
ORCO – Graphs and Discrete Structures
November 16, 2022 – Lecture 7

1 Finding a triangle

What is the complexity of deciding whether some graph G with n vertices
and m edges has a triangle? Given the adjacency matrix AG of G as input,
we can check for all triples of vertices x, y, z if there are all possible edges
between these three vertices in G. This costs O(n3) time. A slightly more
clever way is by first listing all m edges of G (in time O(n2)), and then, for
all edges uv in the list and all vertices w in G, testing if w is adjacent to both
u and v. This costs O(n2+mn) time, and is more efficient than the previous
algorithm whenever m = o(n2). However in general O(n2 +mn) = O(n3) so
this is not better.
A third way of finding a triangle is to use matrix multiplication. It is known
that two n by n matrices can be multiplied in time O(nω) with ω ≈ 2.373
(beware that the corresponding algorithm is not practical because of the
huge hidden multiplicative constant in the complexity, so in practice other
algorithms are used). This can be used to find if G has a triangle in time
O(nω) as follows: we compute A2

G in time O(nω) and then check for any
edge uv in G (or in other words for any u, v such that (AG)u,v = 1), whether
(A2

G)u,v > 0. Such a pair u, v exists if and only if there is a triangle in G, as
(A2

G)u,v counts the number of common neighbors of u and v.

2 Finding a path

We now consider the problem of finding whether G contains Pk (the path
on k vertices) as a subgraph. The algorithm detailed in this section, called
Color coding, is due to Alon, Yuster, and Zwick (1994).

Theorem 1. There is a one-sided randomized algorithm running in time
2O(k) ·n, that decides whether n-vertex graphs contain Pk as a subgraph (here
one-sided means that if there is no Pk the algorithm will always be correct
while if there is a Pk, the algorithm will fail with probability at most 1/2).

We will prove the result in 4 steps. Given a graph G whose vertices are
colored with k colors, we say that a path P is colorful if all vertices of P
have distinct colors (note that a colorful path contains at most k vertices).

1



2.1 Step 1

There is a deterministic algorithm running in time 2O(k) · m, that given an
m-edge graph G with k colors and a vertex s, decides whether G contains a
colorful Pk starting at s as a subgraph.

The algorithm uses dynamic programming. For any 1 ≤ i ≤ k and any
vertex v, let C(v, i) be the collection of all sets of colors appearing on colorful
paths of i vertices starting at s and ending at v. Note that all sets in C(v, i)
contain i elements, so each collection C(v, i) has size at most

(
k
i

)
.

Let c(v) denote the color of each vertex v in G. We start with C(s, 1) =
{{c(s)}} and C(v, 1) = ∅ for each v ̸= s.
For each i ≥ 1, we determine the collections C(v, i + 1) from the collections
C(u, i) as follows. For each pair (u, v) of adjacent vertices, and for each set
S ∈ C(u, i), we check whether c(v) appears in S and if so we add S ∪ {c(v)}
to C(v, i+ 1) (if it is not there already).

The main loop runs 2m times, and the inner loops require checking whether
c(v) ∈ S for at most

(
k
i

)
sets S of size i, so it takes time at most i

(
k
i

)
. It

follows that the process from going from step i to step i + 1 takes time at
most 2m · i

(
k
i

)
≤ 2mk

(
k
i

)
. Summing this for all 1 ≤ i ≤ k, the overall time is

at most 2m · k · 2k = 2O(k) ·m, as desired.

2.2 Step 2

There is a deterministic algorithm running in time 2O(k) · m, that given an
m-edge graph G with k colors, decides whether G contains a colorful Pk as a
subgraph.

Here we simply add a new vertex s to G, join it to all vertices of G, and color
it with color k + 1. Note that this graph admits a colorful Pk+1 starting at
s if and only if G has a colorful Pk as a subgraph.

2.3 Step 3

There is a one-sided randomized algorithm running in time 2O(k) · m, that
decides whether n-vertex graphs contain Pk as a subgraph (here one-sided
means that if there is no Pk the algorithm will always be correct while if there
is a Pk, the algorithm will fail with probability at most 1/2).

2



We assign colors from 1, . . . , k uniformy at random to the vertices of G, and
then run Step 2 above. Note that if G has no Pk, it has no colorful Pk for any
coloring, so Step 2 will always answer (correctly) no in this case. So assume
G has a Pk and consider such a path P on k vertices in G. As there are kk

possible colorings of P and precisely k! colorings in which P is colorful, the
probability that P is colorful is k!/kk ≥ e−k (where we have used Stirling
formula or any other variant).

This probability is too small so we need to boost it: we repeat t = ek times
the experiment above (with new random colorings that are independent each
time). Now the probability that P failed to be colorful in each of the t
random colorings of G is at most (1 − e−k)t ≤ exp(−e−k · t) = 1/e ≤ 1/2
(where we have used 1− x ≤ exp(−x) for x ≥ 0).

2.4 Step 4

There is a one-sided randomized algorithm running in time 2O(k) · n, that
decides whether n-vertex graphs contain Pk as a subgraph (here one-sided
means that if there is no Pk the algorithm will always be correct while if there
is a Pk, the algorithm will fail with probability at most 1/2).

To prove the desired result, it remains to see how to change the time com-
plexity from 2O(k) ·m in Step 3 to 2O(k) · n.
We proceed as follows: before running Step 3, we run a DFS in G, stopping
as soon as the depth of the DFS tree reaches k (in this case we have a root-to-
leaf path on k vertices, so we are happy, we do not even need to run Step 3).
If at the end of the DFS, the DFS tree has height at most k, then we claim
that m ≤ kn and thus indeed 2O(k) ·m = 2O(k) · n. This is because in a DFS
tree all neighbors of a vertex v in G are either in the subtree rooted in v, or
are ancestors of v in the tree. By orienting all edges of G from bottom to top
(from vertices to their ancestors), we see that each vertex has out-degree at
most k, the height of the tree, so m ≤ kn. This also explains why, if we stop
the DFS whenever we reach depth k, the number of steps in the algorithm
is O(kn) (instead of O(m) for a general DFS).

2.5 Final remarks

The randomized algorithm presented in the previous section can be adapted
to decide if G contains a cycle on k vertices in time 2O(k) ·nω (where ω ≈ 2.373

3



is the exponent of matrix multiplication, see Section 1), generalizing the
result on triangles presented in Section 1. More generally, for any k-vertex
graph H of treewidth at most 2, we can decide in time 2O(k) ·nω if an n-vertex
graph G contains H as a subgraph.

For graphs H of larger treewidth, this a bit more costly: for any k-vertex
graph H of treewidth at most t, we can decide in time 2O(k) · nt+1 if an
n-vertex graph G contains H as a subgraph.

All the algorithms presented above or mentioned here can be derandomized
with a small loss in the complexity (a multiplicative factor of log n) using
so-called k-perfect families of hash functions.

Finally, for even k, we can find a cycle of length k deterministically in time
O(k! · n2) using different techniques.

4


	Finding a triangle
	Finding a path
	Step 1
	Step 2
	Step 3
	Step 4
	Final remarks


