
Doctoral mini-course on expander graphs
December 12, 2024 – Lecture 3

1 Preliminaries

We recall the following theorem, stated and used in the last lecture.

Theorem 1. Let G be an (n, d, λ)-graph. Suppose we take a vertex x0

uniformly at random in G, and then perform a random walk x0, . . . , xt of
length t starting at x0. Then for any subset S ⊆ V (G), the probability that
x0, x1, . . . , xt are all in S is at most (|S|/n + λ/d)t. Moreover, if |S|/n ≥
6λ/d, then this probability is at least (|S|/n− 2λ/d)t.

2 Hardness of approximation

The PCP theorem, mentioned in the previous lecture, can equivalently be
stated as a result on the hardness of approximating combinatorial problems.
Recall that a clique in a graph is a set of pairwise adjacent vertices. The
clique number of G, denoted by ω(G), is the maximum size of a clique in G.

Theorem 2. There exist constants 0 < a < b < 1 such that given an n-vertex
graph G for which

(1) ω(G) ≤ an, or

(2) ω(G) ≥ bn,

there is no polynomial time algorithm distinguishing between the two cases
(1) and (2), unless P = NP.

In particular, we cannot approximate the clique number in polynomial time
within a factor of b/a − ε unless P = NP. (We say that an algorithm A
approximates the clique number within a factor c(n) > 1 if for any graph G
on n vertices, ω(G)/c(n) ≤ A(G) ≤ ω(G)). Indeed: if we have an algorithm
B which approximates the clique number within a factor of (b/a) − ε (i.e.,
such that ω(G)/(b/a − ε) ≤ B(G) ≤ ω(G)), then we can run B and answer
(1) if B(G) ≤ an, and (2) otherwise.

Our first observation is that we can make the constant in the inapproxima-
bility result arbitrarily large.

1

Assume there is no polynomial time algorithm that approximates the clique
number within c1. Let c2 > c1, and assume that some polynomial time
algorithm B approximates the clique number within c2.

Let G be a graph on n vertices. Consider G ∗k, the graph whose vertices are
the k-tuples of vertices of G, with adjacency between two k-tuples if their
union is a clique of G. It is not hard to check that ω(G ∗ k) = ω(G)k: in
one direction, any clique of size ℓ in G produces ℓk k-tuples that are pairwise
adjacent in G ∗ k, and in the other direction, in any clique of size at least ℓk

in G ∗ k we must see at least ℓ distinct vertices of G in the k-tuples, and the
union of these ℓ elements forms a clique in G.

Take k ≥ log c2/ log c1, and compute A(G) = (B(G ∗ k))1/k. Then

ω(G)/c1 ≤ ω(G)/c
1/k
2 ≤ A(G) ≤ ω(G),

and thus the result approximates the clique number of G within c1. Since
G ∗ k has size polynomial in G, the new algorithm A is also polynomial.

Using Theorem 2, this shows that for any constant c > 0, there is no polyno-
mial time algorithm approximating the clique number within factor c, unless
P = NP. We will now use expanders to push the inaproximability ratio
further.

Theorem 3. There is ε > 0 such that there is no polynomial time algorithm
approximating the clique number in n-vertex graphs within factor nε, unless
P = NP.

The remainder of the section is devoted to the proof of Theorem 3.

Let G be an n-vertex graph, and let F be an (n, d, λ)-graph on the same
vertex set as G. For some integer t, we define a new graph H whose vertices
are the t+1-vertex walks x0, . . . , xt in F , and in which two walks are adjacent
if and only if their union is contained in some clique of G. Note that F has
N = ndt vertices, which is polynomial in n whenever t = O(log n).

We claim that if ω(G) ≤ an, then ω(H) ≤ (a+ λ/d)tN .

To see this, we start by observing that if C is clique in H, the union of the
vertex sets of all the corresponding walks in F corresponds to some clique
C ′ in G. Theorem 1 says that the proportion of walks of length t of F that
remain inside C ′ is at most (a + λ/d)t, since |C ′| ≤ an. It follows that
|C| ≤ (a+ λ/d)tN , as desired.

2

As a set of walks of F confined in some clique of G forms a clique in H, we
obtain the following immediate corollary of Theorem 1.

Corollary 4. If ω(G) ≥ bn and λ ≤ bd/6, then ω(H) ≥ (b− 2λ/d)tN .

By taking λ/d sufficiently small (as a function of a and b) we find two con-
stants α < β such that ω(G) ≤ an implies ω(H) ≤ αtN , and ω(G) ≥ bn
implies ω(H) ≥ βtN .

With t = log n, the ratio between the two bounds is (β/α)t = nδ = N ε (for
some δ, ε > 0), so if we know how to approximate the clique number within
a factor of (number of vertices)ε, we can distinguish between (1) ω(G) ≤ an
and (2) ω(G) ≥ bn in polynomial time. By Theorem 2, it follows that there is
no polynomial time algorithm approximating the clique number in n-vertex
graphs within factor nε, as desired.

This is not the best known result: it is known that the clique number is not
approximable within a factor of n1−ε for any ε > 0 (unless P = NP). On the
other hand there is a simple n-approximation algorithm: always output 1.

3 Zig-zag product

In this section we describe a purely combinatorial (an algorithmically effi-
cient) construction of a family of expander graphs, due to Reingold, Vadhan
and Wigderson (2002). We start by defining the zig-zag product of two
graphs.

We consider a graph G (a small “red” graph), which is d-regular and has D
vertices, and a graph H (a large “blue” graph) which is D-regular and has n
vertices.
We replace each vertex v of H by a copy Gv of G, and we use each edge uv
of H to connect a vertex of Gu to a vertex of Gv (we view the edge uv as
being colored blue). Note that as G has D vertices and H is D-regular, we
can make sure that for every v ∈ V (G), each vertex of Gv is incident to a
single blue edge. Let Z denote the resulting (edge-colored) graph.

Now the zig-zag product of H and G, denoted by H ⊗G, is the graph on the
same vertex as the graph Z described above, with an edge between x ∈ Gu

and y ∈ Gv if and only if there is red-blue-red path on 3 edges between
x and y in Z. See Figure 1 for an illustration of K4 ⊗ K3. We emphasize
that this construction can produce different graphs, depending on the choices

3

of endpoints of the blue edges. Whenever we write “the graph H ⊗ G” in
the remainder, what we really mean is “any graph that can be produced by
taking the zig-zag product of H and G”.

G

H

Z H ⊗G

Figure 1: The zig-zag product of H = K4 and G = K3.

For an (n, d, λ)-graph G, we write λ∗(G) = λ/d.

Theorem 5. The graph H ⊗G has Dn vertices, is d2-regular, and

λ∗(H ⊗G) ≤ λ∗(G) + λ∗(H).

We now explain how the zig-zag construction (and Theorem 5) can be used to
construct families of expander graphs. We will need the following definition.
For a graph G, G2 stands for the square of G: this is the graph with the
same vertex set as G in which we add an edge between two vertices for any
path of length two between them (this graph will have multiple edges and
loops). Note that if G is an (n, d, λ)-graph, then G2 is an (n, d2, λ2)-graph,
since the adjacency matrix of G2 is the square of the adjacency matrix of G.

We start with a small d-regular graph G with D = d4 vertices, and λ∗(G) <
1/4 (we find G by exhaustive search, such a graph exists as soon as d is large
enough).

4

We set G1 = G2, and then Gi+1 = (Gi)
2 ⊗G for any i ≥ 1. So for any i ≥ 1,

Gi has Di vertices and degree d2 (so after Ω(log n) iterations we obtain a
graph of size close to n). Note that Gi+1 is well defined (the zig-zag product
is legal): indeed, (Gi)

2 has degree (d2)2 = d4 = D and G has D vertices.

We claim that λ∗(Gi) < 1/2. This is due to the fact that λ∗(Gi) < λ∗(G2
i−1)+

λ∗(G) < (1/2)2 + 1/4 = 1/2. The main idea here is that the squaring
improves the expansion sufficiently, so that even after the loss coming the
zig-zag product, λ∗ remains bounded away from 1.

Observe that we can compute Gt entirely in time polynomial in the size of
Gt. After a few modifications to the procedure, the computation of Gt can
even be made strongly explicit (that is, given a vertex x, we can compute
the list of neighbors of x in time polylogarithmic in the size of Gt).

Next week we will see how to use this construction to prove results on the
complexity of s, t-connectivity, the problem consisting in deciding whether
two vertices s, t of a graph are in the same connected component. This is a
major result of Reingold (2005).

5

	Preliminaries
	Hardness of approximation
	Zig-zag product

