
ORCO – Graphs and Discrete Structures
October 12, 2022 – Lecture 3

1 Planar graphs

A graph is planar if it has an embedding in the plane with no edge-crossings.
The connected component of the plane minus the embedding are called the
faces. The degree of a face is the number of edges on a boundary walk
(counted with multiplicity). A fundamental result about planar graphs is
the following.

Theorem 1 (Euler’s Formula). If G is a connected planar graph, embedded
in the plane, with n vertices, m edges, and f faces, then n−m+ f = 2.

Note that it shows in particular that the number of faces of a planar graph
does not depend on the embedding the graph (and thus we can remove “em-
bedded in the plane” in the theorem above).
We will not prove Euler’s formula formally (during the lectures we have seen
two sketch of proofs, one using discharging method).

We will now deduce the following simple result from Euler’s Formula.

Lemma 2. Any planar graph on n ≥ 3 vertices has at most 3n− 6 edges.

Proof. We can assume that the graph is connected (otherwise we consider
each connected component separately). Let m be the number of edges and
f be the number of faces of G. By Euler’s Formula, we have n−m+ f = 2
and thus f = 2−n+m. A simple counting argument shows that the sum of
the degrees (number of edges in a boundary walk) of the faces of G is equal
to 2m, and since each face has degree at least 3, we have 2m ≥ 3f and thus
f ≤ 2

3
m. It follows that 2−n+m ≤ 2

3
m and thus m ≤ 3n−6, as desired.

Homework – Similarly, find a bound on the number of edges of a triangle-free
planar graph.

Recall that the sum of the degrees of the vertices of a graph is precisely twice
the number of edges of that graph. Thus, it follows from Lemma 2 that any
planar graph has average degree less than 6. In particular:

Corollary 3. Any non-empty planar graph has a vertex of degree at most 5.

Homework – Similarly, find a bound on the minimum degree of a triangle-free
planar graph.
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2 Coloring planar graphs

Since any induced subgraph of a planar graph is planar, the class of planar
graphs is hereditary, and thus Corollary 3 implies that planar graphs are
5-degenerate (see last week lecture). A direct consequence of this, using
another result proved last week, is the following simple result.

Corollary 4. Any planar graph has chromatic number at most 6.

Perhaps the most important result in graph coloring is the following improved
version, solving a problem posed by Guthrie in 1852.

Theorem 5 (The 4 Color Theorem). Any planar graph has chromatic num-
ber at most 4.

We will not prove it here, but we will prove the following version instead
(that goes halfways between Corollary 4 and Theorem 5.

Theorem 6 (The 5 Color Theorem). Any planar graph G has chromatic
number at most 5.

Proof. We prove the theorem by induction on the number of vertices. The
conclusion is clear if G has at most 1 vertex, so assume G has at least 2
vertices. Consider any fixed embedding of G in the plane (without edge-
crossings). The first case is that G contains a vertex v of degree at most 4.
Then we can color G− v by induction with at most 5 colors, and since v has
degree at most 4, we can extend the coloring to v (v has 5 choices and at
most 4 are forbidden). Since every planar graph contains a vertex of degree
at most 5, the last case is that G contains a vertex v of degree precisely 5.
Again, we color G − v by induction and attempt to extend this coloring to
v. If some color (among 1, . . . , 5) does not appear among the neighbors of
v, we can extend the coloring to v. Otherwise, we can assume by symmetry
that the neighbors v1, . . . , v5 (in clockwise order around v) are colored such
that vi has color i for any 1 ≤ i ≤ 5. Let G13 be the set of vertices of G
colored 1 or 3, and let C13 be the connected component of G13 containing
v1. In C13, interchange colors 1 and 3 (i.e. recolor all vertices colored 1 with
color 3, and all vertices colored 3 with color 1). The resulting coloring is
still a 5-coloring of G − v, and if v3 ̸∈ C13, color 1 does not appear in the
neighborhood of v and we can extend the coloring to v. Assume now that
v3 ∈ C13 (which implies that there is a path P13 of vertices colored 1 or 3
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between v1 and v3 in G− v). Now do exactly the same thing with v2 and v4.
Again, we can remove color 2 from the neighborhood of v unless there is a
path P24 colored 2 or 4 between v2 and v4 in G− v. But since v1, . . . , v5 are
in clockwise order around v, the paths P13 and P24 must intersect. As they
are vertex disjoint, two edges of P13 and P24 must cross, which contradicts
the fact that the embedding of G was planar.

3 Planar graph drawing

The goal of this section is to prove Fáry’s theorem (originally due to Wagner,
1936), which states that for any planar drawing of a planar graph there is an
equivalent planar drawing in which all edges are straight-line segments.

We will first need a couple of ingredients. The first is a simple observation
that can be deduced from the fact that any n-vertex planar has at most
3n− 6 edges (assuming n ≥ 3), proved in the last lecture.

Lemma 7. Every planar graph G on n ≥ 4 vertices has at least 4 vertices
of degree at most 5.

Proof. Note that if some graph obtained from G by adding edges has at least
4 vertices of degree at most 5, then G also has at least 4 vertices of degree
at most 5. Hence, we can assume without loss of generality that G is edge-
maximal with respect to being planar, and in particular G has minimum
degree at least 3. Assume for the sake of contradiction that G has at most
3 vertices of degree at most 5. So n− 3 vertices have degree at least 6, and
the remaining 3 have degree at least 3. It follows that the sum of degrees in
G is at least 6(n− 3) + 3 · 3 = 6n− 9, and thus G has at least 3n− 4 edges,
a contradiction.
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