
ORCO – Graphs and Discrete Structures
December 1, 2021 – Lecture 9

We say that a point and a line are incident if the point lies on the line. We
have seen before that in finite planes (i.e., finite projective planes) we can
have as many as n3/2 incidences between n points and n lines. It turns out
that Euclidean plane is very different from finite planes in this respect, as is
shown by the next theorem. The proof that we present is much simpler than
the original proof and is an elegant application of the crossing lemma.

Theorem 1 (Szemerédi–Trotter). Given a set of n lines and n points in R2,
the number of incidences between them is at most 5n4/3).

Proof. Fix an arrangement of lines `1, . . . , `n and points p1, . . . , pn that max-
imizes the number of incidences between n points and n lines on the plane.
Let α be the number of incidences in this arrangement. We construct a
graph G with a drawing on the plane as follows. The vertices of the graph
are simply p1, . . . , pn, and we draw an edge (represented by a straight-line
segment in the drawing) between the points that lie on the same line `i and
are consecutive on this line. That is, if a line `i contains points pi1 , . . . pik
which appear in that order on the line, then it corresponds to the edges
(pij , pij+1

), 1 ≤ j ≤ k− 1 in the graph, and to straight-line segments pijpij+1
,

1 ≤ j ≤ k − 1 in the drawing. Note that the drawing that we get is ‘con-
tained’ in the arrangement of lines `1, . . . , `n and that we simply throw away
the rays emanating from the first/last point on the line.
The graph G has n vertices. Next, a line `i with k vertices contributes k− 1
edges to G. This implies |E(G)| = α − n. Finally, let us bound from above
cr(G). Clearly, it is at most the number of crossings in the given drawing of
G. Next, each crossing in this drawing must correspond to the intersection of
two lines `i, `j, and thus, knowing that any two lines intersect at most once,
the total number of crossings is at most

(
n
2

)
.

The final step is to apply the crossing lemma and get the following chain of
inequalities:

(α− n)3

64n2
≤ cr(G) ≤

(
n

2

)
.

Simplifying, we get that α − n ≤ (64n3(n − 1)/2)1/3 ≤ 4n4/3, and thus
α ≤ 4n4/3 + n ≤ 5n4/3. We remark that, strictly speaking, the crossing
lemma only applies for graphs H with |E(H)| ≥ 4|V (H)|. However, if in our
case we have |E(G)| ≤ 4n, then α ≤ 5n, which is also fine.
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The bound in this theorem is tight up to a constant factor, as we will show
using an appropriate grid-based construction. Consider the set P of points
(a, b), where a ∈ {1, . . . , n} and b ∈ {1, . . . , 2n2} and a set L of lines y =
cx+d, where c ∈ {1, . . . , n} and d ∈ {1, . . . , n2}. The total number of points
is 2n3, the total number of lines is n3, and it is easy to see that each line
` ∈ L is incident to exactly n points from P , that is, the total number of
incidences is n4.

1 Intersection theorems

In this section, we will discuss some classical results in extremal set theory
and their geometric consequences.
Let [n] = {1, . . . , n} and 2X stand for the set of all subsets of the set X.
Also, let

(
X
k

)
stand for the set of all k-element subsets of X. The type of

questions we deal with here is as follows: how large can a family F ⊂
(
[n]
k

)
be, given that for any pair A,B ∈ F |A ∩B| avoids certain values.
The fist theorem of this type is the Erdős–Ko–Rado theorem. We say that a
family F of sets is intersecting if for any two A,B ∈ F we have |A∩B| > 0.
Let us first show that if F ⊂ 2[n] is intersecting, then |F| ≤ 2n−1, and this
is tight. Indeed, to see the upper bound, note that out of each pair of sets
(X, [n] \ X) we can take only one set, and that the number of such pairs
is 2n−1. To see the lower bound, consider all sets containing 1. Actually,
something much stronger holds, which we leave as an exercise.

Exercise: Show that any intersecting family F ⊂ 2[n] is contained in another
intersecting family G ⊂ 2[n], where |G| = 2n−1.

Next, let us take a look at the situation for the families of k-element sets.

Theorem 2 (Erdős–Ko–Rado theorem). If n ≥ 2k > 0 and F ⊂
(
[n]
k

)
is

intersecting, then |F| ≤
(
n−1
k−1

)
.

Note that equality is attained on the family of all sets containing 1.
This theorem has many different proofs. We will present one that has a
flavour of classical extremal set theory and uses a certain operation on fam-
ilies of sets, called shifting. For a given pair of indices 1 ≤ i < j ≤ n and a
set A ⊂ [n], define its (i, j)-shift Sij(A) as follows. If i ∈ A or j /∈ A, then
Sij(A) = A. If j ∈ A, i /∈ A, then Sij(A) := (A− {j}) ∪ {i}. That is, Sij(A)
is obtained from A by replacing j with i. The (i, j)-shift Sij(F) of a family
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F is as follows:

Sij(F) := {Sij(A) : A ∈ F} ∪ {A : A, Sij(A) ∈ F}.

We say that A is shifted if Sij(A) = A for any 1 ≤ i < j ≤ n. Note that F is
shifted if and only if for any A = {x1, . . . , xk} ∈ F and any B = {y1, . . . , yk}
such that yi ≤ xi, we have B ∈ F . It is not difficult to see that any family
can be made shifted after finitely many shifts: e.g., note that the total sum
of all elements decreases by at least 1 as we perform a (non-trivial) shift Sij

with i < j, but this sum must clearly stay positive.
The following lemma has a straightforward, but slightly technical proof, and
we leave it as an exercise.

Lemma 3. If F is intersecting then Sij(F) is intersecting.

Proof of the Erdős–Ko–Rado theorem. We prove the theorem by double in-
duction on n, k. Specifically, we use the induction assumption for (n−1, k−1)
and (n− 1, k) to derive the statement for (n, k).
Let us check the base cases: k = 1 and n = 2k. The case k = 1 is trivial since
|F| ≤ 1 in this case. If n = 2k then

(
n−1
k−1

)
= 1

2

(
n
k

)
. We note that for each

k-element set X its complement X̄ is also k-element. As in the non-uniform
case, we can include at most 1 out of each such pair in F , getting the bound
|F| ≤ 1

2

(
n
k

)
.

Next, assume n > 2k > 2. For the inductive step, we need the following
notation:

F(n̄) := {A ∈ F : n /∈ A},
F(n̄) := {A \ {n} : n ∈ A,A ∈ F}.

Using the lemma above, we may without loss of generality assume that F
is shifted. Note that F(n) ⊂

(
[n−1]
k−1

)
, F(n̄) ⊂

(
[n−1]

k

)
. Since F(n̄) ⊂ F , we

have that F(n̄) is intersecting. Using shiftedness, let us show that F(n) is
intersecting as well. Indeed, if A′, B′ ∈ F(n) are disjoint then A := A′∪{n},
B := B′∪{n} satisfy A∩B = {n} and, moreover, A,B ∈ F . Since |A∪B| =
2k − 1 < n, there is an element x ∈ [n] \ (A ∪ B). Using shiftedness, we
conclude that the set C := A′ ∪ {x} belongs to F . But then B ∩ C = ∅, a
contradiction. This proves that F(n) is indeed intersecting.
Now we are ready to conclude the proof via the following chain. We use
inductive assumption in the inequality below.

|F| = |F(n)|+ |F(n̄)| ≤
(
n− 2

k − 2

)
+

(
n− 2

k − 1

)
=

(
n− 1

k − 1

)
.
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