ORCO — Graphs and Discrete Structures
September 28, 2022 — Lecture 1

1 Definitions

Given a graph G and an integer k, a k-coloring of G is an assignment of
k colors (usually denoted by {1,...,k}) to the vertices of G such that any
two adjacent vertices have different colors. Given a coloring, the set of all
vertices with a given color is usually called a color class (and a coloring can
be thought of as a partition of the vertex set into color classes).

The chromatic number of G, denoted by x(G), is the least k such that G has
a k-coloring.

If a graph G has a k-coloring we also say that G is k-colorable, and if x(G) = k
we also say that G is k-chromatic.

A clique in a graph G is a set of pairwise adjacent vertices in G. The clique
number of G, denoted by w(G), is the maximum number of vertices in a
clique of G.

A related notion is that of a stable set. A stable set (or independent set)
in a graph G is a set of pairwise non-adjacent vertices in G. Note that in a
coloring of a graph G, each color class is a stable set.

Since in any coloring of G, all the vertices of a clique must have distinct
colors, we have the following simple observation.

Observation 1. For any graph G, w(G) < x(G).

It is easy to see that there exist graphs for which the inequality above is strict
(for instance, odd cycles on at least 5 vertices). In the next section, we show
how to construct graphs for which the difference between the chromatic and
clique numbers is arbitrarily large.

Before that, let us study the class of 2-colorable graphs, also known as bi-
partite graphs. A 2-coloring is also called a bipartition. A classical result in
graph theory is the following.

Theorem 2. A graph is bipartite if and only if it contains no odd cycles.

Proof. Since odd cycles are 3-chromatic, any graph that contains an odd
cycle has chromatic number at least 3, which proves the first direction. To



prove the second direction, consider a graph G with no odd cycle. We can as-
sume that G is connected (otherwise we consider each connected component
separately). Fix a vertex r in G, and for each i > 0, define L; as the set of
vertices of G at distance exactly ¢ from r (the distance between two vertices is
the minimum number of edges on a path connecting the two vertices). Note
that the sets L; partition the vertex set of G. We now define a 2-coloring of
G as follows: all the vertices of the sets L; with ¢ odd are assigned color 1,
and all the vertices of the sets L; with ¢ even are assigned color 2.

Figure 1: An illustration of the proof of Theorem [2]

We now prove that this is indeed a 2-coloring (assuming that G has no odd
cycles). To this end, consider an edge uv of G (and assume by symmetry
that the distance between r and u is at most the distance between r and
v), and observe that by the definition of (L;);>0, either v and v both lie in
some set L;, or u € L; and v € L;;1. In the second case, it follows from the
definition of our coloring that v and v receive different colors. In the first
case, consider a shortest path P, between uw and r, and a shortest path P,
between v and r. Let w be the vertex of P, N P, that is the furthest from
r (note that possibly r = w if P, N P, only consists of {r}). Now observe
that the edge uv, together with the subpath of P, between v and w, and the
the subpath of P, between u and w, forms an odd cycle (see Figure 1] for an
illustration), which is a contradiction. O

It can be checked that the proof actually gives a polynomial algorithm to
decide whether a graph is bipartite (and find a 2-coloring if this is the case, or
an odd cycle otherwise). On the other hand, deciding whether the chromatic
number of a graph is at most 3 is an NP-complete problem (even in very
simple classes of graphs).



2 Mycielski’s construction

We define a sequence (Mg )x>1 of graphs inductively. M is a single vertex, and
M, consists of two vertices joined by an edge. For & > 3, M is constructed
as follows: we start with a copy of Mj_1, and for each vertex v in this copy
of My_1, we add a vertex v’ that has precisely the same neighbors as v (we
say that v’ is the twin of v). Finally, we add a vertex z* that is adjacent to
all the newly created vertices v/, and non-adjacent to all the vertices of the
copy of My_4.

It is not difficult to check that Msj is a 5-cycle and M, is the so-called My-
cielski graph, depicted below.

Figure 2: The graph M,.

We now prove the following theorem.

Theorem 3. For any k > 1, My, is triangle-free (i.e. w(G) < 2) and x(G) =
k.

Proof. We prove the theorem by induction on k.

We start by proving that M} has no triangle. This is clear if £ < 2, so assume
that £k > 3. Let us denote by S the set of newly created vertices distinct
from z*. Assume for the sake of contradiction that there exist a triangle T’
in My. Since S is a stable set and Mjy_; is triangle-free (by induction), 7" has
two vertices in the copy of My_; (call them w,v) and one in S (call it w’).
But since w’ has the same neighbors in the copy of Mj_; as its twin w, uvw
forms a triangle in M}_,, which contradicts the induction hypothesis.



We now prove that for any k > 3, x(My) = k. The cases k = 1 and k = 2
are clear, so we can assume that £ > 3. Since the copy of My_; is (k — 1)-
colorable (by induction), we can color it with colors 1,2,... &k — 1, then use
color k for the vertices of S, and finally color 1 for z*. This shows that
X(My) < k. Tt remains to prove that y(My) > k. For this we will need the
following simple observation.

For any graph H and any coloring of H with x(H)
colors, each color class contains a vertex that is adjacent (1)
to all the other color classes.

To see why this holds, just observe that the negation of (1) implies that there
is a color, say i, such that each vertex colored ¢ is not adjacent to some other
color class. In this case it is possible to recolor each vertex colored ¢ with
another color. But this results in a coloring of H with at most y(H) — 1
colors, which is impossible.

Now, assume for the sake of contradiction that M has a coloring with k£ — 1
colors. Since x(My—1) = k — 1 (by induction), we can apply to the
copy of My, in M. This gives us sequence of vertices vy, vy, ..., U1 in
the copy of Mj_1, such that each v; is colored 7 and is adjacent to all the
other color classes. In particular this implies that for each i, the twin v] of
v; is also colored 7. But then the vertex z* is adjacent to vertices of colors
1,2,...,k — 1, which is a contradiction. 0



	Definitions
	Mycielski's construction

