ORCO — Graphs and Discrete Structures
November 23, 2022 — Lecture 8

1 Posets

A partially ordered set (or poset) is a set P together with an order < on the
elements of P. Recall that an order < is a binary relation which is transitive
(u < v and v < w imply v < w) and asymmetric (u < v and v < u cannot
both hold). We write u < v if u < v or v = v. We say that v and v are
comparable if uw < v or v < u, and incomparable otherwise.

A chain in a poset (P, <) is a subset S of P such that any two elements of S
are comparable. An antichain is a subset S of P such that any two elements
of S are incomparable.

Theorem 1 (Mirsky, 1971). The mazimum size of a chain in a poset (P, <)
15 equal to the minimum number of antichains in which the elements of P
can be partitioned.

Proof. For an element u € P, let s(u) be the maximum size of a chain which
has « as maximum element. For any integer ¢ > 1, the set s71(i) = {u €
P|s(u) =i} is an antichain. These antichains partition P, and their number
is equal to the maximum size of a chain, as desired. O]

Given a poset (P, <), the comparability graph of the poset is the graph G
with vertex set P, and an edge between any two vertices that are comparable.
Mirsky’s theorem immediately implies that comparability graphs are perfect
(see Lecture 4 for the definition).

Theorem 2 (Dilworth, 1950). The maximum size of an antichain in a poset
(P, <) is equal to the minimum number of chains in which the elements of P
can be partitioned.

Proof. We prove the result by induction on the number of elements in P.
As the result is clear when P is empty we can assume |P| > 1. Let u be
a maximal element of P (in the sense that there is no element v € P with
u < v), and let P = P\ {u}. By the induction, P’ has a partition into k
chains (1, ..., Cy (for some integer k) and P’ also contains an antichain of
size k. Note that any such antichain intersects each chain C; in exactly one



element. For 1 < i < k, let x; be the maximal element of C; that is contained
in an antichain of size k in P, and let X = {xq,..., 2}

Let us first prove that X is an antichain in P’ (and thus in P). Consider any
1 <14,5 <k, and assume for the sake of contradiction that z; < x;. Look at
an antichain Y of size k in P’ containing ;. This antichain Y also intersects
C; in an element, call it y;. By maximality of x;, we have y; < z;. So if we
had z; < x;, then by transitivity we would also have y; < z;, contradicting
that Y is an antichain. This shows that X is an antichain of size k in P’
(and also in P).

Now, assume first that there is 1 < ¢ < k such that z; < v in P. Then
Cl:={u}U{zx <z;|z € C;} forms a chain in P, and P\ C] has no antichain
of size k by definition of z;. By the induction, P\ C! has a partition into
k — 1 chains, and by adding C! we obtain a partition of P into k chains, as
desired (recall that we know that there is an antichain of size k in P’, and
thus in P).

Otherwise, we can assume that there isno 1 <1 < k, such that x; < u. Then
since u is a maximal element in P, u in incomparable with the elements of
X and thus {u} U X is an antichain of size k + 1 in P. Moreover, adding
the singleton {u} to the partition C, ..., C, we obtain a partition of P into
k + 1 chains, as desired. O

Exercise. Prove that Dilworth’s theorem can be quickly deduced from
Kénig’s theorem (stating that the size of a maximum matching is equal to
the size of a minimum vertex cover in any bipartite graph). Show also how
to deduce Konig’s theorem from Dilworth’s theorem.

Given a poset (P, <), the co-comparability graph of the poset is the graph
G with vertex set P, and an edge between any two vertices that are in-
comparable. As before, Dilworth’s theorem immediately implies that co-
comparability graphs are perfect (this can also be deduced from Mirsky’s
theorem above, together with a classical theorem of Lovasz stating that com-
plements of perfect graphs are also perfect).

Given a set X, we define the poset Px of all subsets of X ordered by inclusion
(Px is more than just a poset, it is a distributive lattice). Note that for all
sets X on n vertices, the resulting poset Py is the same (up to isomorphism),
so we will most of the time consider that X = [n] := {1,...,n} without loss
of generality.



For a set X on n elements, a chain S; C Sy C --- C S, in Py is said to be
symmetric if |Si| + |Sg| = n and for any 1 <i <n—1, [S;1] = |Si| + 1.

Theorem 3. The elements of Py, can be partitioned into (MT/LQJ) symmetric
chains.

Proof. We first observe that any partition into symmetric chains has size
( n% J)’ since each symmetric chain has to contain a different subset on [n/2]
e+ements. To construct the partition, we proceed by induction on n. The
result clearly holds for n = 1, so we can assume n > 2. Assume that the
result holds for n — 1, that is P,,_;) has a partition into 7 symmetric chains
Ci,...,C.. Each chain C; gives rise to two chains in P,: first we can look at
the maximum set S of C; and add a new set SU{n} to the chain C;. Second
we can add the element n to all sets of the chain and delete the last set S
from the chain. All these chains are clearly symmetric in P}, and it is not
difficult to see that they partition P, O]
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