
ORCO – Graphs and Discrete Structures
December 14, 2022 – Lecture 11

1 Ramsey’s theorem

For two integers k, ℓ ≥ 2, the Ramsey number R(k, ℓ) is defined as the mini-
mum integer n such that in any coloring of the edges of Kn with colors blue
and red, there is a Kk with all edges colored blue or a Kℓ with all edges
colored red.
It is not difficult to check that for any k, R(k, 2) = R(2, k) = k. The first
interesting case is R(3, 3).

Figure 1: A coloring of the edges of K5 showing that R(3, 3) ≥ 6.

Theorem 1. R(3, 3) = 6.

Proof. The figure above shows a coloring of K5 without red triangles and
blue triangles, so R(3, 3) ≥ 6. Now assume that the edges of K6 are colored
with colors red and blue, and consider an arbitrary vertex v of K6. Since
v has degree 5, it must be adjacent to 3 edges of the same color, say blue
by symmetry. The 3 corresponding neighbors x, y, z of v form a triangle. If
some edge of this triangle is blue, then together with v this forms a blue
triangle. Otherwise all the edges of the triangle are red, and we have a red
triangle. It follows that R(3, 3) ≤ 6, and thus R(3, 3) = 6.

With a similar approach we can prove the following general result, that shows
in particular that R(k, ℓ) is finite for any k and ℓ.

Theorem 2 (Ramsey, 1930). For any k, ℓ ≥ 3, R(k, ℓ) ≤ R(k − 1, ℓ) +
R(k, ℓ− 1). In particular, R(k, ℓ) ≤

(
k+ℓ−2
k−1

)
and thus R(k, k) ≤ 22k.
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Proof. Consider a vertex v in the complete graph on N = R(k − 1, ℓ) +
R(k, ℓ − 1) vertices, with an arbitrary coloring of its edges with colors blue
and red. Then v is incident to at least R(k − 1, ℓ) blue edges, or incident
to at least R(k, ℓ) red edges (since otherwise it would be incident to at most
R(k− 1, ℓ)− 1+R(k, ℓ− 1)− 1 = N − 2 edges, a contradiction). In the first
case, the graph induced by the endpoints of the R(k − 1, ℓ) blue edges must
contain a blue Kk−1 (and thus our KN contains a blue Kk, if we add v), or
a red Kℓ, as desired. In the second case, the graph induced by the endpoints
of the R(k, ℓ− 1) red edges must contain a blue Kk, or a red Kℓ−1 (and thus
our KN contains a red Kℓ, if we add v), as desired.
The second part of the statement follows easily by induction from R(k, 2) =
R(2, k) = k and the standard recurrence relation

(
n
k

)
=

(
n−1
k

)
+
(
n−1
k−1

)
.

We obtain the following important corollary.

Corollary 3. Every graph on n vertices contains a clique of size 1
2
log n or

a stable set of size 1
2
log n.

Proof. Given a graph G on n vertices, color the edges of G with color blue,
and add red edges between any pair of non-adjacent vertices in G. We obtain
a 2-coloring of the edges of Kn, the complete graph on n vertices, with colors
red and blue. Setting k = 1

2
log n, we have n = 22k, and thus n ≥ R(k, k) (by

Theorem 2). It follows that we can find a blue clique on k vertices (and thus
a clique on k vertices in G), or a red clique on k vertices (which is exactly a
stable set on k vertices in G).

Similarly, last week’s construction of a triangle-free graphHq with small inde-
pendence number (see Section 4 in Lecture 10) directly implies the following.

Corollary 4 (of the construction of Hq last week). For any ℓ, R(3, ℓ) ≥
(ℓ/2)3/2.

Actually, better estimates are known for R(3, ℓ), which is of order ℓ2/ log ℓ,
but the bound above is the best known bound that follows from a determin-
istic construction.

We will now see that the bound 1
2
log n in Corollary 3 is close to best possible.

This is one of the earliest applications of the so-called Probabilistic method,
pioneered by Paul Erdős. Recall that the random graph G(n, p) is the graph
with n vertices in which for any two distinct vertices u, v we add an edge
between u and v at random with probability p, independently of the other
pairs of vertices.
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Theorem 5 (Erdős, 1947). The random graph G(n, 1
2
) contains no clique of

size 2 log n and no stable set of size 2 log n, with probability tending to 1 as
n → ∞.

Proof. The probability that a given set S of s vertices is an independent set

is (1/2)(
s
2), and similarly for the probability that S induces a clique. So the

expectation of the number of independent sets of size s (and similarly, of
cliques of size s) is (

n

s

)
· (1/2)(

s
2) ≤ ns

s!
· 2s/2

2s2/2
.

For s = 2 log n we have ns = 2s logn = 2s
2/2 and thus this expectation is

at most 2s/2

s!
, which tends to 0 as n → ∞. So the probability that G(n, 1

2
)

contains a clique or independent set of size at least s = 1
2
log n tends to 0 as

n → ∞.

Note that in the outcome of G(n, 1
2
), each (labelled) n-vertex graph appears

with the same probability. So Theorem 5 can be rephrased by saying that
as n → ∞, the proportion of n-vertex graphs no clique of size 2 log n and no
stable set of size 2 log n tends to 1. This is sometimes written as: almost all
n-vertex graphs have no clique of size 2 log n and no stable set of size 2 log n.

Theorem 2 is a “baby” version of a much more general statement proved by
Ramsey. In the statement of Theorem 2 we only had 2 colors (red and blue),
and we were coloring the edges of the complete graph, or equivalently the
pairs of vertices, or 2-element subsets of [n] = {1, . . . , n}. In the more general
statement we will allow r colors, and we will color the s-element subsets of
[n] with these r colors.

Theorem 6 (Ramsey, 1930). For every integers r, s, and t ≥ s, there is an
integer n = n(r, s, t) such that in any coloring of the s-element subsets of [n],
there is a subset X ⊆ [n] of size at least t, such that all s-element subsets of
X are colored with the same color.

Note that Theorem 2 corresponds to the case r = 2 and s = 2 of Theorem 6
(and we indeed have n = R(t, t)). It should be noted that while in Theorem
2 the depends between n and k was (only) exponential, in Theorem 6 the
dependence in n and the parameters r, s, t is absolutely huge.
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2 Applications

We will now see two quick applications of Ramsey’s theorem in number theory
and geometry. In both cases, these results can be proved without using
Ramsey’s theorem, with much better bounds, but the proofs are usually
more complicated.

Theorem 7 (Schur, 1916). For any integer r, there is an integer n such
that in any r-coloring of the elements of [n], there are three distinct elements
x, y, z with the same color such that z = x+ y.

Proof. Let n be given by Theorem 6 with r colors, s = 2 and t = 3. Consider
any r-coloring c of [n], and assign to each pair {i, j} the color c(|j − i|). By
Theorem 6, there are 3 elements i < j < k such that c(j − i) = c(k − j) =
c(k − i). It then suffices to observe that (j − i) + (k − j) = (k − i). So we
have three elements x = j− i, y = k− j, and z = k− i such that x, y, z have
the same color, and z = x+ y, as desired.

We say that a set X of points in the plane is in general position if no 3 points
of X are collinear. A set Y of points is in convex position if no point of Y is
contained in the convex hull of the other points of Y (equivalently, the points
of Y are the vertices of a convex polygon).

Theorem 8 (Erdős and Szekeres, 1935). For any integer k, there is an
integer n such that for any set X of n points in the plane in general position,
there is a subset Y ⊆ X in convex position with |Y | = k.

Proof. Let n be given by Theorem 6 with 2 colors, s = 3 and t = k. Assign
to each triple x, y, z of points from X the color c({x, y, z}) = 0 if the number
of points of X in the interior of the triangle xyz is even, and c({x, y, z}) = 1
otherwise. By Theorem 6, there is a set Y of k points, such that all triples
of points from Y have the same color. We claim that the points of Y are in
general position. If not, then there must be 4 points x0, x1, x2, x3 ∈ Y such
that x0 is in the interior of the triangle x1x2x3. Since the points of X are in
general position, all points in the interior of x1x2x3 distinct from x0 are in
the interior of x0x1x2, x0x2x3, or x0x3x1, so it follows that c({x1, x2, x3}) ≡
c({x0, x1, x2}) + c({x0, x2, x3}) + c({x0, x3, x1}) + 1 (mod 2). This clearly
contradicts the fact that c({x1, x2, x3}) = c({x0, x1, x2}) = c({x0, x2, x3}) =
c({x0, x3, x1}).
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