ORCO — Graphs and Discrete Structures
November 10, 2021 — Lecture 6

In this lecture, we start to investigate extremal questions for graphs. For a
positive integer n and a graph G, let us denote by ex(n, G) the largest number
of edges in an n-vertex graph H that does not contain G as a subgraph.

1 Excluding a clique

The following result of Turan is a precursor of the field of extremal graph
theory (and extremal combinatorics in general). It studies ex(n, K,). For

positive integer r and positive integers si,...,s, let K, stand for the
complete r-partite graph with part sizes si,...,s,, i.e., a graph with parts
of sizes sq,...,s,, no edges inside one part and all possible edges drawn be-

tween different parts. (If not necessarily all possible edges are drawn between
different parts then we call such a graph r-partite.) We say that an r-partite
graph has almost equal parts if sizes of any two parts differ by at most 1.

Theorem 1 (Turan). If a graph G on n vertices has no K, as a subgraph,

then G has at most as many edges as an n-vertex complete r-partite graph

with almost equal parts. (Moreover, the equality is only possible for complete
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r-partite graphs with almost equal parts.) In particular, ex(n, K,) < (1—;)"72.

Proof. This proof is via Zykov symmetrization. The idea is to gradually
change the structure of the graph while preserving its properties and in-
creasing the number of edges.

Let G be the graph as in the theorem with ex(n, K,) edges. First, note that
if vertices v and w are non-adjacent then d(v) = d(w). Indeed, if d(v) > d(w)
then we can remove the vertex w and replace it by a ‘copy’ of v, i.e., a vertex
v’ that has the same adjacencies and non-adjacencies as v. Note that no
copy of K, may appear after such ‘copying’ because any clique can either
contain v or v/, and thus if there is a clique with v’ then there is a clique of
the same size with v. Also note that the number of edges in the new graph
is strictly larger.

Second, we show that non-adjacency ¢ is an equivalence relation: if v o0 w
and u o4 w then v o u. Note that d(v) = d(w) = d(u) by the previous
paragraph. However, if v and u are adjacent, then the edge vu is counted in
the degrees of both v and u. Thus, if we remove both v and u and replace



them by two ‘copies’ of w then we increase the number of edges in the graph
by 1 without creating a copy of K, ;.

Since ¢ is an equivalence relation, the vertex set of G' can be split in parts
Vi,..., Vi, each of which is an independent set and all edges are drawn be-
tween any two parts. Indeed, if there is at least 1 edge missing between V;
and V; then the vertices of V;UV] belong to the same class. We conclude that
G is a complete multipartite graph with k parts. Note that k£ < r, otherwise
we have a copy of K, .

The last part of the proof is to show that complete r-partite graphs with
almost equal parts maximize the number of edges. First, if the number of
parts k satisfy k < r, then we can split the largest part into two and draw
all edges between the parts, increasing the number of edges. Thus, k = r.
Next, assume that, say |A;] > |A;| + 2. Then move one vertex from A;
to A;, forming another complete r-partite graph. Note that, when moving,
we deleted |A;| edges and added |A;| — 1 > |A;| + 1 edges. Thus, we have
increased the total number of edges.

It is also easy to see that this proof also implies that all extremal graphs are
complete r-partite graphs with almost equal parts. O

Once the extremal problem is solved, an important class of questions to ask
is how stable is the extremum. In this context, we can vaguely formulate
it as follows: is it true that if the number of edges in an n-vertex K, -free
graph is close to the extremum, then the graph itself is close to an r-partite
graph?

In this case, the answer is given by the following result (which we present
only for r = 2 for the sake of simplicity).

Theorem 2. Let G = (V, E) be a graph on n vertices, such that G does not
contain K3 as subgraph and |E| = ex(n, K3)—t for some non-negative integer
t. Then one can remove at most t edges from G to make it bipartite.

Proof. Let v € V be a vertex of maximum degree in G and let us denote its
degree by A.

We denote by N(v) the set of neighbors of v in G, and we define B := N(v)
and A := V\N(v). Since v is of maximum degree, we have that |B| = A and
Al =n — A.

For any subgraphs H; and Hs of G, we denote by E(H;, Hy) the set of edges
of G with one extremity in H; and the other in H,. We use the notation

E(H) for E(H,H).
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A:=V\N(V) B:=N(V)

Let us first observe that there are no edges with both endpoints in B. Indeed,
let us assume that there are two vertices vy, v € B such that (vy,v9) is an
edge in G. Then the vertices v, vy, vy form a Kj.

We prove now that |E(A)| < t. If this is indeed the case, the deletion of
the edges in E(A) will provide us a bipartite graph with bipartition A U B
on the same set of vertices as G (remember that there are no edges running
between vertices of B, and after deletion there will be no edges running
between vertices of A).

Since the cardinality of A is n — A, and the degree of each vertex u € A is
at most A, we have that

—A) > d(u)

u€A

On the other hand, we have that

S d(u) = 2B(4)] + (4, B)| =

u€A

= [E(A)] + (|E(A) + [E(A, B)]) = [E(A)| + [E(G)].

Since |E(G)| = ex(n,3) — t, and the number of edges in Ka,-—a (which is
A(n — A)) cannot exceed ex(n, K3), we have that |E(G)| > A(n — A) —t.

This, together with the two inequalities above, imply that |F(A)| < ¢t. We
can now remove all the edges of F(A) to obtain a bipartite graph, which
completes the proof. O
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