
ORCO – Graphs and Discrete Structures
November 30, 2022 – Lecture 9

1 Universal sequences

You might know Gray codes, a way to enumerate all sequences of n bits
by simpling changing a single bit at each step. Here we will also consider
enumerating sequences of n-bits (or equivalently subsets of [n]), but with a
different property.

A sequence A = a1a2 . . . as of elements ai ∈ [n] is n-universal if for any
subset S ⊆ [n], we can find the elements of S as a subsequence in A (i.e. the
elements appear consecutively somewhere in the sequence A). For instance
A = 123413241 is 4-universal.

The following is a classical problem in information storage and retrieval.

Question What is the minimum size of an n-universal sequence?

All subsets of fixed size (say n/2) must start at a different location in A, so

|A| ≥
(

n
⌊n/2⌋

)
≈

√
2
πn

· 2n. On the other hand it is easy to construct such

a sequence by appending all subsets of [n]: the length of the corresponding
sequence is at most n · 2n. The following result shows that we can gain a
factor linear in n compared to this trivial bound.

Theorem 1 (Lipski, 1978). There is an n-universal sequence of size at most
4
π
· 2n.

Proof. We only consider the case where n is even for simplicity. We let
S = 1, 2, . . . , n/2 and T = n/2 + 1, . . . , n. By Theorem 3 in Lecture 8, S

has a partition into at most
(
n/2
n/4

)
≈

√
4
πn

· 2n/2 symmetric chains C1, . . . , Cr

and similarly T has a partition into the same number of symmetric chains
D1, . . . , Dr. Each chain Ci is obtained from some minimum set Si by adding
some elements x1, x2, . . . , xh one by one to Si. To this chain we associate
the sequence starting with the elements of Si (in any order), followed by
x1, x2, . . . , xh in this order. Let us call this sequence Ai. Similarly, we as-
sociate fo each chain Di a sequence as above, except that we consider the
elements in reverse order (we start with the element xh that was last added
to the chain, and end with the elements of the minimum set Si of the chain,
in any order). Let us call this sequence Bi.
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We are now ready to define our n-universal sequence. We simply concatenate
all sequences BiAj, for all 1 ≤ i, j ≤ r. For instance we can take:

A = B1A1B1A2 . . . B1ArB2A1 . . . BrA1BrA2 . . . BrAr.

The size of A is at most n ·
(
n/2
n/4

)2 ≈ 4
π
2n, as desired. To see that A is

n-universal, observe that every subset S ′ ⊆ S appears as a prefix of some
sequence Ai, and every subset T ′ ⊆ T appears as a suffix of some sequence
Bj, so the elements of S ′ ∪ T ′ appear consecutively in BjAi (and any subset
of [n] can be written as S ′ ∪ T ′ for some S ′ ⊆ S and T ′ ⊆ T ).

2 De Bruijn sequences

In this section we consider cyclic sequences. A cyclic sequence of elements
of {0, 1} is a de Bruijn sequence of order n if it contains all sequences of
{0, 1}n as a subsequence exactly once. Note that such a cyclic sequence has
size precisely 2n.
To show that these cyclic sequences exist for every n, we create a graph
Gn whose vertices are all the elements of {0, 1}n−1, and such that for any
(x1, . . . , xn−1) ∈ {0, 1}n−1 and any y ∈ {0, 1}, we add an arc from (x1, . . . , xn−1)
to (x2, . . . , xn−1, y) (the resulting directed graph has some loops, for instance
an arc from (0, 0 . . . , 0) to itself, labelled 0). Note that all vertices of Gn have
in-degree and out-degree 2, so Gn is Eulerian. Take any Eulerian tour of G,
and consider the cyclic sequence consisting of the labels of the arcs along
the tour. Note that since Gn is Eulerian, the sequence contains exactly 2n

elements. Moreover, n-bit words are in bijection with arcs of Gn, and by the
definition of Gn each n-bit word can be found as a subsequence in the cyclic
sequence.

3 Independence number

Given a graph G, an independent set (or stable set) of G is a set of pairwise
non-adjacent vertices of G. The independence number (or stability number)
of G, denoted by α(G), is the size of the largest independent set in G.

The following is a very useful tool to find lower bounds on the chromatic
number of a graph.
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Lemma 2. For any graph G on n vertices, χ(G) ≥ n
α(G)

.

Proof. A coloring of a graph G with k colors is a partition of the vertices
of G into k independent set. Taking the largest color class, it follows that
any graph G on n vertices contains an independent set of size n/χ(G). Thus
α(G) ≥ n/χ(G) and χ(G) ≥ n/α(G), as desired.

In the remainder of this section we prove a lower bound on the independence
number of graphs. The result will be interpreted differently next week, in
the context of extremal combinatorics.

Theorem 3. For any graph G = (V,E), α(G) ≥
∑

v∈V
1

d(v)+1
≥ n2

2m+n
.

Proof. We will actually provide a randomized algorithm producing an inde-
pendent set of the required size in expectation. Consider an order v1, . . . , vn
on the vertices of G, chosen uniformly at random among all such orders, and
apply Algorithm 1 below.

Algorithm 1 Find a large independent set S in G

Set S = ∅
for i = 1 to n do
if vi has no neighbor in S then
add vi to S

end if
end for
return S

Given the order v1, . . . , vn, let T be the set of vertices vi such that vi has no
neighbor vj with j < i (i.e. all the neighbors of vi are after vi in the order).
Clearly T is contained in S (the set returned by the algorithm above), and
in order to find a lower bound on |S|, it is thus enough to find a lower bound
on |T |.
For each vertex vi, P(vi ∈ T ) = 1

d(vi)+1
, since each vertex among vi and its

d(vi) neighbors has the same probability to be before all the others in the or-
der. It follow that E(|S|) ≥ E(|T |) =

∑n
i=1

1
d(vi)+1

. Since the set S returned
by Algorithm 1 is clearly an independent set, the algorithm returns an inde-
pendent set of size at least

∑
v∈V

1
d(v)+1

in average (and thus an independent

set of this size exists in the graph).
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To prove the last part of the inequality, observe that by convexity of the
function x 7→ 1

x+1
,
∑

v∈V
1

d(v)+1
is minimized when all the vertices have the

same degree, namely 2m/n. Hence,
∑

v∈V
1

d(v)+1
≥ n · 1

2m
n

+1
= n2

2m+n
.
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