
ORCO – Graphs and Discrete Structures
October 13, 2021 – Lecture 3

1 Coloring planar graphs

Recall that a graph is planar if it has an embedding in the plane with no
edge-crossings.
Last time we proved that any planar graph has a vertex of degree at most 5,
and as a consequence, planar graphs are 6-colorable.
We now prove the following improved version.

Theorem 1 (The 5 Color Theorem). Any planar graph G has chromatic
number at most 5.

Proof. We prove the theorem by induction on the number of vertices. The
conclusion is clear if G has at most 1 vertex, so assume G has at least 2
vertices. Consider any fixed embedding of G in the plane (without edge-
crossings). The first case is that G contains a vertex v of degree at most 4.
Then we can color G− v by induction with at most 5 colors, and since v has
degree at most 4, we can extend the coloring to v (v has 5 choices and at
most 4 are forbidden). Since every planar graph contains a vertex of degree
at most 5, the last case is that G contains a vertex v of degree precisely 5.
Again, we color G − v by induction and attempt to extend this coloring to
v. If some color (among 1, . . . , 5) does not appear among the neighbors of
v, we can extend the coloring to v. Otherwise, we can assume by symmetry
that the neighbors v1, . . . , v5 (in clockwise order around v) are colored such
that vi has color i for any 1 ≤ i ≤ 5. Let G13 be the set of vertices of G
colored 1 or 3, and let C13 be the connected component of G13 containing
v1. In C13, interchange colors 1 and 3 (i.e. recolor all vertices colored 1 with
color 3, and all vertices colored 3 with color 1). The resulting coloring is
still a 5-coloring of G − v, and if v3 6∈ C13, color 1 does not appear in the
neighborhood of v and we can extend the coloring to v. Assume now that
v3 ∈ C13 (which implies that there is a path P13 of vertices colored 1 or 3
between v1 and v3 in G− v). Now do exactly the same thing with v2 and v4.
Again, we can remove color 2 from the neighborhood of v unless there is a
path P24 colored 2 or 4 between v2 and v4 in G− v. But since v1, . . . , v5 are
in clockwise order around v, the paths P13 and P24 must intersect. As they
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are vertex disjoint, two edges of P13 and P24 must cross, which contradicts
the fact that the embedding of G was planar.

2 Planar graph drawing

In the remainder of the lecture we will prove Fáry’s theorem (originally due to
Wagner, 1936), which states that for any planar drawing of a planar graph
there is an equivalent planar drawing in which all edges are straight-line
segments.

We will first need a couple of ingredients. The first is a simple observation
that can be deduced from the fact that any n-vertex planar has at most
3n− 6 edges (assuming n ≥ 3), proved in the last lecture.

Lemma 2. Every planar graph G on n ≥ 4 vertices has at least 4 vertices
of degree at most 5.

Proof. Note that if some graph obtained from G by adding edges has at least
4 vertices of degree at most 5, then G also has at least 4 vertices of degree
at most 5. Hence, we can assume without loss of generality that G is edge-
maximal with respect to being planar, and in particular G has minimum
degree at least 3. Assume for the sake of contradiction that G has at most
3 vertices of degree at most 5. So n− 3 vertices have degree at least 6, and
the remaining 3 have degree at least 3. It follows that the sum of degrees in
G is at least 6(n− 3) + 3 · 3 = 6n− 9, and thus G has at least 3n− 4 edges,
a contradiction.

A planar graph is said to be outerplanar if it has a planar drawing in which
all vertices lie on the outerface.

Lemma 3. Every outerplanar graph G contains a vertex of degree 2.

Proof. We can again assume that G is edge-maximal with respect to being
outerplanar graph. In particular, G has no cut-vertices, and if we consider
any planar drawing of G in which all vertices lie on the outerface, the outer-
face is a cycle (without repeated vertices), and all internal faces are triangles.
The weak dual of (some planar drawing of) G is the graph whose vertices are
the internal faces of G, and such that two vertices are adjacent if and only if
the corresponding faces of G share an edge. It is not difficult to check that
the weak dual of an edge-maximal outerplanar graph is a tree (if it contains
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a cycle, then some vertex of G does not lie on the outerface). Note that
every tree has a vertex of degree 1, and the corresponding triangular face of
G must share two edges with the outerface. It follows that this face contains
a vertex of degree 1, as desired.

Since outerplanar graphs form a hereditary family, this shows that outerpla-
nar graphs are 2-degenerate. We have the following immediate corollary.

Corollary 4. Every outerplanar graph is 3-colorable.

In the Art gallery problem we are given an n-vertex polygon in the plane (an
n-gon, in short), and the goal is to place guards inside the n-gon so that all
the (inside) region bounded by the n-gon is under the surveillance of some
guard (a point is under the surveillance of a guard if the segment connecting
them is contained in the region bounded by the n-gon).

Theorem 5. bn/3c guards are sufficient to guard an n-gon.

Proof. Arbitrarily add edges to the internal faces of the n-gon until all inter-
nal faces are triangles. We obtain an n-vertex outerplanar graph G, which
is 3-colorable by Corollary 4, and thus some color i ∈ {1, 2, 3} is such that
at most bn/3c vertices of G are colored i. Note that all triangles of G are
colored 1, 2, 3, and thus if we place the guards at the location of the vertices
colored i, all the region bounded by the n-gon is guarded.

We will only need the case n ≥ 5 of Theorem 5, which can be rephrased as
follows.

Corollary 6. Any n-gon with 3 ≤ n ≤ 5 has an interior point x, such that
each segment connecting x to the vertices of the n-gon is contained in the
region bounded by the n-gon.

We are now ready to prove Fáry’s theorem.

Theorem 7. For every planar embedding of a planar graph G, there is an
equivalent embedding in which all edges are straight-line segments.

Proof. As before, we can assume without loss of generality that G is edge-
maximal with respect to the property of being planar (if we can draw a
supergraph of G with edges as straight-line segments, then G certainly also
has such a drawing). In particular, the outerface is a triangle, and for every
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vertex v, there is a circular order on the neighbors of v such that any two
consecutive neighbors in this order are adjacent. It follows that if we remove
v, then these neighbors form a face in the corresponding embedding of G\{v}.
Let us prove the result by induction on the number n of vertices. This is
certainly true if n ≥ 3 (in this we only have a single vertex, a single edge,
or a triangle), so assume that n ≥ 4. Since the outerface is a triangle, if
follows from Lemma 2 that G contains a vertex v of degree at most 5 that
does not lie on the outerface of G. We remove v and apply induction on
the resulting embedding of G \ {v}. We obtain an equivalent a straight-
line drawing of G \ {v} in which the neighbors of v form a face (and thus
a k-gon, for 3 ≤ k ≤ 5). It follows from Corollary 6 that we can add v
inside the region bounded by the k-gon, and connect v to its neighbors with
straight-line segments without creating crossings.
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