Doctoral mini-course on expander graphs
December 12, 2024 — Lecture 3

1 Preliminaries

We recall the following theorem, stated and used in the last lecture.

Theorem 1. Let G be an (n,d,\)-graph. Suppose we take a vertex xg
uniformly at random in G, and then perform a random walk xq, ..., x; of
length t starting at xo. Then for any subset S C V(G), the probability that
T, L1, .., 2 are all in S is at most (|S|/n + N/d)'. Moreover, if |S|/n >
6A/d, then this probability is at least (|S|/n — 2\/d)".

2 Hardness of approximation

The PCP theorem, mentioned in the previous lecture, can equivalently be
stated as a result on the hardness of approximating combinatorial problems.
Recall that a cliqgue in a graph is a set of pairwise adjacent vertices. The
cliqgue number of G, denoted by w(G), is the maximum size of a clique in G.

Theorem 2. There exist constants 0 < a < b < 1 such that given an n-vertex
graph G for which

(1) w(G) < an, or
(2) w(G) = bn,

there is mo polynomial time algorithm distinguishing between the two cases
(1) and (2), unless P = NP.

In particular, we cannot approximate the clique number in polynomial time
within a factor of b/a — ¢ unless P = NP. (We say that an algorithm A
approzimates the clique number within a factor ¢(n) > 1 if for any graph G
on n vertices, w(G)/c(n) < A(G) < w(@)). Indeed: if we have an algorithm
B which approximates the clique number within a factor of (b/a) — ¢ (i.e.,
such that w(G)/(b/a —¢) < B(G) < w(G)), then we can run B and answer
(1) if B(G) < an, and (2) otherwise.

Our first observation is that we can make the constant in the inapproxima-
bility result arbitrarily large.



Assume there is no polynomial time algorithm that approximates the clique
number within ¢;. Let ¢ > ¢;, and assume that some polynomial time
algorithm B approximates the clique number within cs.

Let G be a graph on n vertices. Consider G * k, the graph whose vertices are
the k-tuples of vertices of (G, with adjacency between two k-tuples if their
union is a clique of G. It is not hard to check that w(G * k) = w(G)*: in
one direction, any clique of size ¢ in G produces ¢* k-tuples that are pairwise
adjacent in G * k, and in the other direction, in any clique of size at least ¢*
in G x k we must see at least ¢ distinct vertices of G in the k-tuples, and the
union of these ¢ elements forms a clique in G.

Take k > log cy/log ¢y, and compute A(G) = (B(G * k))/¥. Then

w(G)/er < w(@)/ey™ < AG) < w(G),

and thus the result approximates the clique number of G within ¢;. Since
G x k has size polynomial in G, the new algorithm A is also polynomial.

Using Theorem [2] this shows that for any constant ¢ > 0, there is no polyno-
mial time algorithm approximating the clique number within factor ¢, unless
P = NP. We will now use expanders to push the inaproximability ratio
further.

Theorem 3. There is € > 0 such that there is no polynomial time algorithm
approximating the cligue number in n-vertex graphs within factor n®, unless
P = NP.

The remainder of the section is devoted to the proof of Theorem [3]

Let G be an n-vertex graph, and let F' be an (n,d, A)-graph on the same
vertex set as G. For some integer ¢, we define a new graph H whose vertices
are the t+ 1-vertex walks zg, ..., z; in F', and in which two walks are adjacent
if and only if their union is contained in some clique of G. Note that F' has
N = nd" vertices, which is polynomial in n whenever ¢t = O(logn).

We claim that if w(G) < an, then w(H) < (a+ A/d)'N.

To see this, we start by observing that if C' is clique in H, the union of the
vertex sets of all the corresponding walks in F' corresponds to some clique
C' in G. Theorem [I| says that the proportion of walks of length ¢t of F' that
remain inside C” is at most (a + \/d)!, since |C’| < an. It follows that
|C] < (a+ A/d)'N, as desired.



As a set of walks of F' confined in some clique of G forms a clique in H, we
obtain the following immediate corollary of Theorem [I}

Corollary 4. If w(G) > bn and X\ < bd/6, then w(H) > (b—2\/d)'N.

By taking A/d sufficiently small (as a function of a and b) we find two con-
stants a < (3 such that w(G) < an implies w(H) < !N, and w(G) > bn
implies w(H) > B'N.

With ¢ = logn, the ratio between the two bounds is (8/a)t = n® = N¢ (for
some 6§, > 0), so if we know how to approximate the clique number within
a factor of (number of vertices)®, we can distinguish between (1) w(G) < an
and (2) w(G) > bn in polynomial time. By Theorem[2] it follows that there is
no polynomial time algorithm approximating the clique number in n-vertex
graphs within factor n®, as desired.

This is not the best known result: it is known that the clique number is not
approximable within a factor of n'~¢ for any € > 0 (unless P = NP). On the
other hand there is a simple n-approximation algorithm: always output 1.

3 Zig-zag product

In this section we describe a purely combinatorial (an algorithmically effi-
cient) construction of a family of expander graphs, due to Reingold, Vadhan
and Wigderson (2002). We start by defining the zig-zag product of two
graphs.

We consider a graph G (a small “red” graph), which is d-regular and has D
vertices, and a graph H (a large “blue” graph) which is D-regular and has n
vertices.

We replace each vertex v of H by a copy G, of G, and we use each edge uv
of H to connect a vertex of G, to a vertex of G, (we view the edge uv as
being colored blue). Note that as G has D vertices and H is D-regular, we
can make sure that for every v € V(G), each vertex of G, is incident to a
single blue edge. Let Z denote the resulting (edge-colored) graph.

Now the zig-zag product of H and G, denoted by H ® G, is the graph on the
same vertex as the graph Z described above, with an edge between z € G,
and y € G, if and only if there is red-blue-red path on 3 edges between
x and y in Z. See Figure [1] for an illustration of Ky ® K3. We emphasize
that this construction can produce different graphs, depending on the choices
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of endpoints of the blue edges. Whenever we write “the graph H ® G” in
the remainder, what we really mean is “any graph that can be produced by
taking the zig-zag product of H and G”.

Figure 1: The zig-zag product of H = K,y and G = K3.

For an (n,d, \)-graph G, we write \*(G) = \/d.
Theorem 5. The graph H ® G has Dn vertices, is d*-reqular, and
N(H®G) < XN(G)+ X'(H).

We now explain how the zig-zag construction (and Theorem [5)) can be used to
construct families of expander graphs. We will need the following definition.
For a graph G, G? stands for the square of G: this is the graph with the
same vertex set as GG in which we add an edge between two vertices for any
path of length two between them (this graph will have multiple edges and
loops). Note that if G is an (n, d, \)-graph, then G? is an (n,d?, \?)-graph,
since the adjacency matrix of G? is the square of the adjacency matrix of G.
We start with a small d-regular graph G with D = d* vertices, and \*(G) <

1/4 (we find G by exhaustive search, such a graph exists as soon as d is large
enough).



We set G; = G?, and then Gy = (G;)? ® G for any i > 1. So for any i > 1,
G; has D' vertices and degree d? (so after Q(logn) iterations we obtain a
graph of size close to n). Note that G;;; is well defined (the zig-zag product
is legal): indeed, (G;)? has degree (d?)> = d* = D and G has D vertices.
We claim that \*(G;) < 1/2. This is due to the fact that \*(G;) < A\*(G%_ )+
M(G) < (1/2)> +1/4 = 1/2. The main idea here is that the squaring
improves the expansion sufficiently, so that even after the loss coming the
zig-zag product, \* remains bounded away from 1.

Observe that we can compute G, entirely in time polynomial in the size of
G;. After a few modifications to the procedure, the computation of G; can
even be made strongly explicit (that is, given a vertex x, we can compute
the list of neighbors of z in time polylogarithmic in the size of G}).

Next week we will see how to use this construction to prove results on the
complexity of s, t-connectivity, the problem consisting in deciding whether
two vertices s,t of a graph are in the same connected component. This is a
major result of Reingold (2005).
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