
ORCO – Graphs and Discrete Structures
October 6, 2021 – Lecture 2

1 Degeneracy

We say that a graph G is k-degenerate (for some integer k ≥ 0) if G has an
ordering v1, . . . , vn of its vertices, such that for any i, the number of neighbors
vj of vi with j < i is at most k.
The same proof as is the first lecture (for bounded degree graphs), shows
that the greedy algorithm performs very well on k-degenerate graphs (using
the same vertex ordering).

Observation 1. If G is k-degenerate, then χ(G) ≤ k + 1.

Homework – Find graphs for which equality holds, other than complete graphs
and odd cycles.

In many applications we will need a slightly different (but equivalent) defi-
nition of k-degeneracy.
Before that, let us recall the notions of subgraphs and induced subgraphs.
Given a graph G = (V,E), we say that a graph H = (V ′, E ′) is a subgraph
of G if V ′ ⊆ V and E ′ ⊆ E. Moreover, we say that H is an induced subgraph
of G if E ′ consists of all the edges of E with both endpoints in V ′. You can
think of a subgraph of G as a graph obtained from G by removing any set of
vertices and edges. On the other hand, an induced subgraph of G is a graph
obtained from G by only removing vertices (and the edges containing these
vertices).

Theorem 2. A graph G is k-degenerate if and only if each induced subgraph
H of G contains a vertex of degree at most k in H.

Proof. Assume first that G is k-degenerate. By definition, G has an ordering
v1, . . . , vn of its vertices such that each vertex vi has at most k neighbors vj
with j < i. Consider any induced subgraph H of G, and let S be the subset
of {1, . . . , n} such that the vertices of H are precisely the vertices vi with
i ∈ S. Let ` be the maximum of S. Then v` has at most k neighbors vj with
j < k, and in particular v` has at most k neighbors in the set {vi | i ∈ S}. It
follows that v` has degree at most k in H, as desired.
Assume now that each induced subgraph H of G contains a vertex of degree
at most k in H. In particular, G itself has a vertex of degree at most k
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(call it vn). For i = n − 1, . . . , 1, we define vi as a vertex of degree at most
k in G \ {vn, . . . , vi+1} (such a vertex exists since any induced subgraph of
G has a vertex of degree at most k). In this ordering, observe that for any
i, the number of neighbors vj of vi with j < i is precisely the degree of vi
in G \ {vn, . . . , vi+1}, which is at most k by definition. It follows that G is
k-degenerate, which concludes the proof.

A class of graphs C is hereditary if it is closed under taking induced subgraphs
(i.e. any induced subgraph of a graph of C is also in C). The following simple
corollary of Observation 1 and Theorem 2 has many applications.

Corollary 3. Assume that C is a hereditary class such that any graph of C
has a vertex of degree at most k. Then for any graph G of C, χ(G) ≤ k + 1.

Proof. Let G be a graph of C. Since any induced subgraph of G is in C,
any induced subgraph of G has a vertex of degree at mot k, and thus by
Theorem 2, G is k-degenerate. It then follows from Observation 1 that
χ(G) ≤ k + 1, as desired.

2 Planar graphs

A graph is planar if it has an embedding in the plane with no edge-crossings.
The connected component of the plane minus the embedding are called the
faces. A fundamental result about planar graphs is the following.

Theorem 4 (Euler’s Formula). If G is a connected planar graph, embedded
in the plane, with n vertices, m edges, and f faces, then n−m+ f = 2.

Note that it shows in particular that the number of faces of a planar graph
does not depend on the embedding the graph (and thus we can remove “em-
bedded in the plane” in the theorem above).
We will not prove Euler’s formula (during the lectures I showed you why it
holds when the graph has a straight-line drawing such that each face is a
convex polygon, but the purpose was to give you an intuition of why this
holds, not to prove it formally).

We will now deduce the following simple result from Euler’s Formula.

Lemma 5. Any planar graph on n ≥ 3 vertices has at most 3n− 6 edges.
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Proof. We can assume that the graph is connected (otherwise we consider
each connected component separately). Let m be the number of edges and
f be the number of faces of G. By Euler’s Formula, we have n−m+ f = 2
and thus f = 2−n+m. A simple counting argument shows that the sum of
the degrees (number of edges in a boundary walk) of the faces of G is equal
to 2m, and since each face has degree at least 3, we have 2m ≥ 3f and thus
f ≤ 2

3
m. It follows that 2−n+m ≤ 2

3
m and thus m ≤ 3n−6, as desired.

Homework – Similarly, find a bound on the number of edges of a triangle-free
planar graph.

Recall that the sum of the degrees of the vertices of a graph is precisely twice
the number of edges of that graph. Thus, it follows from Lemma 5 that any
planar graph has average degree less than 6. In particular:

Corollary 6. Any planar graph has a vertex of degree at most 5.

Homework – Similarly, find a bound on the minimum degree of a triangle-free
planar graph.

Since any induced subgraph of a planar graph is planar, the class of planar
graphs is hereditary, and thus a direct consequence of Corollaries 6 and 3 is
the following simple result.

Corollary 7. Any planar graph has chromatic number at most 6.

Perhaps the most important result in graph coloring is the following improved
version, solving a problem posed by Guthrie in 1852.

Theorem 8 (The 4 Color Theorem). Any planar graph has chromatic num-
ber at most 4.

We will not prove it here, but next week we will prove the following version
instead (that goes halfways between Corollary 7 and Theorem 8.

Theorem 9 (The 5 Color Theorem). Any planar graph G has chromatic
number at most 5.
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