
ORCO – Graphs and Discrete Structures
December 8, 2021 – Lecture 10

1 Forbidden intersections and chromatic num-

ber of the space

It turns out that if we forbid one intersection ‘in the middle’, then we can
get much stronger upper bounds on the size of the family. The following
theorem is a beautiful illustration of the so-called linear-algebraic method in
combinatorics. In this case our goal is to upper bound the size of a family.
We are going to correspond a polynomial to each set and show that these
polynomials are linearly independent. Then we are bounding the size of the
family by the dimension of the space of polynomials that we used.

Theorem 1. Let p be a prime number. Assume that F ⊂
(
[4p−1]
2p−1

)
satisfies

|A ∩B| 6= p− 1 for any A,B ∈ F . Then |F| ≤
∑p−1

i=0

(
4p−1
i

)
.

Note that, first,
(
[4p−1]
2p−1

)
= 2(1+o(1)(4p−1) and, second,

∑p
i=0

(
4p−1
i

)
< 1.84p−1 for

large enough p. The latter inequality is a standard calculation using Stirling
formula, and we omit it. Also, recall that there is a prime number between
n and n+ n2/3 for any sufficiently large n, and it’s convenient to think that
we have such a theorem for any sufficiently large n.

Proof. Put n = 4p − 1 and consider such a family F . To each set A ∈ F ,
correspond a characteristic vector vA of length n, where the i’th coordinate
of vA is either 0 or 1 depending on whether i ∈ A or not. Next, correspond
to A a polynomial

fA(x) =

p−2∏
i=0

(i− 〈x, vA〉),

where fA(x) is an n-variate polynomial over Fp. In what follows, all the
arithmetic is in Fp. Note that fA(x) is a product of p − 2 linear terms.
Consider the following polynomial gA(x): open the brackets in the product
defining fA(x), represent fA(x) as a sum of monomials, and replace each
monomial Cxα1

i1
· . . . · xαs

is
with Cxi1 · . . . · xis . That is, we erase the powers

of the variables in each monomial. The resulting gA(x) is multilinear and,
importantly, we have fA(x) = gA(x) for any x ∈ {0, 1}n. (This is because
0α = 0 and 1α = 1.)
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We are going to show that gA, when thought of as vectors in FNp for an
appropriate dimension N , are linearly independent. Indeed, we first note the
following two properties: (i) gA(vA) = fA(vA) 6= 0. The latter is true because
〈vA, vA〉 = |A| = p − 1 (mod p) and thus no multiple in the definition of
fA(vA) is 0. (ii) We have gA(vB) = fA(vB) = 0 for A 6= B for pretty much
the same reasons. We have 〈vA, vB〉 = |A ∩ B| 6= p − 1 (mod p) (the value
2p − 1 is only possible for A = B, and value p − 1 is forbidden), and thus
there will be a multiple in fA(vB) that is equal to 0.
Using these properties, it is not difficult to show that the polynomials are
linearly independent. Indeed, assume that∑

S∈F

βSgS = 0.

Then, clearly,
∑

S βSgS(x) = 0 for any vector x. Substitute x = vA and note
that 0 =

∑
S βSgS(vS) = βAgA(vA), and thus βA = 0. This is true for any

A ∈ F , and thus the linear combination is trivial.
We conclude that |F| ≤ D := dim span{gS : S ∈ F}. We are only left to
bound D. Each polynomial that we use is a multilinear polynomial of degree
at most p − 1, depending on a set of n variables. The natural basis in this
space is the set of all possible monomials of degree at most p− 1, and there
are

∑p−1
i=0

(
n
i

)
. The theorem is proved.

Exercise: show that, for a family F ⊂ 2[n] such that (i) each size of the set in
F is odd and (ii) intersection size of any two different sets is even, we have
|F| ≤ n.

This result has a surprising application to an important problem in discrete
geometry. Let χ(Rn) stand for the chromatic number of the space, i.e., the
minimum number of colors we need to color all points of the space so that
no two points of the same color are at unit distance apart. It is not difficult
to show that

4 ≤ χ(R2) ≤ 7 :

https://en.wikipedia.org/wiki/Hadwiger-Nelson_problem

For a while, the constructions in higher-dimensional spaces gave only poly-
nomial lower bounds. The theorem above allows to show much more.

Proposition 2. We have χ(Rn) ≥ 1.1n for any sufficiently large n.
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Proof. We use notations as in the theorem above. First, consider the follow-
ing graph G = (V,E). We have V =

(
[4p−1]
2p−1

)
, and edges connect sets A,B if

|A∩B| = p−1. Then the Frankl–Wilson theorem, stated in the terms of this
graph, says that α(G) ≤

∑p−1
i=0

(
4p−1
p−1

)
. Using the remark after the theorem,

we have χ(G) ≥
(

2
1.8

)(1+o(1))(4p−1)
.

Next, we find a geometric interpretation of G. Note that vA : A ∈
(
4p−1
p−1

)
are

points of the hypercube {0, 1}4p−1. We have ‖vA − vB‖ = ‖vA‖2 + ‖vB‖2 −
2〈vA, vB〉, and, given that all vectors vA have the same length, we note that
if 〈vA, vB〉 = p− 1 then ‖vA − vB‖ = r, where r is independent of the choice
of A,B. Thus, G can be realized in the space R4p−1 such that each vertex
is a point in the standard hypercube and each edge in G corresponds to two
points at distance r.
We note next that, using homothety, any proper coloring of Rn with ‘for-
bidden distance 1’ can be transformed into a proper coloring of Rn with

‘forbidden distance r’, and thus χ(R4p−1) ≥ χ(G) >
(

2
1.8

)(1+o(1))(4p−1)
. Fi-

nally, using the fact that prime numbers are dense, for any sufficiently large
n we can choose p such that n ≥ 4p− 1 and 4p− 1 = (1 + o(1))n and thus

χ(Rn) ≥ χ(R4p−1) ≥
( 2

1.8

)(1+o(1))(4p−1)
=
( 2

1.8

)(1+o(1))n
> 1.1n.

Let us briefly discuss the upper bounds on χ(Rn).

Proposition 3. We have χ(Rn) ≤ 9n + 1.

Proof. Let Br stand for a ball with radius r and center in 0. For two sets
Y, Z ∈ Rn we use notation Y + Z = {y + z : y ∈ Y, z ∈ Z}.
We say that a collection of balls form a packing if the balls do not intersect
in their interior. We first construct a packing of closed balls of radius 1/2
in Rn greedily: in the order of increasing ‖x‖, we check if we can add a ball
with center in x in the packing. Let X be the resulting set of centers. Then
note that the set X + B1 covers the whole space. Indeed, if there is a point
y not covered by the set, then ‖y− x‖ > 1 for any x ∈ X and thus we could
have added y to the 1/2-packing.
Next, fix ε > 0 and let us construct a graph G = (X,E), where we connect
by edges any two points x1, x2 ∈ X such that ‖x1 − x2‖ ≤ 4 + 2ε. Let
us bound the degree of a vertex x. The balls or radius 1/2 centered at y,
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y ∈ Nx, are pairwise disjoint and all lie inside the ball x + B9/2. given
that V ol(B9/2+2ε)/V ol(B1/2 = (9 + 4ε)n, we have that |Nx| ≤ (9 + 4ε)n.
Therefore, G is (9 + 4ε)n-degenerate, and we can properly color its vertices
into N = (9 + 4ε)n + 1 colors.
Now let us transform this coloring f : X → [N ] into the coloring of the space
that avoids distance 2+ ε. For that, simply color all points of B1 +x into the
color f(x). Then the distance between any two points inside B1+x is at most
2. Moreover, for any x, y such that f(x) = f(y) we have ‖x − y‖ ≥ 4 + 2ε,
and thus using triangle inequality, the distance between any point in B1 + x
and any point in B1 +y is at least 4+2ε−2 > 2+ ε. Therefore, it is a proper
coloring of the space.
Finally, since we can take ε > 0 arbitrarily small, we get the desired bound.
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