
ORCO – Graphs and Discrete Structures
November 23, 2022 – Lecture 8

1 Posets

A partially ordered set (or poset) is a set P together with an order < on the
elements of P . Recall that an order < is a binary relation which is transitive
(u < v and v < w imply u < w) and asymmetric (u < v and v < u cannot
both hold). We write u ≤ v if u < v or u = v. We say that u and v are
comparable if u ≤ v or v ≤ u, and incomparable otherwise.

A chain in a poset (P,<) is a subset S of P such that any two elements of S
are comparable. An antichain is a subset S of P such that any two elements
of S are incomparable.

Theorem 1 (Mirsky, 1971). The maximum size of a chain in a poset (P,<)
is equal to the minimum number of antichains in which the elements of P
can be partitioned.

Proof. For an element u ∈ P , let s(u) be the maximum size of a chain which
has u as maximum element. For any integer i ≥ 1, the set s−1(i) = {u ∈
P | s(u) = i} is an antichain. These antichains partition P , and their number
is equal to the maximum size of a chain, as desired.

Given a poset (P,<), the comparability graph of the poset is the graph G
with vertex set P , and an edge between any two vertices that are comparable.
Mirsky’s theorem immediately implies that comparability graphs are perfect
(see Lecture 4 for the definition).

Theorem 2 (Dilworth, 1950). The maximum size of an antichain in a poset
(P,<) is equal to the minimum number of chains in which the elements of P
can be partitioned.

Proof. We prove the result by induction on the number of elements in P .
As the result is clear when P is empty we can assume |P | ≥ 1. Let u be
a maximal element of P (in the sense that there is no element v ∈ P with
u < v), and let P ′ = P \ {u}. By the induction, P ′ has a partition into k
chains C1, . . . , Ck (for some integer k) and P ′ also contains an antichain of
size k. Note that any such antichain intersects each chain Ci in exactly one
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element. For 1 ≤ i ≤ k, let xi be the maximal element of Ci that is contained
in an antichain of size k in P ′, and let X = {x1, . . . , xk}.
Let us first prove that X is an antichain in P ′ (and thus in P ). Consider any
1 ≤ i, j ≤ k, and assume for the sake of contradiction that xi < xj. Look at
an antichain Y of size k in P ′ containing xj. This antichain Y also intersects
Ci in an element, call it yi. By maximality of xi, we have yi ≤ xi. So if we
had xi < xj, then by transitivity we would also have yi < xj, contradicting
that Y is an antichain. This shows that X is an antichain of size k in P ′

(and also in P ).
Now, assume first that there is 1 ≤ i ≤ k such that xi < u in P . Then
C ′

i := {u}∪{x ≤ xi |x ∈ Ci} forms a chain in P , and P \C ′
i has no antichain

of size k by definition of xi. By the induction, P \ C ′
i has a partition into

k − 1 chains, and by adding C ′
i we obtain a partition of P into k chains, as

desired (recall that we know that there is an antichain of size k in P ′, and
thus in P ).
Otherwise, we can assume that there is no 1 ≤ i ≤ k, such that xi < u. Then
since u is a maximal element in P , u in incomparable with the elements of
X and thus {u} ∪ X is an antichain of size k + 1 in P . Moreover, adding
the singleton {u} to the partition C1, . . . , Ck, we obtain a partition of P into
k + 1 chains, as desired.

Exercise. Prove that Dilworth’s theorem can be quickly deduced from
Kőnig’s theorem (stating that the size of a maximum matching is equal to
the size of a minimum vertex cover in any bipartite graph). Show also how
to deduce Kőnig’s theorem from Dilworth’s theorem.

Given a poset (P,<), the co-comparability graph of the poset is the graph
G with vertex set P , and an edge between any two vertices that are in-
comparable. As before, Dilworth’s theorem immediately implies that co-
comparability graphs are perfect (this can also be deduced from Mirsky’s
theorem above, together with a classical theorem of Lovász stating that com-
plements of perfect graphs are also perfect).

Given a set X, we define the poset PX of all subsets of X ordered by inclusion
(PX is more than just a poset, it is a distributive lattice). Note that for all
sets X on n vertices, the resulting poset PX is the same (up to isomorphism),
so we will most of the time consider that X = [n] := {1, . . . , n} without loss
of generality.

2



For a set X on n elements, a chain S1 ⊂ S2 ⊂ · · · ⊂ Sk in PX is said to be
symmetric if |S1|+ |Sk| = n and for any 1 ≤ i ≤ n− 1, |Si+1| = |Si|+ 1.

Theorem 3. The elements of P[n] can be partitioned into
(

n
⌊n/2⌋

)
symmetric

chains.

Proof. We first observe that any partition into symmetric chains has size(
n

⌊n/2⌋

)
, since each symmetric chain has to contain a different subset on ⌊n/2⌋

elements. To construct the partition, we proceed by induction on n. The
result clearly holds for n = 1, so we can assume n ≥ 2. Assume that the
result holds for n− 1, that is P[n−1] has a partition into r symmetric chains
C1, . . . , Cr. Each chain Ci gives rise to two chains in Pn: first we can look at
the maximum set S of Ci and add a new set S ∪{n} to the chain Ci. Second
we can add the element n to all sets of the chain and delete the last set S
from the chain. All these chains are clearly symmetric in P[n], and it is not
difficult to see that they partition P[n].
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