ORCO — Graphs and Discrete Structures
October 13, 2021 — Lecture 3

1 Coloring planar graphs

Recall that a graph is planar if it has an embedding in the plane with no
edge-crossings.

Last time we proved that any planar graph has a vertex of degree at most 5,
and as a consequence, planar graphs are 6-colorable.

We now prove the following improved version.

Theorem 1 (The 5 Color Theorem). Any planar graph G has chromatic
number at most 5.

Proof. We prove the theorem by induction on the number of vertices. The
conclusion is clear if G has at most 1 vertex, so assume G has at least 2
vertices. Consider any fixed embedding of G in the plane (without edge-
crossings). The first case is that G contains a vertex v of degree at most 4.
Then we can color G — v by induction with at most 5 colors, and since v has
degree at most 4, we can extend the coloring to v (v has 5 choices and at
most 4 are forbidden). Since every planar graph contains a vertex of degree
at most 5, the last case is that GG contains a vertex v of degree precisely 5.
Again, we color G — v by induction and attempt to extend this coloring to
v. If some color (among 1,...,5) does not appear among the neighbors of
v, we can extend the coloring to v. Otherwise, we can assume by symmetry
that the neighbors vy, ..., vs (in clockwise order around v) are colored such
that v; has color ¢ for any 1 < ¢ < 5. Let G13 be the set of vertices of GG
colored 1 or 3, and let 3 be the connected component of G3 containing
v1. In C3, interchange colors 1 and 3 (i.e. recolor all vertices colored 1 with
color 3, and all vertices colored 3 with color 1). The resulting coloring is
still a 5-coloring of G — v, and if vy € C43, color 1 does not appear in the
neighborhood of v and we can extend the coloring to v. Assume now that
vy € C13 (which implies that there is a path Pj3 of vertices colored 1 or 3
between v; and v in G —v). Now do exactly the same thing with vy and vy.
Again, we can remove color 2 from the neighborhood of v unless there is a
path P4 colored 2 or 4 between vy and v4 in G — v. But since vy, ..., v5 are
in clockwise order around v, the paths P;3 and P,y must intersect. As they



are vertex disjoint, two edges of P;3 and P4 must cross, which contradicts
the fact that the embedding of G was planar. m

2 Planar graph drawing

In the remainder of the lecture we will prove Féary’s theorem (originally due to
Wagner, 1936), which states that for any planar drawing of a planar graph
there is an equivalent planar drawing in which all edges are straight-line
segments.

We will first need a couple of ingredients. The first is a simple observation
that can be deduced from the fact that any n-vertex planar has at most
3n — 6 edges (assuming n > 3), proved in the last lecture.

Lemma 2. Fvery planar graph G on n > 4 vertices has at least 4 vertices
of degree at most 5.

Proof. Note that if some graph obtained from G by adding edges has at least
4 vertices of degree at most 5, then G also has at least 4 vertices of degree
at most 5. Hence, we can assume without loss of generality that G is edge-
maximal with respect to being planar, and in particular G has minimum
degree at least 3. Assume for the sake of contradiction that G has at most
3 vertices of degree at most 5. So n — 3 vertices have degree at least 6, and
the remaining 3 have degree at least 3. It follows that the sum of degrees in
G is at least 6(n — 3) +3-3 = 6n — 9, and thus G has at least 3n — 4 edges,
a contradiction. O

A planar graph is said to be outerplanar if it has a planar drawing in which
all vertices lie on the outerface.

Lemma 3. Every outerplanar graph G contains a vertex of degree 2.

Proof. We can again assume that GG is edge-maximal with respect to being
outerplanar graph. In particular, G has no cut-vertices, and if we consider
any planar drawing of GG in which all vertices lie on the outerface, the outer-
face is a cycle (without repeated vertices), and all internal faces are triangles.
The weak dual of (some planar drawing of ) G is the graph whose vertices are
the internal faces of G, and such that two vertices are adjacent if and only if
the corresponding faces of GG share an edge. It is not difficult to check that
the weak dual of an edge-maximal outerplanar graph is a tree (if it contains
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a cycle, then some vertex of G does not lie on the outerface). Note that
every tree has a vertex of degree 1, and the corresponding triangular face of
G must share two edges with the outerface. It follows that this face contains
a vertex of degree 1, as desired. O]

Since outerplanar graphs form a hereditary family, this shows that outerpla-
nar graphs are 2-degenerate. We have the following immediate corollary.

Corollary 4. Fvery outerplanar graph is 3-colorable.

In the Art gallery problem we are given an n-vertex polygon in the plane (an
n-gon, in short), and the goal is to place guards inside the n-gon so that all
the (inside) region bounded by the n-gon is under the surveillance of some
guard (a point is under the surveillance of a guard if the segment connecting
them is contained in the region bounded by the n-gon).

Theorem 5. |n/3| guards are sufficient to guard an n-gon.

Proof. Arbitrarily add edges to the internal faces of the n-gon until all inter-
nal faces are triangles. We obtain an n-vertex outerplanar graph G, which
is 3-colorable by Corollary , and thus some color i € {1,2,3} is such that
at most |[n/3] vertices of G are colored i. Note that all triangles of G are
colored 1,2, 3, and thus if we place the guards at the location of the vertices
colored 7, all the region bounded by the n-gon is guarded. O]

We will only need the case n > 5 of Theorem [5] which can be rephrased as
follows.

Corollary 6. Any n-gon with 3 < n <5 has an interior point x, such that
each segment connecting x to the vertices of the n-gon is contained in the
region bounded by the n-gon.

We are now ready to prove Fary’s theorem.

Theorem 7. For every planar embedding of a planar graph G, there is an
equivalent embedding in which all edges are straight-line segments.

Proof. As before, we can assume without loss of generality that G is edge-
maximal with respect to the property of being planar (if we can draw a
supergraph of G with edges as straight-line segments, then G certainly also
has such a drawing). In particular, the outerface is a triangle, and for every



vertex v, there is a circular order on the neighbors of v such that any two
consecutive neighbors in this order are adjacent. It follows that if we remove
v, then these neighbors form a face in the corresponding embedding of G\ {v}.
Let us prove the result by induction on the number n of vertices. This is
certainly true if n > 3 (in this we only have a single vertex, a single edge,
or a triangle), so assume that n > 4. Since the outerface is a triangle, if
follows from Lemma [2] that G contains a vertex v of degree at most 5 that
does not lie on the outerface of G. We remove v and apply induction on
the resulting embedding of G \ {v}. We obtain an equivalent a straight-
line drawing of G \ {v} in which the neighbors of v form a face (and thus
a k-gon, for 3 < k < 5). It follows from Corollary |§| that we can add v
inside the region bounded by the k-gon, and connect v to its neighbors with
straight-line segments without creating crossings. O]
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