
ORCO – Graphs and Discrete Structures
October 26, 2022 – Lecture 5

1 (End of) chordal graphs

Recall that a vertex v is simplicial if the neighborhood of v is a clique. We
have proved above that any chordal graph has a simplicial vertex. Since
each induced subgraph of a chordal graph is a chordal graph, we have the
stronger property that if G is a chordal graph, any induced subgraph of G
has a simplicial vertex.
It turns out to be an equivalence (but we won’t prove it).

Theorem 1. A graph G is chordal if and only if any induced subgraph of G
has a simplicial vertex.

We have another characterization of chordal graphs :

Theorem 2. A graph G is chordal if and only if G does not contain any
induced cycle of length at least 4.

You can try to prove it as a homework, using the following sketch of proof :

(1) Prove that if G is chordal, then G does not contain an induced cycle of
length at least 4.

(2) We now want to prove the converse, that is: if G has no induced cycle
of length at least 4, then G is chordal. Given two non-adjacent vertices
x, y of a graph G, an (x, y)-separator is a set S of vertices such that x
and y are in distinct connected components of G−S. A (x, y)-separator
S is minimal if no subset of S is an (x, y)-separator.
Prove that such a minimal (x, y)-separator always exists.

(3) Prove that if S is a minimal (x, y)-separator, every vertex of S has a
neighbor in the connected component ofG−S containing x (and similarly
for y).

(4) Prove that if G has no induced cycle of length at least 4, and x, y are
non-adjacent vertices in the same connected component of G, then any
minimal (x, y)-separator is a clique.
Hint: assume by contradiction that the separator S has a non-edge u, v

1

and use it to construct an induced cycle passing through u, v that is partly
in the component of G− S containing x, and partly in the component of
G− S containing y.

(5) Use the previous question to prove the following by induction: if G has
no induced cycle of length at least 4, then G is either a complete graph,
or it contains two non-adjacent simplicial vertices. Conclude.

2 Treewidth

2.1 Definitions

Recall the following definition from Lecture 4. Given a graph G, a subtree
representation of G is a tree T together with subsets (Bt)t∈T of vertices of
G (the set Bt is called the bag of t), with the following properties.

1. u and v are adjacent in G if and only if there is a bag Bt containing u
and v in the subtree representation, and

2. for any vertex v, the set of nodes t of T whose bag Bt contains v forms
a subtree of T (equivalently, if v is in two bags Bt and Bs, then v lies
in all the bags Bt′ such that t′ is on the path between t and s in T).

We defined chordal graphs as the graphs admitting a subtree representation.

We now define the notion of tree-decomposition, which is very similar to that
of a subtree representation. The only difference is in the first item, where we
do not require that vertices in the same bag are adjacent.

Given a graph G, a tree decomposition of G is a tree T together with subsets
(Bt)t∈T of vertices of G (the set Bt is called the bag of t), with the following
properties.

1. If u and v are adjacent in G, then there is a bag Bt containing u and
v in the tree-decomposition, and

2. for any vertex v, the set of nodes t of T whose bag Bt contains v forms
a subtree of T (equivalently, if v is in two bags Bt and Bs, then v lies
in all the bags Bt′ such that t′ is on the path between t and s in T).

2

The width of the tree decomposition is defined as the maximum size of a bag
Bt minus 1 (the −1 is to make sure trees have treewidth 1, see below). The
treewidth of a graph G, denoted by tw(G), is the minimum k such that G
has a tree decomposition of width at most k.

Using the results of the last lecture, we can define treewidth equivalently as
follows. A graph has treewidth at most k if and only if it is a subgraph of a
chordal graph of clique number at most k + 1.

A k-tree is a graph defined inductively as follows: it is either a complete
graph on k + 1 vertices, or obtained from a k-tree H by adding a vertex
whose neighborhood is a clique of size k in H. Note that 1-trees are precisely
trees. Using again the results of the last lecture (the existence of a vertex
whose neighborhood is a clique, in every chordal graphs), we can also define
treewidth as follows (this is equivalent to the previous definitions): a graph
G has treewidth at most k if and only if it is a subgraph of a k-tree.

2.2 Algorithmic applications

It turns out that most combinatorial problems can be solved efficiently in
graphs of bounded treewidth using dynamic programming. To illustrate that,
we recall a simple algorithm to compute a Maximum Independent Set
(MIS) in a tree, and explain briefly how to modify the algorithm to extend
it to graphs of bounded treewidth. Recall that a subset S of vertices of a
graph G is an independent set in G if no two vertices of S are adjacent.

Consider a tree T , and choose some root r (turning T into a rooted tree).
For any vertex v, let Tv denote the subtree of T rooted in v. Our goal is to
compute the following two quantities for each vertex v: I+(v), defined as the
maximum size of an independent set of Tv that contains v, and I−(v), defined
as the maximum size of an independent set of Tv that does not contain v.
Note that T = Tr and thus the maximum size of an independent set in G is
precisely max(I+(r), I−(r)).

If v is a leaf, we simply define I+(v) = 1 and I−(v) = 0. If v is not a leaf, we
compute I+(u) and I−(u) for all children u of v and define I+(v) as 1 plus
the sum of I−(u) for all children u of v. Moreover we define I−(v) as the
sum of max(I+(u), I−(u)) for all children u of v.

This takes O(n) steps, where n = |V (T)|, and allows to compute the size of
a maximum independent set in T .

3

We now explain how to extend this approach to graphs of treewidth k, for
fixed k. Let G be a graph of treewidth k and consider a tree decomposition
of G of width k, with underlying tree T and bags (Bt)t∈T . We root T at
some arbitrary vertex r. Given t ∈ T , we denote again by Tt the subtree of
T rooted in t, and we denote by Dt the union of all the bags Bs, for s ∈ Tt.
The goal will be to store, for every independent set J ∈ Bt, the number of
independent sets I of G[Dt] (the subgraph of G induced by Dt) such that
I ∩ Bt = J . There at most 2k+1 choices for J , as Bt has size at most k + 1,
and for each choice of J the relevant value can be computed from the values
stored at the children s of t, as before.
We obtain a complexity of order 2O(k) · |V (T)| for the computation of the
size of a maximum independent set. We need to argue that a tree decom-
position with at most |V (G)| bags exists (this is the case), and that it can
be constructed efficiently. The latter is a bit more subtle, as computing the
treewidth is NP-hard. But for fixed k a tree decomposition of width at most k
can be constructed efficiently (if it exists): the problem is FPT parametrized
by the treewidth, see the next section. Alternatively, a tree decomposition of
width not much larger than the treewidth can be computed efficiently (with
only a polynomial dependence in the treewidth).

2.3 Other algorithmic applications

In this section again we briefly explain some important applications of treewidth.
It can be checked that a large grid or wall (see Figure 1) has large treewidth.
A major result is that the converse is also true, in the following sense. A
subdivision of a graph G is any graph obtained from G by replacing some
edges of G by paths with the same ends (see Figure 1).

Figure 1: A 4× 4-wall and a subdivided 4× 4-wall.

Theorem 3 (The grid minor theorem, Roberston and Seymour). There is a

4

function f such that for any k, if a graph has treewidth at least f(k), then it
contains a subdivision of a k × k-wall as a subgraph.

To see how this can be used in applications, consider the following problem.
2 Disjoint rooted paths: given a graph G with specified vertices s1, s2, t1, t2,
is there a path from s1 to t1 and a path from s2 to t2 that are vertex-disjoint
?
There are two natural obstructions: the first is low connectivity (think of
s1, s2 in some component C1 and t1, t2 in some component C2, such that C1

and C2 have a single vertex in common). The second is topological: imagine
that s1, s2, t1, t2 lie in this order on the outerface of a planar graph (then any
path from s1 to t1 should cross any path from s2 to t2). Obviously these two
obstructions can be combined in many ways, so it is not a priori clear that
the problem above can be solved in polynomial time.

We now briefly sketch an approach to solve this problem (and the more
general version with k disjoint paths instead of 2) in polynomial time, due
to Robertson and Seymour. Given a graph G and s1, s2, t1, t2, we say that a
vertex of v is irrelevant if the following holds: there exist 2 disjoint rooted
paths in G from s1 to t1 and s2 to t2 if and only there exist 2 disjoint rooted
paths in G \ {v} from s1 to t1 and s2 to t2. In other words, v is useless in
the problem, it can be safely removed without affecting the answer.

The algorithm to solve the 2 disjoint rooted paths problem is now the fol-
lowing.

• As long as the treewidth ofG is large, use the grid minor theorem to find
a subdivision of a large wall, and use the wall to identify an irrelevant
vertex (some vertex lying sufficiently deep in the wall, so that any paths
going through it could be rerouted using others branches of the walls).
Remove the irrelevant vertex.

• If no such irrelevant vertex exists then the treewidth must be small, so
we can solve the problem efficiently using dynamic programming.

We end up with a polynomial time algorithm for the 2 disjoint rooted path
problem, and more generally with an algorithm running in f(k) ·poly(n), for
the k disjoint rooted path problem.

5

3 Fixed Parameter Tractable problems

In the previous section we have seen problems that can be solved in time
f(k) · nc, for some fixed constant c independent of k. These problems are
said to be fixed parameter tractable (FPT), parametrized by k. Note that this
is much stronger than problems that are polynomial time solvable when k is
fixed (where we can have a complexity of order O(nf(k)).

In the remainder we present a simple and powerful technique to obtain such
algorithms, which is useful beyond graph theory. The idea is to reduce the
original instance to an equivalent instance of size bounded by a function of
k, and then to run a brute force (typically exponential) algorithm to solve
the small instance.
Given an instance (G, k) of some graph problem parametrized by some integer
k, a kernel is a polynomial time reduction from (G, k) to some (G′, k′) such
that

• k′ ≤ k

• (G, k) is equivalent to (G′, k′) (in other words, (G, k) a positive instance
if and only if (G′, k′) is a positive instance).

• |V (G′)| ≤ f(k), for some function f .

The function f is called the size of the kernel, and the goal is usually to
obtain linear or quadratic kernels.

We apply kernelization to a classical graph problem, Mininum Vertex
Cover (MVC). A vertex cover in a graph G is a subset S of vertices such
that for every edge uv, at least one of u and v lies in S. Our problem is to
decide whether a given graph G has a vertex cover of size at most k (we say
that the problem is parametrized by the size of the solution).

To reduce the size of the instance while maintaining an equivalent instance
(that is a graph G′ and an integer k′ such that G has a vertex cover of size at
most k if and only if G′ has a vertex cover of size at most k′), we repeatedly
apply the following rules, until they cannot be applied anymore.

1. If G contains an isolated vertex v, replace (G, k) by (G \ {v}, k).

2. If G contains a vertex v of degree at least k + 1, replace (G, k) by
(G \ {v}, k − 1).

6

The validity of the first rule (the fact that it yields an equivalent instance)
comes from the fact that isolated vertices are not part of any optimal vertex
cover. For the second rule, observe that if v is not part of the vertex cover,
all its neighbors are, so if d(v) ≥ k + 1 then v has to be part of any vertex
cover of size at most k.
Assume that none of the two rules can be applied. We claim that if G has
a vertex cover of size at most k, then |V (G)| ≤ k(k + 1). This follows from
the fact that since G has no isolated vertex, all vertices are either in the
vertex cover, or adjacent to a vertex of the vertex cover (which contains at
most k vertices, all of which have degree at most k), so G contains at most
k + k · k = k(k + 1) vertices.
So if at this point, |V (G)| > k(k+1), then we can replace (G, k) by a trivial
negative instance of bounded size, while if |V (G)| ≤ k(k + 1) the instance
has bounded size (quadratic in k), as desired.

Once we have reduced the problem to an instance of size N ≤ k(k + 1) we
have several possibilities. We can simply check all

(
N
k

)
k-element subsets of

vertices of the graph and see if they form a vertex cover. A smarter option
is to do the following: we take an edge uv such that neither u nor v is in the
current vertex cover (starting with the empty set), and we check instances
(G \ u, k − 1) and (G \ v, k − 1) (as at least one of u and v has to be in a
vertex cover). The depth of the recursion tree is bounded by k, so the search
runs in N2 · 2k = 2O(k) (since N ≤ k(k + 1)).

Overall, the algorithm for deciding whether a graph G on n vertices has a
vertex cover of size at most k runs in time O(n2)+2O(k), so is fixed parameter
tractable parametrized by the size of the solution (note that in this example
we obtain a complexity of order O(f(k) + nc), which is even better than
O(f(k) · nc)).

Homework. Add a third rule related to vertices of degree 1. How does it
affect the size of the kernel?

7

	(End of) chordal graphs
	Treewidth
	Definitions
	Algorithmic applications
	Other algorithmic applications

	Fixed Parameter Tractable problems

