1 Definitions

Given a graph G and an integer k, a k-coloring of G is an assignment of k colors (usually denoted by $\{1, \ldots, k\}$) to the vertices of G such that any two adjacent vertices have different colors. Given a coloring, the set of all vertices with a given color is usually called a color class (and a coloring can be thought of as a partition of the vertex set into color classes).

The chromatic number of G, denoted by $\chi(G)$, is the least k such that G has a k-coloring.

If a graph G has a k-coloring we also say that G is k-colorable, and if $\chi(G) = k$ we also say that G is k-chromatic.

A clique in a graph G is a set of pairwise adjacent vertices in G. The clique number of G, denoted by $\omega(G)$, is the maximum number of vertices in a clique of G.

A related notion is that of a stable set. A stable set (or independent set) in a graph G is a set of pairwise non-adjacent vertices in G. Note that in a coloring of a graph G, each color class is a stable set.

Since in any coloring of G, all the vertices of a clique must have distinct colors, we have the following simple observation.

Observation 1. For any graph G, $\omega(G) \leq \chi(G)$.

It is easy to see that there exist graphs for which the inequality above is strict (for instance, odd cycles on at least 5 vertices). In the next section, we show how to construct graphs for which the difference between the chromatic and clique numbers is arbitrarily large.

Before that, let us study the class of 2-colorable graphs, also known as bipartite graphs. A 2-coloring is also called a bipartition. A classical result in graph theory is the following.

Theorem 2. A graph is bipartite if and only if it contains no odd cycles.

Proof. Since odd cycles are 3-chromatic, any graph that contains an odd cycle has chromatic number at least 3, which proves the first direction. To
prove the second direction, consider a graph G with no odd cycle. We can assume that G is connected (otherwise we consider each connected component separately). Fix a vertex r in G, and for each $i \geq 0$, define L_i as the set of vertices of G at distance exactly i from r (the distance between two vertices is the minimum number of edges on a path connecting the two vertices). Note that the sets L_i partition the vertex set of G. We now define a 2-coloring of G as follows: all the vertices of the sets L_i with i odd are assigned color 1, and all the vertices of the sets L_i with i even are assigned color 2.

![Figure 1: An illustration of the proof of Theorem 2.](image)

We now prove that this is indeed a 2-coloring (assuming that G has no odd cycles). To this end, consider an edge uv of G (and assume by symmetry that the distance between r and u is at most the distance between r and v), and observe that by the definition of $(L_i)_{i \geq 0}$, either u and v both lie in some set L_i, or $u \in L_i$ and $v \in L_{i+1}$. In the second case, it follows from the definition of our coloring that u and v receive different colors. In the first case, consider a shortest path P_u between u and r, and a shortest path P_v between v and r. Let w be the vertex of $P_u \cap P_v$ that is the furthest from r (note that possibly $r = w$ if $P_u \cap P_v$ only consists of $\{r\}$). Now observe that the edge uv, together with the subpath of P_v between v and w, and the subpath of P_u between u and w, forms an odd cycle (see Figure 1 for an illustration), which is a contradiction.

It can be checked that the proof actually gives a polynomial algorithm to decide whether a graph is bipartite (and find a 2-coloring if this is the case, or an odd cycle otherwise). On the other hand, deciding whether the chromatic number of a graph is at most 3 is an NP-complete problem (even in very simple classes of graphs).
2 Mycielski’s construction

We define a sequence \((M_k)_{k \geq 1}\) of graphs inductively. \(M_1\) is a single vertex, and \(M_2\) consists of two vertices joined by an edge. For \(k \geq 3\), \(M_k\) is constructed as follows: we start with a copy of \(M_{k-1}\), and for each vertex \(v\) in this copy of \(M_{k-1}\), we add a vertex \(v'\) that has precisely the same neighbors as \(v\) (we say that \(v'\) is the twin of \(v\)). Finally, we add a vertex \(z^*\) that is adjacent to all the newly created vertices \(v'\), and non-adjacent to all the vertices of the copy of \(M_{k-1}\).

It is not difficult to check that \(M_3\) is a 5-cycle and \(M_4\) is the so-called Mycielski graph, depicted below.

![Figure 2: The graph \(M_4\).](image)

We now prove the following theorem.

Theorem 3. For any \(k \geq 1\), \(M_k\) is triangle-free (i.e. \(\omega(G) \leq 2\)) and \(\chi(G) = k\).

Proof. We prove the theorem by induction on \(k\).

We start by proving that \(M_k\) has no triangle. This is clear if \(k \leq 2\), so assume that \(k \geq 3\). Let us denote by \(S\) the set of newly created vertices distinct from \(z^*\). Assume for the sake of contradiction that there exist a triangle \(T\) in \(M_k\). Since \(S\) is a stable set and \(M_{k-1}\) is triangle-free (by induction), \(T\) has two vertices in the copy of \(M_{k-1}\) (call them \(u, v\)) and one in \(S\) (call it \(w'\)). But since \(w'\) has the same neighbors in the copy of \(M_{k-1}\) as its twin \(w\), \(www\) forms a triangle in \(M_{k-1}\), which contradicts the induction hypothesis.
We now prove that for any $k \geq 3$, $\chi(M_k) = k$. The cases $k = 1$ and $k = 2$ are clear, so we can assume that $k \geq 3$. Since the copy of M_{k-1} is $(k-1)$-colorable (by induction), we can color it with colors $1, 2, \ldots, k-1$, then use color k for the vertices of S, and finally color 1 for z^*. This shows that $\chi(M_k) \leq k$. It remains to prove that $\chi(M_k) \geq k$. For this we will need the following simple observation.

For any graph H and any coloring of H with $\chi(H)$ colors, each color class contains a vertex that is adjacent to all the other color classes. (1)

To see why this holds, just observe that the negation of (1) implies that there is a color, say i, such that each vertex colored i is not adjacent to some other color class. In this case it is possible to recolor each vertex colored i with another color. But this results in a coloring of H with at most $\chi(H) - 1$ colors, which is impossible.

Now, assume for the sake of contradiction that M_k has a coloring with $k - 1$ colors. Since $\chi(M_{k-1}) = k - 1$ (by induction), we can apply (1) to the copy of M_{k-1} in M_k. This gives us sequence of vertices $v_1, v_2, \ldots, v_{k-1}$ in the copy of M_{k-1}, such that each v_i is colored i and is adjacent to all the other color classes. In particular this implies that for each i, the twin v'_i of v_i is also colored i. But then the vertex z^* is adjacent to vertices of colors $1, 2, \ldots, k-1$, which is a contradiction. \qed