
ORCO – Graphs and Discrete Structures
September 28, 2022 – Lecture 1

1 Definitions

Given a graph G and an integer k, a k-coloring of G is an assignment of
k colors (usually denoted by {1, . . . , k}) to the vertices of G such that any
two adjacent vertices have different colors. Given a coloring, the set of all
vertices with a given color is usually called a color class (and a coloring can
be thought of as a partition of the vertex set into color classes).
The chromatic number of G, denoted by χ(G), is the least k such that G has
a k-coloring.

If a graphG has a k-coloring we also say thatG is k-colorable, and if χ(G) = k
we also say that G is k-chromatic.

A clique in a graph G is a set of pairwise adjacent vertices in G. The clique
number of G, denoted by ω(G), is the maximum number of vertices in a
clique of G.
A related notion is that of a stable set. A stable set (or independent set)
in a graph G is a set of pairwise non-adjacent vertices in G. Note that in a
coloring of a graph G, each color class is a stable set.
Since in any coloring of G, all the vertices of a clique must have distinct
colors, we have the following simple observation.

Observation 1. For any graph G, ω(G) ≤ χ(G).

It is easy to see that there exist graphs for which the inequality above is strict
(for instance, odd cycles on at least 5 vertices). In the next section, we show
how to construct graphs for which the difference between the chromatic and
clique numbers is arbitrarily large.

Before that, let us study the class of 2-colorable graphs, also known as bi-
partite graphs. A 2-coloring is also called a bipartition. A classical result in
graph theory is the following.

Theorem 2. A graph is bipartite if and only if it contains no odd cycles.

Proof. Since odd cycles are 3-chromatic, any graph that contains an odd
cycle has chromatic number at least 3, which proves the first direction. To
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prove the second direction, consider a graph G with no odd cycle. We can as-
sume that G is connected (otherwise we consider each connected component
separately). Fix a vertex r in G, and for each i ≥ 0, define Li as the set of
vertices of G at distance exactly i from r (the distance between two vertices is
the minimum number of edges on a path connecting the two vertices). Note
that the sets Li partition the vertex set of G. We now define a 2-coloring of
G as follows: all the vertices of the sets Li with i odd are assigned color 1,
and all the vertices of the sets Li with i even are assigned color 2.
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Figure 1: An illustration of the proof of Theorem 2.

We now prove that this is indeed a 2-coloring (assuming that G has no odd
cycles). To this end, consider an edge uv of G (and assume by symmetry
that the distance between r and u is at most the distance between r and
v), and observe that by the definition of (Li)i≥0, either u and v both lie in
some set Li, or u ∈ Li and v ∈ Li+1. In the second case, it follows from the
definition of our coloring that u and v receive different colors. In the first
case, consider a shortest path Pu between u and r, and a shortest path Pv

between v and r. Let w be the vertex of Pu ∩ Pv that is the furthest from
r (note that possibly r = w if Pu ∩ Pv only consists of {r}). Now observe
that the edge uv, together with the subpath of Pv between v and w, and the
the subpath of Pu between u and w, forms an odd cycle (see Figure 1 for an
illustration), which is a contradiction.

It can be checked that the proof actually gives a polynomial algorithm to
decide whether a graph is bipartite (and find a 2-coloring if this is the case, or
an odd cycle otherwise). On the other hand, deciding whether the chromatic
number of a graph is at most 3 is an NP-complete problem (even in very
simple classes of graphs).
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2 Mycielski’s construction

We define a sequence (Mk)k≥1 of graphs inductively. M1 is a single vertex, and
M2 consists of two vertices joined by an edge. For k ≥ 3, Mk is constructed
as follows: we start with a copy of Mk−1, and for each vertex v in this copy
of Mk−1, we add a vertex v′ that has precisely the same neighbors as v (we
say that v′ is the twin of v). Finally, we add a vertex z∗ that is adjacent to
all the newly created vertices v′, and non-adjacent to all the vertices of the
copy of Mk−1.
It is not difficult to check that M3 is a 5-cycle and M4 is the so-called My-
cielski graph, depicted below.

Figure 2: The graph M4.

We now prove the following theorem.

Theorem 3. For any k ≥ 1, Mk is triangle-free (i.e. ω(G) ≤ 2) and χ(G) =
k.

Proof. We prove the theorem by induction on k.
We start by proving that Mk has no triangle. This is clear if k ≤ 2, so assume
that k ≥ 3. Let us denote by S the set of newly created vertices distinct
from z∗. Assume for the sake of contradiction that there exist a triangle T
in Mk. Since S is a stable set and Mk−1 is triangle-free (by induction), T has
two vertices in the copy of Mk−1 (call them u, v) and one in S (call it w′).
But since w′ has the same neighbors in the copy of Mk−1 as its twin w, uvw
forms a triangle in Mk−1, which contradicts the induction hypothesis.
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We now prove that for any k ≥ 3, χ(Mk) = k. The cases k = 1 and k = 2
are clear, so we can assume that k ≥ 3. Since the copy of Mk−1 is (k − 1)-
colorable (by induction), we can color it with colors 1, 2, . . . , k − 1, then use
color k for the vertices of S, and finally color 1 for z∗. This shows that
χ(Mk) ≤ k. It remains to prove that χ(Mk) ≥ k. For this we will need the
following simple observation.

For any graph H and any coloring of H with χ(H)
colors, each color class contains a vertex that is adjacent
to all the other color classes.

(1)

To see why this holds, just observe that the negation of (1) implies that there
is a color, say i, such that each vertex colored i is not adjacent to some other
color class. In this case it is possible to recolor each vertex colored i with
another color. But this results in a coloring of H with at most χ(H) − 1
colors, which is impossible.

Now, assume for the sake of contradiction that Mk has a coloring with k− 1
colors. Since χ(Mk−1) = k − 1 (by induction), we can apply (1) to the
copy of Mk−1 in Mk. This gives us sequence of vertices v1, v2, . . . , vk−1 in
the copy of Mk−1, such that each vi is colored i and is adjacent to all the
other color classes. In particular this implies that for each i, the twin v′i of
vi is also colored i. But then the vertex z∗ is adjacent to vertices of colors
1, 2, . . . , k − 1, which is a contradiction.
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