
ORCO – Graphs and Discrete Structures
December 15, 2021 – Lecture 11

1 Chromatic number of Kneser graphs

In this lecture, let us consider the following graph KGn,k. The vertices of

KGn,k are all k-element subsets of [n], i.e.,
(
[n]
k

)
, and the edge set consists of

all pairs of sets that are disjoint. In particular, KGn,1 is a complete graph on
n vertices and KG5,2 is the famous Petersen graph https://en.wikipedia.

org/wiki/Petersen_graph

Note that an independent set in KGn,k is a collection of pairwise intersecting
k-element sets, and thus the Erdős–Ko–Rado theorem in these terms states
that

α(KGn,k) =

(
n− 1

k − 1

)
.

Kneser asked for the chromatic number of KGn,k. The graph has the follow-
ing natural coloring using n− 2k + 2 colors. For each i = 2k, . . . , n color in
color i the sets whose maximal element is i. We have used n− 2k + 1 colors
and the only subsets that are left uncolored are k-element subsets of [2k−1].
Any two of them intersect, and thus we use an extra color for them.
Kneser conjectured that this is best possible, i.e., that χ(KGn,k) = n−2k+2.
This was proved by Lovász using topology.

Theorem 1 (Lovász). For any n ≥ 2k > 0 we have χ(KGn,k) = n− 2k+ 2.

The proof that we present is rather simple, but, unexpectedly, it uses some
geometry and topology. We need some preparations in order to spell it out.
Recall that a subset X of a metric space Y is open if for any x ∈ X an
ε-neiborhood of x is contained in Y . (Think of Y being the Euclidean space
Rn or a sphere Sn−1.) A set X in Y is closed if for any converging sequence
x1, . . . ∈ X its limiting point x is also in X. A complement of open set is
closed and vice versa. A sphere Sn−1 stands for the standard unit sphere in
Rn. A pair of points x,−x on the sphere are called antipodal.
The main and only topological tool that we are going to use in this lecture
is the following theorem of Lusternik-Schnirelman-Borsuk.

Theorem 2 (Lusternik-Schnirelman-Borsuk). If Sd−1 is covered by d sets
C1, . . . , Cd, such that each of them is either open or closed, then there is i
such that Ci contains two antipodal points.
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It is very instructive to think about the case d = 2. Note that without the
assumptions on Ci it is easy to construct a covering of Sd−1 with just 2 sets
and no antipodal points: simply out of each pair of antipodal points x,−x
include the first one in C1 and the second in C2.
Next, we need a certain statement about points in general position.

Lemma 3. For any integer N we can take N points on the sphere Sd−1 so
that no d points lie on a diametral hypersphere, i.e., a subsphere formed by
intersecting Sd−1 with a hyperplane passing through the center of Sd−1.

If the points satisfy the requirement above then we say that they are in
general position. Actually, in different situations different general position
requirements are imposed, but the rule is that this is a property we get with
probability 1 if we take points at random. Here, however, we will provide an
explicit construction using a very useful object: the moment curve.

Proof. The moment curve is defined as follows: γ(x) = (1, x, x2, . . . , xd−1).
This is a curve in Rd. Let us show that if we take any N points on this curve,
then no d of these points lie on a hyperplane in Rd that passes through 0.
A generic hyperplane passing through 0 has the form c1x1 + . . . + cdxd = 0.
Substituting here the point γ(x), we get c1 + c2x+ . . .+ cdx

d−1 = 0. This is
a polynomial of degree at most d− 1 and thus it has at most d− 1 real root,
so at most d− 1 points from the moment curve can lie on any such plane.
All we are left to do is to replace each point v with αv for some constant
α > 0 so that αv is on Sd−1. The resulting points satisfy the requirement.

We are ready to prove the Lovász’ theorem.

Proof. Fix any coloring of KGn,k into n− 2k+ 1 colors and let us show that
it is not proper. Take a map f : [n] → Sn−2k+1 that maps [n] into points
in general position. For shorthand, we denote by f(A) the image of the set
A ⊂ [n]. Based on f and the coloring, we are going to construct a cover of
Sn−2k+1 by sets C0, . . . , Cn−2k+1. Namely, for each point v ∈ Sn−2k+1 consider
the open hemisphere Sv := {x : 〈v, x〉 > 0}. First, assume that Sv contains
f(A) for some A ∈

(
[n]
k

)
. Let χ be the color of A in the coloring of KGn,k,

χ ∈ [n− 2k + 1]. Then we include v into Sχ. (Note that we do this for each
such set A and each color that appears.) If Sv does not contain the image
of any A ∈

(
[n]
k

)
, then we include Sv into C0. Note that then Sv contains at

most k − 1 points f(i), i ∈ [n].
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First, we claim that Ci, i ∈ [n− 2k + 1], are open. Indeed, for each fixed set
A of color i the set of all v such that Sv contains f(A) is open. Second, Ci
is the union of such sets over all A of color i, and the union of finitely many
open sets is open. Next, C := C1 ∪ . . . ∪ Cn−2k+1 is open as well, and C0 is
simply the complement of C on the sphere, so it is closed.
Note that we have a cover of Sn−2k+1 with (n− 2k + 2) open or closed sets,
and so we can apply the Lusternik–Schnirelman–Borsuk theorem, getting
that for some i the set Ci contains antipodal points.
Assume first that i > 0. Then for some v Sv and S−v contain f(A), f(A′),
respectively, where the k-element sets A, A′ are of the same color i. But Sv
and S−v are disjoint, so f(A) and f(A′) are disjoint, and so A,A′ are disjoint.
This means that the coloring is not proper.
Next, assume that i = 0. But then for some v both Sv and S−v contain
at most k − 1 points f(i), i.e., there are at most 2k − 2 values of i so that
〈v, f(i)〉 6= 0. Thus, at least n − 2k + 2 points f(i) lie on the diametral
hypersphere {x : 〈v, x〉 = 0}. But this contradicts our general position
assumption. This completes the proof.
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