ORCO — Graphs and Discrete Structures
September 29, 2021 — Lecture 1

1 Definitions

Given a graph GG and an integer k, a k-coloring of G is an assignment of
k colors (usually denoted by {1,...,k}) to the vertices of G such that any
two adjacent vertices have different colors. Given a coloring, the set of all
vertices with a given color is usually called a color class (an a coloring can
be thought of as a partition of the vertex set into color classes).

The chromatic number of G, denoted by x(G), is the least k such that G has
a k-coloring.

If a graph G has a k-coloring we also say that G is k-colorable, and if x(G) = k
we also say that G is k-chromatic.

A clique in a graph G is a set of pairwise adjacent vertices in G. The clique
number of G, denoted by w(G), is the maximum number of vertices in a
clique of G.

Since in any coloring of G, all the vertices of a clique must have distinct
colors, we have the following simple observation.

Observation 1. For any graph G, w(G) < x(G).

It is easy to see that there exist graphs for which the inequality above is strict
(for instance, odd cycles on at least 5 vertices). In the next section, we show
how to construct graphs for which the difference between the chromatic and
cliques numbers is arbitrarily large.

Before that, let us study the class of 2-colorable graphs, also known as bi-
partite graphs. A 2-coloring is also called a bipartition. A classical result in
graph theory is the following.

Theorem 2. A graph is bipartite if and only if it contains no odd cycles.

Proof. Since odd cycles are 3-chromatic, any graph that contains an odd
cycle has chromatic number at least 3, which proves the first direction. To
prove the second direction, consider a graph G with no odd cycle. We can as-
sume that G is connected (otherwise we consider each connected component
separately). Fix a vertex r in G, and for each i > 0, define L; as the set of
vertices of G at distance exactly ¢ from r (the distance between two vertices is
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the minimum number of edges on a path connecting the two vertices). Note
that the sets L; partition the vertex set of G. We now define a 2-coloring of
G as follows: all the vertices of the sets L; with ¢ odd are assigned color 1,
and all the vertices of the sets L; with 7 even are assigned color 2.

Figure 1: An illustration of the proof of Theorem [2]

We now prove that this is indeed a 2-coloring (assuming that G has no odd
cycles). To this end, consider an edge uwv of G (and assume by symmetry
that the distance between r and u is at most the distance between r and
v), and observe that by the definition of (L;);>o, either u and v both lie in
some set L;, or u € L; and v € L;;1. In the second case, it follows from the
definition of our coloring that v and v receive different colors. In the first
case, consider a shortest path P, between v and r, and a shortest path P,
between v and r. Let w be the vertex of P, N P, that is the furthest from
r (note that possibly z = w if P, N P, only consists of {r}). Now observe
that the edge uv, together with the subpath of P, between v and w, and the
the subpath of P, between u and w, forms an odd cycle (see Figure (1] for an
illustration), which is a contradiction. O

It can be checked that the proof actually gives a polynomial algorithm to
decide whether a graph is bipartite (and find a 2-coloring if this is the case, or
an odd cycle otherwise). On the other hand, deciding whether the chromatic
number of a graph is at most 3 is an NP-complete problem (even in very
simple classes of graphs).

2 Mycielski’s construction

We define a sequence (Mg )x>1 of graphs inductively. M is a single vertex, and
M, consists of two vertices joined by an edge. For k > 3, M is constructed
as follows: we start with a copy of Mj_1, and for each vertex v in this copy



of My_1, we add a vertex v’ that has precisely the same neighbors as v (we
say that v’ is the twin of v). Finally, we add a vertex z* that is adjacent to
all the newly created vertices v', and non-adjacent to all the vertices of the
copy of My_;.

It is not difficult to check that Mj is a 5-cycle and M, is the so-called My-
cielski graph, depicted below.

Figure 2: The graph M.

We now prove the following theorem.

Theorem 3. For any k > 1, My, is triangle-free (i.e. w(G) < 2) and x(G) =
k.

Proof. We prove the theorem by induction on k.

We start by proving that M} has no triangle. This is clear if £ < 2, so assume
that £k > 3. Let us denote by S the set of newly created vertices distinct
from z*. Assume for the sake of contradiction that there exist a triangle T’
in M. Since S is a stable set and Mj,_; is triangle-free (by induction), T" has
two vertices in the copy of My_; (call them w,v) and one in S (call it w').
But since w’ has the same neighbors in the copy of Mj_; as its twin w, uvw
forms a triangle in Mj_,, which contradicts the induction hypothesis.

We now prove that for any & > 3, x(My) = k. The cases k = 1 and k = 2
are clear, so we can assume that & > 3. Since the copy of My_; is (k — 1)-
colorable (by induction), we can color it with colors 1,2,... &k — 1, then use
color k for the vertices of S, and finally color 1 for z*. This shows that
X(My) < k. It remains to prove that y(My) > k. For this we will need the
following simple observation.



For any graph H and any coloring of H with x(H)
colors, each color class contains a vertex that is adjacent (1)
to all the other color classes.

To see why this holds, just observe that the negation of (1) implies that there
is a color, say i, such that each vertex colored ¢ is not adjacent to some other
color class. In this case it is possible to recolor each vertex colored ¢ with
another color. But this results in a coloring of H with at most x(H) — 1
colors, which is impossible.

Now, assume for the sake of contradiction that M has a coloring with k£ — 1
colors. Since x(My_1) = k — 1 (by induction), we can apply to the
copy of My_1 in M. This gives us sequence of vertices vy, vo,...,v5_1 in
the copy of Mj_1, such that each v; is colored ¢ and is adjacent to all the
other color classes. In particular this implies that for each i, the twin v] of
v; is also colored 7. But then the vertex z* is adjacent to vertices of colors
1,2,...,k — 1, which is a contradiction. O

3 Chromatic number and maximum degree

The degree of a vertex v (usually denoted by d(v)) in a graph G is the number
of neighbors of v in G.

We now consider the following greedy algorithm to obtain a coloring of a
graph G.

Order the vertices as vy, vs,...,v,. For i =1 to n, color v; with the smallest
color (recall that colors are positive integers) that does not yet appear on its
neighborhood.

Note that when choosing the color of a vertex v, at most d(v) colors are
forbidden to v and in particular, if v has at least d(v) + 1 available choices
then it can always find a color that does not appear in its neighborhood.
This shows the following.

Observation 4. For any graph G with mazximum degree A, the greedy algo-
rithm finds a coloring with at most A + 1 colors, and in particular x(G) <
A+1.

Note that this is best possible: odd cycles and complete graphs satisfy the
bound above with equality. However, the following result (that we won’t
prove during the lecture) shows that these are the only extremal examples.
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Theorem 5 (Brooks Theorem). If G is a connected graph with mazimum
degree at most A, distinct from an odd cycle or a complete graph, then x(G) <
A.

We conclude with an exercise showing that the greedy algorithm can perform
quite poorly for some instances.

Exercise 1. Consider the graph GG, with vertices uy, us, ..., u, and vy, vy, ..., vy,
in which each vertex u; is adjacent to all the vertices v; with j # i (see Fig-
ure [3 for a picture of Gy).

U1 U9 Uus U4

U1 U2 U3 Vg
Figure 3: The graph Gjy.

Show that x(G,) = 2 for any n > 2. Show that there is a an order on the
vertices of GG, such that the greedy coloring in this order uses n colors.
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