
ORCO – Graphs and Discrete Structures
November 10, 2021 – Lecture 6

In this lecture, we start to investigate extremal questions for graphs. For a
positive integer n and a graph G, let us denote by ex(n,G) the largest number
of edges in an n-vertex graph H that does not contain G as a subgraph.

1 Excluding a clique

The following result of Turán is a precursor of the field of extremal graph
theory (and extremal combinatorics in general). It studies ex(n,Kr). For
positive integer r and positive integers s1, . . . , sr let Ks1,...,sr stand for the
complete r-partite graph with part sizes s1, . . . , sr, i.e., a graph with parts
of sizes s1, . . . , sr, no edges inside one part and all possible edges drawn be-
tween different parts. (If not necessarily all possible edges are drawn between
different parts then we call such a graph r-partite.) We say that an r-partite
graph has almost equal parts if sizes of any two parts differ by at most 1.

Theorem 1 (Turán). If a graph G on n vertices has no Kr+1 as a subgraph,
then G has at most as many edges as an n-vertex complete r-partite graph
with almost equal parts. (Moreover, the equality is only possible for complete
r-partite graphs with almost equal parts.) In particular, ex(n,Kr) ≤ (1−1
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Proof. This proof is via Zykov symmetrization. The idea is to gradually
change the structure of the graph while preserving its properties and in-
creasing the number of edges.
Let G be the graph as in the theorem with ex(n,Kr) edges. First, note that
if vertices v and w are non-adjacent then d(v) = d(w). Indeed, if d(v) > d(w)
then we can remove the vertex w and replace it by a ‘copy’ of v, i.e., a vertex
v′ that has the same adjacencies and non-adjacencies as v. Note that no
copy of Kr+1 may appear after such ‘copying’ because any clique can either
contain v or v′, and thus if there is a clique with v′ then there is a clique of
the same size with v. Also note that the number of edges in the new graph
is strictly larger.
Second, we show that non-adjacency 6∼ is an equivalence relation: if v 6∼ w
and u 6∼ w then v 6∼ u. Note that d(v) = d(w) = d(u) by the previous
paragraph. However, if v and u are adjacent, then the edge vu is counted in
the degrees of both v and u. Thus, if we remove both v and u and replace
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them by two ‘copies’ of w then we increase the number of edges in the graph
by 1 without creating a copy of Kr+1.
Since 6∼ is an equivalence relation, the vertex set of G can be split in parts
V1, . . . , Vk, each of which is an independent set and all edges are drawn be-
tween any two parts. Indeed, if there is at least 1 edge missing between Vi

and Vj then the vertices of Vi∪Vj belong to the same class. We conclude that
G is a complete multipartite graph with k parts. Note that k ≤ r, otherwise
we have a copy of Kr+1.
The last part of the proof is to show that complete r-partite graphs with
almost equal parts maximize the number of edges. First, if the number of
parts k satisfy k < r, then we can split the largest part into two and draw
all edges between the parts, increasing the number of edges. Thus, k = r.
Next, assume that, say |Ai| ≥ |Aj| + 2. Then move one vertex from Ai

to Aj, forming another complete r-partite graph. Note that, when moving,
we deleted |Aj| edges and added |Ai| − 1 ≥ |Aj| + 1 edges. Thus, we have
increased the total number of edges.
It is also easy to see that this proof also implies that all extremal graphs are
complete r-partite graphs with almost equal parts.

Once the extremal problem is solved, an important class of questions to ask
is how stable is the extremum. In this context, we can vaguely formulate
it as follows: is it true that if the number of edges in an n-vertex Kr+1-free
graph is close to the extremum, then the graph itself is close to an r-partite
graph?
In this case, the answer is given by the following result (which we present
only for r = 2 for the sake of simplicity).

Theorem 2. Let G = (V,E) be a graph on n vertices, such that G does not
contain K3 as subgraph and |E| = ex(n,K3)−t for some non-negative integer
t. Then one can remove at most t edges from G to make it bipartite.

Proof. Let v ∈ V be a vertex of maximum degree in G and let us denote its
degree by ∆.
We denote by N(v) the set of neighbors of v in G, and we define B := N(v)
and A := V \N(v). Since v is of maximum degree, we have that |B| = ∆ and
|A| = n−∆.
For any subgraphs H1 and H2 of G, we denote by E(H1, H2) the set of edges
of G with one extremity in H1 and the other in H2. We use the notation
E(H) for E(H,H).
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A := V \N(V ) B := N(V )

v

Let us first observe that there are no edges with both endpoints in B. Indeed,
let us assume that there are two vertices v1, v2 ∈ B such that (v1, v2) is an
edge in G. Then the vertices v, v1, v2 form a K3.
We prove now that |E(A)| ≤ t. If this is indeed the case, the deletion of
the edges in E(A) will provide us a bipartite graph with bipartition A ∪ B
on the same set of vertices as G (remember that there are no edges running
between vertices of B, and after deletion there will be no edges running
between vertices of A).
Since the cardinality of A is n −∆, and the degree of each vertex u ∈ A is
at most ∆, we have that

∆(n−∆) ≥
∑
u∈A

d(u).

On the other hand, we have that∑
u∈A

d(u) = 2|E(A)|+ |E(A,B)| =

= |E(A)|+ (|E(A) + |E(A,B)|) = |E(A)|+ |E(G)|.
Since |E(G)| = ex(n, 3) − t, and the number of edges in K∆,n−∆ (which is
∆(n−∆)) cannot exceed ex(n,K3), we have that |E(G)| ≥ ∆(n−∆)− t.
This, together with the two inequalities above, imply that |E(A)| ≤ t. We
can now remove all the edges of E(A) to obtain a bipartite graph, which
completes the proof.
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