
ORCO – Graphs and Discrete Structures
October 19, 2022 – Lecture 4

1 Planar graph drawing (resuming)

A planar graph is said to be outerplanar if it has a planar drawing in which
all vertices lie on the outerface.
The dual of (some planar drawing of) G is the multigraph whose vertices are
the faces of G, and whose edges are in bijection with the edges of G : for
each e ∈ E(G), let f and f ′ be the faces appearing on each side on e, then
ff ′ is an edge in the dual of G.
The weak dual of (some planar drawing of) G is the graph whose vertices are
the internal faces of G, and such that two vertices are adjacent if and only if
the corresponding faces of G share an edge.

Lemma 1. Every outerplanar graph G contains a vertex of degree 2.

Proof. We can again assume that G is edge-maximal with respect to being
outerplanar graph. In particular, G has no cut-vertices, and if we consider
any planar drawing of G in which all vertices lie on the outerface, the outer-
face is a cycle (without repeated vertices), and all internal faces are triangles.
The weak dual of (some planar drawing of) G is the graph whose vertices are
the internal faces of G, and such that two vertices are adjacent if and only if
the corresponding faces of G share an edge. It is not difficult to check that
the weak dual of an edge-maximal outerplanar graph is a tree (if it contains
a cycle, then some vertex of G does not lie on the outerface). Note that
every tree has a vertex of degree 1, and the corresponding triangular face of
G must share two edges with the outerface. It follows that this face contains
a vertex of degree 2, as desired.

Since outerplanar graphs form a hereditary family, this shows that outerpla-
nar graphs are 2-degenerate. We have the following immediate corollary.

Corollary 2. Every outerplanar graph is 3-colorable.

In the Art gallery problem we are given an n-vertex polygon in the plane (an
n-gon, in short), and the goal is to place guards inside the n-gon so that all
the (inside) region bounded by the n-gon is under the surveillance of some
guard (a point is under the surveillance of a guard if the segment connecting
them is contained in the region bounded by the n-gon).
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Theorem 3. bn/3c guards are sufficient to guard an n-gon.

Proof. Arbitrarily add edges to the internal faces of the n-gon until all inter-
nal faces are triangles. We obtain an n-vertex outerplanar graph G, which
is 3-colorable by Corollary 2, and thus some color i ∈ {1, 2, 3} is such that
at most bn/3c vertices of G are colored i. Note that all triangles of G are
colored 1, 2, 3, and thus if we place the guards at the location of the vertices
colored i, all the region bounded by the n-gon is guarded.

We will only need the case n ≥ 5 of Theorem 3, which can be rephrased as
follows.

Corollary 4. Any n-gon with 3 ≤ n ≤ 5 has an interior point x, such that
each segment connecting x to the vertices of the n-gon is contained in the
region bounded by the n-gon.

We are now ready to prove Fáry’s theorem.

Theorem 5. For every planar embedding of a planar graph G, there is an
equivalent embedding in which all edges are straight-line segments.

Proof. As before, we can assume without loss of generality that G is edge-
maximal with respect to the property of being planar (if we can draw a
supergraph of G with edges as straight-line segments, then G certainly also
has such a drawing). In particular, the outerface is a triangle, and for every
vertex v, there is a circular order on the neighbors of v such that any two
consecutive neighbors in this order are adjacent. It follows that if we remove
v, then these neighbors form a face in the corresponding embedding of G\{v}.
Let us prove the result by induction on the number n of vertices. This is
certainly true if n ≤ 3 (in this we only have a single vertex, a single edge, or a
triangle), so assume that n ≥ 4. Since the outerface is a triangle (containing
3 vertices), and G has at least 4 vertices of degree at most 5 (see a Lemma
from last week), it follows that G contains a vertex v of degree at most 5 that
does not lie on the outerface of G. We remove v and apply induction on the
resulting embedding of G \{v}. We obtain a straight-line drawing of G \{v}
in which the neighbors of v form a face (and thus a k-gon, for 3 ≤ k ≤ 5).
It follows from Corollary 4 that we can add v inside the region bounded by
the k-gon, and connect v to its neighbors with straight-line segments without
creating crossings.
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2 Interval graphs

Recall that for any graph G, ω(G) ≤ χ(G). In this lecture we are going to
see natural graph classes for which equality holds.

A graph G with vertices v1, . . . , vn is said to be an interval graph if there
exist intervals I1, . . . , In, such that any two vertices vi and vj are adjacent in
G if and only if the corresponding intervals Ii and Ij intersect. The interval
I1, . . . , In are called the interval representation of G.

In such a graph G, consider the interval Ii with rightmost left end. Note that
by definition, all the neighbors of the corresponding vertex vi also intersect
this left end, and thus vi, together with its neighbors, forms a clique.

Observation 6. Any interval graph G contains a vertex v whose neighbor-
hood is a clique. In particular, v has degree at most ω(G)− 1.

Note that each induced subgraph of an interval graph is also an interval
graph (starting with an interval representation of the graph and removing
some intervals, we can get interval representations of any induced subgraph
of G). Applying Corollary 3 of the Lecture notes of the 2nd lecture, we
obtain:

Theorem 7. Any interval graph G has chromatic number ω(G).

Another (equivalent) way to look at this theorem (perhaps more algorithmic)
is the following.
Given an interval graph G with interval representation I1, . . . , In, sort the
interval by their left end and color them using the greedy algorithm from left
to right. Then the observations above shows that the resulting coloring is a
coloring with ω(G) colors.

3 Chordal graphs

An equivalent way to define interval graphs would be to say that the interval
I1, . . . , In are subpaths of a given path. This yields the following natural
generalisation.

A graph G with vertices v1, . . . , vn is a chordal graph if there is a tree T and
subtrees T1, . . . , Tn of T such that for any i, j, vi and vj are adjacent in G if
and only if Ti and Tj intersect.
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While this definition is quite natural, it is usually easier to work with the
following equivalent definition.

Given a graph G, a subtree representation of G is a tree T together with sets
(Bt)t∈T of vertices of G (the set Bt is called the bag of t), with the following
properties.

1. u and v are adjacent in G if and only if there is a bag Bt containing u
and v in the subtree representation, and

2. for any vertex v, the set of nodes t of T whose bag Bt contains v forms
a subtree of T (equivalently, if v is in two bags Bt and Bs, then v lies
in all the bags Bt′ such that t′ is on the path between t and s in T ).

Now it can be seen that a graph is a chordal graph if and only if it has a
subtree representation. To see why this holds, if you start with some subtrees
T1, . . . , Tn of a tree T as above, then for any node t of T you can define Bt

as the set of vertices vi such that the corresponding subtree Ti contains t (it
is not difficult to check that the definition of a subtree representation is then
satisfied). On the other hand, starting with a subtree representation T with
bags (Bt)t∈T , we can define the subtree Ti of a vertex vi as the set of nodes
t of T such that Bt contains vi. In this case condition 1 in the definition
above implies that two vertices are adjacent if and only if the corresponding
subtrees intersect.

It follows directly from the definition that any interval graph is a chordal
graph (and in fact, the interval graphs are precisely the chordal graphs with
a subtree representation that is a path), but a natural question is whether
there are chordal graphs that are not interval graphs (that is, we have really
defined a more general class of graphs).
We start by proving the following.

Proposition 8. Trees are chordal graphs.

Proof. We prove the result by induction of the number of vertices of a tree
T . The result is clear if T contains a single vertex, so assume it contains at
least two vertices. Let u be a leaf of T , and let v be its unique neighbor in T .
By induction, find a subtree representation of T \ {u}, say with underlying
tree T and bags (Bt)t∈T . Consider a node t ∈ T such that v ∈ Bt, and add
a new leaf t∗ in T whose unique neighbor is t. Define Bt∗ = {u, v}. We now
have a subtree representation of T , as desired.
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It can be checked that the graph of Figure 1 is not an interval graph. However
it is a tree, and it is thus chordal by Proposition 8.

Figure 1: A chordal graph which is not an interval graph.

Given a chordal graph G, let us say that a subtree representation T , (Bt)t∈T
of G is pruned if for any leaf t of T , the bag Bt of t contains a vertex of G
that does not appear in any other bag.

Proposition 9. Any chordal graph has a pruned subtree representation.

Proof. Assume some leaf t is such that all the vertices of Bt appear in another
bag. Then by connectivity, all the vertices of Bt also appear in the bag Bs of
the unique neighbor s of t in T . In this case we can simply delete t from T
and the graph it describes remains unchanged. If we repeat this procedure
until no such leaf t exists we have the property that each leaf contains a
vertex that does not appear in another bag, as desired.

Pruned subtree representations are very useful. Let us now prove the follow-
ing generalisation of Observation 6.

Proposition 10. Any chordal graph G contains a vertex v whose neighbor-
hood is a clique. In particular, v has degree at most ω(G)− 1.

Proof. Consider a pruned subtree representation T of G, with bags (Bt)t∈T ,
and a leaf t of T . By the definition of a pruned subtree representation,
Bt contains a vertex v that does not appear in another bag. Since for any
neighbor u of v, u and v have to be in a common bag, it follows that Bt

contains all the neighbors of v, and thus v and its neighbors forms a clique.

As in the case of interval graphs, observe that each induced subgraph of a
chordal graph is also a chordal graph (starting with a subtree representation
of the graph and removing some subtrees, we can get subtree representations
of any induced subgraph of G). Applying Corollary 4 of the Lecture notes of
the 2nd lecture, we obtain:

Theorem 11. Any chordal graph G has chromatic number ω(G).
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4 Perfect graph

A graph G is perfect if and only if any induced subgraph H of G satisfies
χ(H) = ω(H).

What we have proved in the previous section is that chordal graphs (and
interval graphs) are perfect.
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