1 Universal sequences

You might know Gray codes, a way to enumerate all sequences of \(n \) bits by simply changing a single bit at each step. Here we will also consider enumerating sequences of \(n \)-bits (or equivalently subsets of \([n]\)), but with a different property.

A sequence \(A = a_1a_2\ldots a_s \) of elements \(a_i \in [n] \) is \(n \)-universal if for any subset \(S \subseteq [n] \), we can find the elements of \(S \) as a subsequence in \(A \) (i.e. the elements appear consecutively somewhere in the sequence \(A \)). For instance \(A = 123413241 \) is 4-universal.

The following is a classical problem in information storage and retrieval.

Question What is the minimum size of an \(n \)-universal sequence?

All subsets of fixed size (say \(n/2 \)) must start at a different location in \(A \), so \(|A| \geq \binom{n}{n/2} \approx \sqrt{2^{n}} \cdot 2^{n}. \) On the other hand it is easy to construct such a sequence by appending all subsets of \([n]\): the length of the corresponding sequence is at most \(n \cdot 2^{n} \). The following result shows that we can gain a factor linear in \(n \) compared to this trivial bound.

Theorem 1 (Lipski, 1978). There is an \(n \)-universal sequence of size at most \(\frac{4}{\pi} \cdot 2^{n} \).

Proof. We only consider the case where \(n \) is even for simplicity. We let \(S = 1, 2, \ldots, n/2 \) and \(T = n/2 + 1, \ldots, n \). By Theorem 3 in Lecture 8, \(S \) has a partition into at most \(\binom{n/2}{n/4} \approx \sqrt{\frac{4}{\pi n}} \cdot 2^{n/2} \) symmetric chains \(C_1, \ldots, C_r \) and similarly \(T \) has a partition into the same number of symmetric chains \(D_1, \ldots, D_r \). Each chain \(C_i \) is obtained from some minimum set \(S_i \) by adding some elements \(x_1, x_2, \ldots, x_h \) one by one to \(S_i \). To this chain we associate the sequence starting with the elements of \(S_i \) (in any order), followed by \(x_1, x_2, \ldots, x_h \) in this order. Let us call this sequence \(A_i \). Similarly, we associate to each chain \(D_i \) a sequence as above, except that we consider the elements in reverse order (we start with the element \(x_h \) that was last added to the chain, and end with the elements of the minimum set \(S_i \) of the chain, in any order). Let us call this sequence \(B_i \).
We are now ready to define our n-universal sequence. We simply concatenate all sequences B_iA_j, for all $1 \leq i, j \leq r$. For instance we can take:

$$A = B_1A_1B_1A_2 \ldots B_1A_rB_2A_1 \ldots B_rA_1B_2 \ldots B_rA_r.$$

The size of A is at most $n \cdot \left(\frac{n}{n/2}\right)^2 \approx \frac{4}{\pi^2} 2^n$, as desired. To see that A is n-universal, observe that every subset $S' \subseteq S$ appears as a prefix of some sequence B_i, and every subset $T' \subseteq T$ appears as a suffix of some sequence B_j, so the elements of $S' \cup T'$ appear consecutively in B_jA_i (and any subset of $[n]$ can be written as $S' \cup T'$ for some $S' \subseteq S$ and $T' \subseteq T$).

\[\square\]

2 De Bruijn sequences

In this section we consider cyclic sequences. A cyclic sequence of elements of $\{0,1\}$ is a de Bruijn sequence of order n if it contains all sequences of $\{0,1\}^n$ as a subsequence exactly once. Note that such a cyclic sequence has size precisely 2^n.

To show that these cyclic sequences exist for every n, we create a graph G_n whose vertices are all the elements of $\{0,1\}^{n-1}$, and such that for any $(x_1, \ldots, x_{n-1}) \in \{0,1\}^{n-1}$ and any $y \in \{0,1\}$, we add an arc from (x_1, \ldots, x_{n-1}) to $(x_2, \ldots, x_{n-1}, y)$ (the resulting directed graph has some loops, for instance an arc from $(0,0,\ldots,0)$ to itself, labelled 0). Note that all vertices of G_n have in-degree and out-degree 2, so G_n is Eulerian. Take any Eulerian tour of G, and consider the cyclic sequence consisting of the labels of the arcs along the tour. Note that since G_n is Eulerian, the sequence contains exactly 2^n elements. Moreover, n-bit words are in bijection with arcs of G_n, and by the definition of G_n each n-bit word can be found as a subsequence in the cyclic sequence.

3 Independence number

Given a graph G, an independent set (or stable set) of G is a set of pairwise non-adjacent vertices of G. The independence number (or stability number) of G, denoted by $\alpha(G)$, is the size of the largest independent set in G.

The following is a very useful tool to find lower bounds on the chromatic number of a graph.
Lemma 2. For any graph G on n vertices, $\chi(G) \geq \frac{n}{\alpha(G)}$.

Proof. A coloring of a graph G with k colors is a partition of the vertices of G into k independent set. Taking the largest color class, it follows that any graph G on n vertices contains an independent set of size $n/\chi(G)$. Thus $\alpha(G) \geq n/\chi(G)$ and $\chi(G) \geq n/\alpha(G)$, as desired. \qed

In the remainder of this section we prove a lower bound on the independence number of graphs. The result will be interpreted differently next week, in the context of extremal combinatorics.

Theorem 3. For any graph $G = (V, E)$, $\alpha(G) \geq \sum_{v \in V} \frac{1}{d(v) + 1} \geq \frac{n^2}{2m+n}$.

Proof. We will actually provide a randomized algorithm producing an independent set of the required size in expectation. Consider an order v_1, \ldots, v_n on the vertices of G, chosen uniformly at random among all such orders, and apply Algorithm 1 below.

Algorithm 1 Find a large independent set S in G

Set $S = \emptyset$

for $i = 1$ to n do
 if v_i has no neighbor in S then
 add v_i to S
 end if
end for

return S

Given the order v_1, \ldots, v_n, let T be the set of vertices v_i such that v_i has no neighbor v_j with $j < i$ (i.e. all the neighbors of v_i are after v_i in the order). Clearly T is contained in S (the set returned by the algorithm above), and in order to find a lower bound on $|S|$, it is thus enough to find a lower bound on $|T|$.

For each vertex v_i, $\mathbb{P}(v_i \in T) = \frac{1}{d(v_i) + 1}$, since each vertex among v_i and its $d(v_i)$ neighbors has the same probability to be before all the others in the order. It follow that $\mathbb{E}(|S|) \geq \mathbb{E}(|T|) = \sum_{i=1}^{n} \frac{1}{d(v_i) + 1}$. Since the set S returned by Algorithm 1 is clearly an independent set, the algorithm returns an independent set of size at least $\sum_{v \in V} \frac{1}{d(v) + 1}$ in average (and thus an independent set of this size exists in the graph).
To prove the last part of the inequality, observe that by convexity of the function $x \mapsto \frac{1}{x+1}$, $\sum_{v \in V} \frac{1}{d(v)+1}$ is minimized when all the vertices have the same degree, namely $2m/n$. Hence, $\sum_{v \in V} \frac{1}{d(v)+1} \geq n \cdot \frac{1}{\frac{2m}{n} + 1} = \frac{n^2}{2m+n}$. \qed