
Doctoral mini-course on expander graphs
December 19, 2024 – Lecture 4

1 s, t-connectivity

Given a graph G and two vertices s and t, the s, t-connectivity problem
consists in deciding whether s and t are in the same connected component of
G (in other words, whether there is a path between s and t in G). There is a
simple polynomial time algorithm for this (just run some depth-first search in
the graph starting from s, for instance), but we would like to do more: solve
the problem in logarithmic space. From the point of view of Turing machines
this means that there are two tapes: the first one contains the input and is
read-only, and the second one is the workable tape and has logarithmic size.
Let L be the class of problems that can be solved in logarithmic space. It is
known that L ⊆ P (because there are only a polynomial number of possible
states of the memory, and problems can be reduced to the reachability of
some vertex in some polynomial size directed graph, which can be done in
polynomial time). It is not known whether L = P, or even whether L = NP.

Note that graph problems lying in L are severely restricted: in the corre-
sponding algorithms we can only store a constant number of names of ver-
tices and a constant number of counters (which are polynomially bounded).
Whether s, t-connectivity lies in L was a long-standing open problem, solved
by Reingold in 2004 using the zig-zag product introduced in the previous
lecture. Before sketching the proof, let us observe that s, t-connectivity lies
in RL, the class of problems having a (Monte Carlo) randomized algorithm
running in logarithmic space, and that s, t-connectivity can also be solved
deterministically in O(log2 n) space very simply.

Theorem 1. s, t-connectivity lies in RL.

Proof. Do a random walk starting from s, and if the walk meets t in at most
O(n3) steps, report that s and t are in the same component. Otherwise
report that s and t are not in the same component. Note that this can easily
be implemented in logarithmic space (you just need to store the name of
the current vertex of the walk, and the value of a counter for the number of
steps).
Note that if s and t are not in the same component, the random walk will
never meet t, so the algorithm will always be correct in this case. If s and t

1

are in the same component, then we can use a classical property of random
walks: after Ω(n3) steps with high probability every vertex of a connected
n-vertex graph has been visited by the random walk, and thus t is very likely
to have been spotted.

Theorem 2. s, t-connectivity can be solved deterministically in O(log2 n)
space.

Proof. Given a constant D ≥ 1, let S(D) be the space complexity of deciding
whether two vertices u and v lie at distance at most D in G. The algorithm
is the following: if D = 1 we simply check whether u and v are adjacent.
Otherwise D ≥ 2 and for each vertex w, we test whether d(u,w) ≤ ⌊D/2⌋
and d(v, w) ≤ ⌈D/2⌉ (one after the other) and if both are true we answer
yes.
The space needed is S(D) ≤ O(log n) + S(D/2), and thus

S(D) = O((log n)(logD)).

In particular, testing whether two vertices are at distance at most n takes
O(log2 n) space. By testing whether d(s, t) ≤ n, we obtain a O(log2 n) space
algorithm to decide whether s and t are in the same component.

We now sketch the proof of a major result of Reingold: s, t-connectivity lies
in L. Using earlier results, this directly implies that RL = L, and thus every
randomized logarithmic space algorithm can be made completely determin-
istic.

We start by transforming our original graph (call it H) by replacing every
vertex by a cycle: this produces a 3-regular graph, and we then add self-loops
to all vertices to make the graph d-regular (with d constant, but sufficiently
large). Note that the new graph still has polynomial size. Moreover, each
connected component has λ∗ < d.

We then take a small expander graph G and we perform the same kind
of construction as in the previous lecture. Starting with H, we repeat the
following: make the zig-zag product with G (to decrease the degree while not
losing too much on the expansion), and then raise our graph to some small
power (this improves the expansion but increases the degree). The point
is that the value λ∗ in each component decreases at each step, and after a
logarithmic number of steps:

2

• the current graph has constant degree, and size polynomial in the size
of H.

• each connected component of the current graph has λ∗ bounded by a
constant strictly less than 1 (say 1/2).

In particular, each component has logarithmic diameter, as we observed in
the first lecture. But then telling whether s and t are in the same component
can easily be done in logarithmic space, as we can simply enumerate all
walks of size t = c log n in logarithmic space (recall that our current graph
has constant degree, this is crucial).

The most difficult part of the proof consists in showing that all the steps of
the construction can be performed in logarithmic space.

Let us be a bit more specific about how the value λ∗ decreases step after step.
Let us take H0 = H, and for any i ≥ 0 let us consider Hi+1 = (Hi ⊗ G)8.
We will need the following result, which is a variant of a result stated in the
last lecture, but which is mostly interesting when λ∗ is close to 1 and what
we mostly care about is the gap 1− λ∗, rather than λ∗ itself.

Theorem 3. For any two graphs H and G,

1− λ∗(H ⊗G) ≥ 1
2
(1− λ∗(G)2)(1− λ∗(H)).

In particular when we choose our small expander G we can make sure that
λ∗(G) ≤ 1

2
, and it follows that for any graph H,

1− λ∗(H ⊗G) ≥ 3
8
(1− λ∗(H)).

As a consequence, for any i ≥ 0,

λ∗(Hi+1) = λ∗((Hi ⊗G)8) = (λ∗(Hi ⊗G))8 ≤
(
1− 3

8
(1− λ∗(Hi))

)8
.

It can be checked that for any x ∈ [0, 1], (1− 3
8
(1− x))8 ≤ max(1

2
, x2). This

implies that λ∗(Hi+1) ≤ max(1
2
, λ∗(Hi)

2) and thus a simple induction shows

that for any i ≥ 0 , λ∗(Hi) ≤ max(1
2
, λ∗(H)2

i
).

Note that when α ≤ 1, α ≤ exp(α − 1) and thus αt ≤ exp((α − 1)t). If
the original graph H is connected (otherwise the same analysis can be done
individually in each connected component of H), it can be proved that the
spectral gap 1 − λ∗(H) is at least 1/n2, so by taking k = Ω(log n) we have
2k ≥ n2 and thus λ∗(H)2

k ≤ e−1 ≤ 1
2
. Hence, λ∗(Hk) ≤ 1/2, as desired.

3

2 Error-correcting codes

Alice and Bob want to send each other messages of k bits over a noisy channel.
To ensure that the message is correctly decoded despite the noise (random
error on a fraction of p of the bits of the message), they encode each word of
{0, 1}k as a word of {0, 1}n (n > k) (these words are called code words) such
that the minimum Hamming distance between two code words is as large
as possible. Recall that the Hamming distance between two binary words
(xi)1≤i≤n and (yi)1≤i≤n is the number of entries 1 ≤ i ≤ n such that xi ̸= yi.
If any two code words are at Hamming distance more than 2pn, then the
”closest” code word from any n-bit word is unique (since it is at distance at
most pn from a code word), so the message can be decoded.

The parameter n is called the block length. We also define the following
parameters for the code : the rate k/n, and the relative distance which is the
minimum Hamming distance between two code words, divided by n.

An infinite family of codes C is said to be asymptotically good if there are
constants c1 > 0 and c2 > 0 such that all the rates are at least c1 and all the
relative distances are at least c2 (in practice we also want efficient encoding
and decoding procedures).

We will consider linear codes : the code words will form a linear subspace
of GF(2)n of dimension k (such a subspace contains precisely 2k vectors, so
these vectors are in bijection with the set of k-bit words). Equivalently, a
code on n-bit words is linear if for any two code words, their entry-wise sum
modulo 2 is also a code word.

Observe that in such a code the relative distance is precisely the minimum
weight of a non-zero code word, divided by n.

Code words in linear codes can be seen as the original message (i.e. all possible
words on k bits) together with n − k check bits, each of which is a linear
combination of bits of the original message (it is clear with this definition
that the code words form a linear subspace of dimension k, but in fact any
code words in such linear subspace can be divided into the original message
and a number of check bits). In the following we really think of a linear code
of block length n and rate k/n as a linear subspace of GF(2)n defined by
n− k (linearly independent) linear equations.

Take a linear code C of block length d, rate r, and relative distance δ (such a
code has dimension rd so can be defined by a set of (1−r)d linear equations).

4

For instance we can take C to be the Hamming(7, 4) code, which encodes 4
bits with 7 bits using 3 additional parity bits (the code has block length 7,
rate 4/7 and relative distance 3/7).

For any integer n, we will build a linear code C ′ of block length dn/2, rate
2r − 1, and relative distance at least (δ − λ/d)δ. So we produce an infinite
family of asymptotically good codes.

For this we consider an (n, d, λ)-graph G, and we identify codewords of C ′

with (characteristic vectors of) edge-sets of G with the property that for any
code word W in C ′, and any vertex v, the restriction of W on the edges
incident to v is a code word of C. This can be done by writing (1−r)d linear
equations for each vertex v, so in total (1−r)dn equations. It follows that the
subspace we obtain has dimension at least dn/2− (1− r)dn = dn(r − 1/2).
So the rate is at least dn(r − 1/2)/(dn/2) = 2r − 1, as claimed.

Now what is the relative distance of C ′? As we observed earlier, we only
have to compute the minimum weight of a code word of C ′, divided by the
block length, which is here the minimum number of edges of a code word,
divided by dn/2.

Recall the Expander mixing lemma, which we have seen in the first lecture:
For all subsets S, T ⊆ V (G), |e(S, T) − d|S||T |/n| ≤ λ

√
|S||T |. By taking

S = T we obtain that e(S, S) ≤ d|S|2/n + λ|S|. Since e(S, S) is twice the
number of edges in the subgraph induced by S, if |S| < an we have that
E(G[S]) has size less than 1

2
an(ad+ λ).

Assume that some code word W of C ′ contains 1
2
an(ad+ λ) edges, for some

a ≤ 1 (there is a real a such that W contains precisely this number of edges).
Then the subgraph induced by the endpoints of the edges of W contains at
least an vertices. It follows that one of these vertices sees at least one and
at most 2

(
1
2
an(ad + λ)

)
/an = ad + λ edges of W . This corresponds to a

non-zero word of C with (relative) weight a+ λ/d. This is at least δ, and so
a+ λ/d ≥ δ.

The number of edges of W is 1
2
an(ad+ λ), so the relative distance is at least

(1
2
an(ad+ λ))/(dn/2) = a(a+ λ/d) ≥ (δ − λ/d)δ, as desired.

We haven’t yet mentioned encoding and decoding. Encoding is easy, as it is
usually the case for linear codes. Decoding can also be made efficient, but
this is far from trivial.

5

	s,t-connectivity
	Error-correcting codes

