ORCO – Graphs and Discrete Structures December 15, 2021 – Lecture 11

1 Chromatic number of Kneser graphs

In this lecture, let us consider the following graph $KG_{n,k}$. The vertices of $KG_{n,k}$ are all k-element subsets of [n], i.e., $\binom{[n]}{k}$, and the edge set consists of all pairs of sets that are disjoint. In particular, $KG_{n,1}$ is a complete graph on n vertices and $KG_{5,2}$ is the famous Petersen graph https://en.wikipedia.org/wiki/Petersen_graph

Note that an independent set in $KG_{n,k}$ is a collection of pairwise intersecting k-element sets, and thus the Erdős–Ko–Rado theorem in these terms states that

$$\alpha(KG_{n,k}) = \binom{n-1}{k-1}.$$

Kneser asked for the chromatic number of $KG_{n,k}$. The graph has the following natural coloring using n - 2k + 2 colors. For each $i = 2k, \ldots, n$ color in color *i* the sets whose maximal element is *i*. We have used n - 2k + 1 colors and the only subsets that are left uncolored are *k*-element subsets of [2k - 1]. Any two of them intersect, and thus we use an extra color for them.

Kneser conjectured that this is best possible, i.e., that $\chi(KG_{n,k}) = n - 2k + 2$. This was proved by Lovász using topology.

Theorem 1 (Lovász). For any $n \ge 2k > 0$ we have $\chi(KG_{n,k}) = n - 2k + 2$.

The proof that we present is rather simple, but, unexpectedly, it uses some geometry and topology. We need some preparations in order to spell it out. Recall that a subset X of a metric space Y is *open* if for any $x \in X$ an ϵ -neiborhood of x is contained in Y. (Think of Y being the Euclidean space \mathbb{R}^n or a sphere S^{n-1} .) A set X in Y is closed if for any converging sequence $x_1, \ldots \in X$ its limiting point x is also in X. A complement of open set is closed and vice versa. A sphere S^{n-1} stands for the standard unit sphere in \mathbb{R}^n . A pair of points x, -x on the sphere are called *antipodal*.

The main and only topological tool that we are going to use in this lecture is the following theorem of Lusternik-Schnirelman-Borsuk.

Theorem 2 (Lusternik-Schnirelman-Borsuk). If S^{d-1} is covered by d sets C_1, \ldots, C_d , such that each of them is either open or closed, then there is i such that C_i contains two antipodal points.

It is very instructive to think about the case d = 2. Note that without the assumptions on C_i it is easy to construct a covering of S^{d-1} with just 2 sets and no antipodal points: simply out of each pair of antipodal points x, -x include the first one in C_1 and the second in C_2 .

Next, we need a certain statement about points in general position.

Lemma 3. For any integer N we can take N points on the sphere S^{d-1} so that no d points lie on a diametral hypersphere, i.e., a subsphere formed by intersecting S^{d-1} with a hyperplane passing through the center of S^{d-1} .

If the points satisfy the requirement above then we say that they are in *general position*. Actually, in different situations different general position requirements are imposed, but the rule is that this is a property we get with probability 1 if we take points at random. Here, however, we will provide an explicit construction using a very useful object: the moment curve.

Proof. The moment curve is defined as follows: $\gamma(x) = (1, x, x^2, \dots, x^{d-1})$. This is a curve in \mathbb{R}^d . Let us show that if we take any N points on this curve, then no d of these points lie on a hyperplane in \mathbb{R}^d that passes through 0. A generic hyperplane passing through 0 has the form $c_1x_1 + \ldots + c_dx_d = 0$. Substituting here the point $\gamma(x)$, we get $c_1 + c_2x + \ldots + c_dx^{d-1} = 0$. This is a polynomial of degree at most d-1 and thus it has at most d-1 real root, so at most d-1 points from the moment curve can lie on any such plane. All we are left to do is to replace each point v with αv for some constant $\alpha > 0$ so that αv is on S^{d-1} . The resulting points satisfy the requirement. \Box

We are ready to prove the Lovász' theorem.

Proof. Fix any coloring of $KG_{n,k}$ into n - 2k + 1 colors and let us show that it is not proper. Take a map $f : [n] \to S^{n-2k+1}$ that maps [n] into points in general position. For shorthand, we denote by f(A) the image of the set $A \subset [n]$. Based on f and the coloring, we are going to construct a cover of S^{n-2k+1} by sets C_0, \ldots, C_{n-2k+1} . Namely, for each point $v \in S^{n-2k+1}$ consider the open hemisphere $S_v := \{x : \langle v, x \rangle > 0\}$. First, assume that S_v contains f(A) for some $A \in {[n] \choose k}$. Let χ be the color of A in the coloring of $KG_{n,k}$, $\chi \in [n-2k+1]$. Then we include v into S_{χ} . (Note that we do this for each such set A and each color that appears.) If S_v does not contain the image of any $A \in {[n] \choose k}$, then we include S_v into C_0 . Note that then S_v contains at most k-1 points $f(i), i \in [n]$. First, we claim that C_i , $i \in [n - 2k + 1]$, are open. Indeed, for each fixed set A of color i the set of all v such that S_v contains f(A) is open. Second, C_i is the union of such sets over all A of color i, and the union of finitely many open sets is open. Next, $C := C_1 \cup \ldots \cup C_{n-2k+1}$ is open as well, and C_0 is simply the complement of C on the sphere, so it is closed.

Note that we have a cover of S^{n-2k+1} with (n-2k+2) open or closed sets, and so we can apply the Lusternik–Schnirelman–Borsuk theorem, getting that for some *i* the set C_i contains antipodal points.

Assume first that i > 0. Then for some $v S_v$ and S_{-v} contain f(A), f(A'), respectively, where the k-element sets A, A' are of the same color i. But S_v and S_{-v} are disjoint, so f(A) and f(A') are disjoint, and so A, A' are disjoint. This means that the coloring is not proper.

Next, assume that i = 0. But then for some v both S_v and S_{-v} contain at most k - 1 points f(i), i.e., there are at most 2k - 2 values of i so that $\langle v, f(i) \rangle \neq 0$. Thus, at least n - 2k + 2 points f(i) lie on the diametral hypersphere $\{x : \langle v, x \rangle = 0\}$. But this contradicts our general position assumption. This completes the proof. \Box