at distance
one or two in G. This proves that the game colouring number of the square of an outerplanar
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graph with maximum degree ∆ is at most 2∆ + 14.
Note that in the description and analyse of the strategy, we always use the graph H, which

is a triangulated outerplanar graph obtained from G by adding some edges. But the degree
of a vertex x refers to its degree in G, and ∆ is the maximum degree of G.

5 Pseudo-partial 2-trees

The class of pseudo-partial k-trees is a class of graphs introduced in [12], as a generalization
of partial k-trees. A graph G = (V,E) is a chordal graph if there is a linear order, say
v1, v2, · · · , vn, on the vertex set V , such that for each i, the set {vj : j < i, vjvi ∈ E}
induces a complete subgraph of G. By orienting the edges of G in such a way that an edge
vivj is directed from vi to vj if and only if i > j, we obtain an oriented graph ~G = (V, ~E)
which is acyclic and for each vertex vi, its out-neighbours induce a transitive tournament.
The converse is also true, i.e., a graph G = (V,E) is a chordal graph if and only if G has
an orientation ~G = (V, ~E) which is acyclic and the out-neighbours of each vertex induce a
transitive tournament. For an oriented graph ~G and a vertex u of ~G, we denote the neighbours
of u by N ~G

(u), the out-neighbours of u by N+
~G
(u), and the in-neighbours of u by N−

~G
(u). We

denote the degree, out-degree and in-degree of u by d ~G
(u), d+

~G
(u) and d−

~G
(u), respectively.

When the oriented graph ~G is clear from the context we will drop the subscript.
Suppose a, b are integers such that 0 ≤ a ≤ b. A connected graph G = (V,E) is called an

(a, b)-pseudo-chordal graph if there are two oriented graphs ~G1 = (V, ~E1) and ~G2 = (V, ~E2)
on the same vertex set V such that the following is true:

• E1∩E2 = ∅ and E = E1∪E2, where Ei is the set of edges obtained from ~Ei by omitting
the orientations.

• ~G1 is acyclic and has a single sink r.

• ~G2 has maximum out-degree at most a, and maximum degree at most b.

• Let N+(x) = N+
~G1

(x) be the set of out-neighbours of x in ~G1, and let ~G∗ = (V, ~E1∪ ~E2).

Then N+(x) induces a transitive tournament in ~G∗.

A graph G is called an (a, b)-pseudo-partial k-tree if it is a subgraph of an (a, b)-pseudo-
chordal graph in which the directed graph ~G1 in the definition has maximum out-degree at
most k.

Note that any induced subgraph of an (a, b)-pseudo-chordal graph is still an (a, b)-pseudo-
chordal graph. Therefore, an (a, b)-pseudo-partial k-tree can be equivalently defined as a
spanning subgraph of an (a, b)-pseudo-chordal graph in which the directed graph ~G1 in the
definition has maximum out-degree at most k.

It follows from the definition that if b = 0 (hence a = 0), then a (0, 0)-pseudo-chordal
graph is simply a chordal graph, and a (0, 0)-pseudo-partial k-tree is simply a partial k-tree.
However, for some 0 < a ≤ b, there are (a, b)-pseudo-k-trees which have arbitrarily large
treewidth. For example, a result proved in [11] is equivalent to the statement that every
planar graph is a (3, 8)-pseudo-partial 2-tree. Nevertheless, for fixed a, b, the class of (a, b)-
pseudo-chordal graphs does have some similarities with the class of chordal graphs, and the
class of (a, b)-pseudo-partial k-trees does have similarities with the class of partial k-trees. We
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shall explore such similarities, and use them to derive upper bounds for the game colouring
number of the square of pseudo-partial 2-trees, and hence for the game colouring number of
the square of planar graphs and partial 2-trees.

In this section, we apply some modifications on the activation procedure described in
Section 3 of [12], to prove the following theorem:

Theorem 5.1 Let G be an (a, b)-pseudo-partial 2-tree with maximum degree ∆, then colg(G
2) ≤

(2b + a + 4)∆ + 5a − b + 68.

Let G = (V,E) be an (a, b)-pseudo-partial 2-tree, and let ~G1 = (V, ~E1) and ~G2 = (V, ~E2)
be the two oriented graphs obtained from the pseudo-chordal supergraph of G as described
in the decomposition of pseudo-partial k-trees. Recall that ~G2 has out-degree at most a and
degree at most b, and that every vertex v has at most two out-neighbours in ~G1. If x has two

out-neighbours in ~G1, then they are denoted by f(x) and l(x), and
−−−−−→
l(v)f(v) is an arc of ~E1 or

~E2. We call f(v) (resp. l(v)) a major (resp. minor) parent of v and v a major (resp. minor)
son of f(v) (resp. l(v)). If v has only one out-neighbour in ~G1, then it is denoted by f(x).

We now describe a strategy for Alice in the marking game on G2 that ensures the score
of the game is at most (2b + a + 4)∆ + 5a − b + 68.

Two vertices v, v′ are called siblings if they have the same parents, i.e., f(v) = f(v′) and
l(v) = l(v′). For each vertex v, let B(v) be the set of siblings of v.

Observation 5.2 ( Lemma 1 of [12] )
For any vertex x, its minor sons partition into at most a + 2 groups of siblings.

Alice’s strategy is again a variation of the activation strategy. Besides the set of active
vertices, Alice will also keep record of a function t(v), which counts the number of contribu-
tions made by the set B(v) to their parents. So the value of t(v) will change in the process
of the game. A vertex v is called dummy if v, f(v), l(v) are all marked.

Alice’s strategy

• Initially, Alice marks the sink r of ~G1, sets Va = {r} and sets t(v) = 0 for all v.

• Assume Bob just marked a vertex x. Alice will create a directed path Px using the
following procedure. At the beginning Px = {x}. Let z be the last vertex of Px. If
z, f(z), l(z) are all active, or f(z), l(z) are both dummy vertices, then the construction
of Px is complete. If at least one of z, f(z), l(z) is inactive and none of f(z), l(z) is a
dummy vertex, then extend Px by adding f(z) or l(z) to its end, depending on whether
t(z) is even or odd. For each vertex v ∈ B(z), increase t(v) by 1. If at least one of
z, f(z), l(z) is inactive and exactly one of f(z), l(z) is not a dummy vertex, add that
vertex to the end of Px, and for each v ∈ B(z), increase the value of t(v) by 1. After
the construction of Px is completed, add all the vertices of Px to Va. Let y be the last
vertex of Px. Let v be a minimal unmarked vertex (that is, for every directed path in
~G1 starting at v, all the vertices of the path except v are marked). Alice marks the first
unmarked vertex from the sequence f(y), l(y), y, v. If the marked vertex is f(y) or l(y),
then for each vertex u ∈ B(y), increase t(u) by 1.

Similarly as before, if (w,w′) is a directed edge in Px for some Px, then we say that w
made a contribution to w′ and w′ received a contribution from w. Let x′ be the last vertex of
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Px. If f(x′) (l(x′), resp.) is marked at this move, then we also say that f(x′) (l(x′), resp.)
received a contribution from x′.

By this definition, it is easy to see that t(v) counts the number of contributions made by
vertices in B(v) to their (common) parents.

The following observations follow from the strategy.

Observation 5.3 A vertex x makes contributions to f(x) and l(x) only, and x can make at
most two contributions to each of f(x), l(x).

Indeed, if x makes the first contribution to f(x) (without loss of generality), then f(x)
becomes active. Before x makes a second contribution to f(x), l(x) has necessarily received
a contribution from a vertex in B(x). Hence x, f(x) and l(x) are all active and the relevant
path Pz must have ended at x. Hence f(x) becomes marked when it receives the second
contribution from x.

Observation 5.4 If a vertex x receives a contribution, then either x sent out a contribu-
tion, or x is marked. As x can send out at most 4 contributions, x can receive at most 5
contributions. If x receives 4 contributions, then both f(x), l(x) are marked. If x receives 5
contributions, then f(x), l(x), x are all marked (and by definition, x becomes a dummy vertex).

Observation 5.5 For each vertex y, if f(y) is not a dummy vertex, then f(y) received at
least ⌈t(y)/2⌉ contributions from B(y); if l(y) is not a dummy vertex, then l(y) received at
least ⌊t(y)/2⌋ contributions from B(y).

Observation 5.6 When a vertex in B(y) becomes active, t(y) increases by 1, unless both
f(y) and l(y) (if they exist) are dummy vertices.

In the following, by a son of x we mean an in-neighbour of x in G1.

Observation 5.7 Each inactive vertex x has at most a + 2 active sons.

Proof If x is inactive, then x received no contribution from its sons. So if y is a major son
of x, then t(y) = 0, and if y is a minor son of x, then t(y) ≤ 1. This means that no major son
of x is active, and for each minor son y, B(y) contains at most one active vertex. Therefore
x has at most a + 2 active sons by Observation 5.2. 2

Observation 5.8 If a vertex x has k active sons and x is not a dummy vertex, then x
received at least ⌈(k − (a + 2))/2⌉ contributions, and has made at least ⌈(k − (a + 2))/2⌉ − 1
contributions to its parents.

Proof As in the proof of Observation 5.7, x has at most a + 2 minor sons such that when
they are activated, they do not make contributions to x. For all the other active sons, at least
half of them make contributions to x. As observed above, when x receives one contribution,
it will make a contribution to {f(x), l(x)} or will be marked. Hence x has made at least
⌈(k − (a + 2))/2⌉ − 1 contributions to its parents. 2

Lemma 5.9 Assume Alice has just finished a move and x is an unmarked vertex. Then x
has at most (2b + a + 4)∆ + 5a − b + 66 active vertices at distance one or two in G.
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Proof Observe that vertices which are at distance one or two from x are contained in at
least one of the following vertex sets:

• f(x) and l(x), as well as the vertices adjacent in G to one of these two vertices. There
are at most 2∆ such vertices.

• vertices adjacent in G2 to a vertex in NG[x] (i.e., the close neighbourhood of x in G).
There are at most b∆ such vertices

• vertices adjacent in G to a neighbour of x in G2. There are at most b(∆ − 1) such
vertices.

• vertices in N−
G1

(x) and vertices in ∪y∈N−

G1
(x)N

−
G1

(y).

Note that vertices of ∪
y∈N−

G1
(x)N

+
G1

(y) are included in the counting above, since these

vertices belong to NG(x) = NG2
(x) ∪ N−

G1
∪ {f(x), l(x)}.

By Observation 5.7, every inactive son of x has at most a + 2 active sons. Assume x has
k active sons y1, y2, . . . , yk. Since x is unmarked, by Observation 5.4, x received at most 4
contributions. Hence ⌈(k − (a + 2))/2⌉ ≤ 4 (by Observation 5.8), implying that k ≤ a + 10.
Assume for i = 1, 2, . . . , k, yi has ki active sons.

By Observation 5.8, yi made at least k′
i = ⌈(ki−(a+2))/2⌉−1 contributions to its parents.

By Observation 5.5, x received at least ⌊
∑

yj∈B(yi)
k′

j/2⌋ ≥
∑

yj∈B(yi)
⌊k′

j/2⌋ contributions

from B(yi). By Observation 5.4,
∑k

i=1⌊k
′
i/2⌋ ≤ 4. This implies that

∑k
i=1 ki ≤ (a + 6)k + 16.

Hence, there are at most (a+6)k+16 active sons of an active son of x. So ∪y∈N−

G1
(x)N

−
G1

(y)

contains at most (a+ 2)(∆− k)+ (a+ 6)k + 16 = (a+ 2)∆ + 4k + 16 active vertices. In total,
N−

G1
(x) and ∪y∈N−

G1
(x)N

−
G1

(y) contain at most (a+ 2)∆ + 5k + 16 ≤ (a+ 2)∆ + 5a+ 66 active

vertices. Hence, x has at most (2b + a + 4)∆ + 5a − b + 66 active vertices at distance one or
two in G. 2

According to the rules and the construction of Px, marked vertices are all active after
Alice’s move, and so any unmarked vertex has at most (2b + a + 4)∆ + 5a − b + 66 marked
vertices at distance one or two. Hence, after Bob’s move, an unmarked vertex has at most
(2b + a+ 4)∆ + 5a− b+ 67 marked vertices at distance one or two in G. This proves that the
game colouring number of the square of an (a, b)-pseudo-partial 2-tree with maximum degree
∆ is at most (2b + a + 4)∆ + 5a − b + 68.

Since planar graphs are (3, 8)-pseudo-partial 2-trees [12] and partial 2-trees are (0, 0)-
pseudo-partial 2-trees, we have the two following corollaries.

Corollary 5.10 Let G be a planar graph with maximum degree ∆, then colg(G
2) ≤ 23∆+75.

Corollary 5.11 Let G be a partial 2-tree with maximum degree ∆, then colg(G
2) ≤ 4∆+68.

6 Acyclic game chromatic number

Acyclic game colourings of graphs were recently studied in [4]. This colouring game is the
same as the colouring game defined in the introduction, except that at any step, the partial
colouring has to be acyclic (that is, a proper colouring without bi-coloured cycles). The
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acyclic game chromatic number of a graph G is denoted by χa,g(G), and is defined as the
least number of colours for which Alice has a winning strategy in G. Surprisingly, while the
acyclic chromatic number of planar graphs is at most 5 [3], their acyclic game chromatic
number is not bounded. An example of a partial 2-tree with acyclic game chromatic number
at least ∆/2 was given in [4]. In general, obtaining good upper bounds for the acyclic game
chromatic number seems difficult. The following observation connects acyclic game colouring
and the topic of the present paper:

Observation 6.1 For every graph G, χa,g(G) ≤ colg(G
2).

If Alice has a strategy to win the marking game in G2 with k colours, then by using the
same strategy she can win the acyclic game with k colours. When playing, Alice picks a
vertex v such that at any step of the game, any unmarked vertex has at most k − 1 marked
vertices at distance one or two. She then colours v with a colour distinct from all the colours
at distance at most two from v. She eventually obtains a proper colouring of G2, which is
also an acyclic colouring of G.

As corollaries of Observation 6.1, we obtain that planar graphs with maximum degree ∆
have acyclic game chromatic number at most 23∆ + 75, and partial 2-trees with maximum
degree ∆ have acyclic game chromatic number at most 4∆ + 68.

We conclude with some open questions:

Question 6.2 Is it true that χa,g(G) ≤ χg(G
2) for every graph G?

Question 6.3 Is it true that for some constant C1, any planar graph G with maximum degree
∆ satisfies χa,g(G) ≤ ∆

2 + C1?

Question 6.4 Is it true that for some constants C2 and C3, any outerplanar graph G with
maximum degree ∆ satisfies colg(G

2) ≤ ∆ + C2, and any planar graph G with maximum
degree ∆ satisfies colg(G

2) ≤ 3
2∆ + C3?
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